TY - JOUR A1 - Schwan, Carsten A1 - Lang, Alexander E. A1 - Schlosser, Andreas A1 - Fujita-Becker, Setsuko A1 - AlHaj, Abdulatif A1 - Schröder, Rasmus R. A1 - Faix, Jan A1 - Aktories, Klaus A1 - Mannherz, Hans Georg T1 - Inhibition of Arp2/3 complex after ADP-ribosylation of Arp2 by binary Clostridioides toxins JF - Cells N2 - Clostridioides bacteria are responsible for life threatening infections. Here, we show that in addition to actin, the binary toxins CDT, C2I, and Iota from Clostridioides difficile, botulinum, and perfrigens, respectively, ADP-ribosylate the actin-related protein Arp2 of Arp2/3 complex and its additional components ArpC1, ArpC2, and ArpC4/5. The Arp2/3 complex is composed of seven subunits and stimulates the formation of branched actin filament networks. This activity is inhibited after ADP-ribosylation of Arp2. Translocation of the ADP-ribosyltransferase component of CDT toxin into human colon carcinoma Caco2 cells led to ADP-ribosylation of cellular Arp2 and actin followed by a collapse of the lamellipodial extensions and F-actin network. Exposure of isolated mouse colon pieces to CDT toxin induced the dissolution of the enterocytes leading to luminal aggregation of cellular debris and the collapse of the mucosal organization. Thus, we identify the Arp2/3 complex as hitherto unknown target of clostridial ADP-ribosyltransferases. KW - actin KW - ADP-ribosyltransferases KW - Arp2/3 complex KW - Clostridioides binary toxins Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-297454 SN - 2073-4409 VL - 11 IS - 22 ER - TY - JOUR A1 - Budde, Heidi A1 - Hassoun, Roua A1 - Tangos, Melina A1 - Zhazykbayeva, Saltanat A1 - Herwig, Melissa A1 - Varatnitskaya, Marharyta A1 - Sieme, Marcel A1 - Delalat, Simin A1 - Sultana, Innas A1 - Kolijn, Detmar A1 - Gömöri, Kamilla A1 - Jarkas, Muhammad A1 - Lódi, Mária A1 - Jaquet, Kornelia A1 - Kovács, Árpád A1 - Mannherz, Hans Georg A1 - Sequeira, Vasco A1 - Mügge, Andreas A1 - Leichert, Lars I. A1 - Sossalla, Samuel A1 - Hamdani, Nazha T1 - The interplay between S-glutathionylation and phosphorylation of cardiac troponin I and myosin binding protein C in end-stage human failing hearts JF - Antioxidants N2 - Oxidative stress is defined as an imbalance between the antioxidant defense system and the production of reactive oxygen species (ROS). At low levels, ROS are involved in the regulation of redox signaling for cell protection. However, upon chronical increase in oxidative stress, cell damage occurs, due to protein, DNA and lipid oxidation. Here, we investigated the oxidative modifications of myofilament proteins, and their role in modulating cardiomyocyte function in end-stage human failing hearts. We found altered maximum Ca\(^{2+}\)-activated tension and Ca\(^{2+}\) sensitivity of force production of skinned single cardiomyocytes in end-stage human failing hearts compared to non-failing hearts, which was corrected upon treatment with reduced glutathione enzyme. This was accompanied by the increased oxidation of troponin I and myosin binding protein C, and decreased levels of protein kinases A (PKA)- and C (PKC)-mediated phosphorylation of both proteins. The Ca\(^{2+}\) sensitivity and maximal tension correlated strongly with the myofilament oxidation levels, hypo-phosphorylation, and oxidative stress parameters that were measured in all the samples. Furthermore, we detected elevated titin-based myocardial stiffness in HF myocytes, which was reversed by PKA and reduced glutathione enzyme treatment. Finally, many oxidative stress and inflammation parameters were significantly elevated in failing hearts compared to non-failing hearts, and corrected upon treatment with the anti-oxidant GSH enzyme. Here, we provide evidence that the altered mechanical properties of failing human cardiomyocytes are partially due to phosphorylation, S-glutathionylation, and the interplay between the two post-translational modifications, which contribute to the development of heart failure. KW - myofilament proteins KW - oxidative stress KW - inflammation KW - phosphorylation KW - S-glutathionylation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-242701 SN - 2076-3921 VL - 10 IS - 7 ER -