TY - JOUR A1 - Ojha, Animesh K. A1 - Forster, Stefan A1 - Kumar, Sumeet A1 - Vats, Siddharth A1 - Negi, Segeeta A1 - Fischer, Ingo T1 - Synthesis of well-dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains JF - Journal of Nanobiotechnology N2 - In the present contribution, we describe the synthesis of highly dispersed silver nanorods (NRs) of different aspect ratios using a chemical route. The shape and size of the synthesized NRs were characterized by Transmission Electron Microscopy (TEM) and UV-visible spectroscopy. Longitudinal and transverse absorptions bands confirm the rod type structure. The experimentally recorded UV-visible spectra of NRs solutions were fitted by using an expression of the extinction coefficient for rod like nano structures under the dipole approximation. Simulated and experimentally observed UV-visible spectra were compared to determine the aspect ratios (R) of NRs. The average values of R for NR1, NR2 and NR3 solutions are estimated to be 3.0 +/- 0.1, 1.8 +/- 0.1 and 1.2 +/- 0.1, respectively. These values are in good agreement with those obtained by TEM micrographs. The silver NRs of known aspect ratios are used to study antimicrobial activities against B. subtilis (gram positive) and E. coli (gram negative) microbes. We observed that the NRs of intermediate aspect ratio (R = 1.8) have greater antimicrobial effect against both, B. subtilis (gram positive) and E. coli (gram negative). The NRs of aspect ratio, R = 3.0 has better antimicrobial activities against gram positive than on the gram negative. KW - silver KW - nano rods KW - TEM KW - antimicrobial activities KW - nanowire formation KW - gold nanoparticles KW - Raman-scattering KW - nanostructures KW - particles Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122837 SN - 1477-3155 VL - 11 IS - 42 ER - TY - JOUR A1 - Ojha, Animesh K. A1 - Forster, Stefan A1 - Kumar, Sumeet A1 - Vats, Siddharth A1 - Negi, Sangeeta A1 - Fischer, Ingo T1 - Synthesis of well–dispersed silver nanorods of different aspect ratios and their antimicrobial properties against gram positive and negative bacterial strains JF - Journal of Nanobiotechnology N2 - In the present contribution, we describe the synthesis of highly dispersed silver nanorods (NRs) of different aspect ratios using a chemical route. The shape and size of the synthesized NRs were characterized by Transmission Electron Microscopy (TEM) and UV-visible spectroscopy. Longitudinal and transverse absorptions bands confirm the rod type structure. The experimentally recorded UV-visible spectra of NRs solutions were fitted by using an expression of the extinction coefficient for rod like nano structures under the dipole approximation. Simulated and experimentally observed UV-visible spectra were compared to determine the aspect ratios (R) of NRs. The average values of R for NR1, NR2 and NR3 solutions are estimated to be 3.0 ± 0.1, 1.8 ± 0.1 and 1.2 ± 0.1, respectively. These values are in good agreement with those obtained by TEM micrographs. The silver NRs of known aspect ratios are used to study antimicrobial activities against B. subtilis (gram positive) and E. coli (gram negative) microbes. We observed that the NRs of intermediate aspect ratio (R = 1.8) have greater antimicrobial effect against both, B. subtilis (gram positive) and E. coli (gram negative). The NRs of aspect ratio, R = 3.0 has better antimicrobial activities against gram positive than on the gram negative. KW - antimicrobial activities KW - silver KW - nano rods KW - TEM Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132222 VL - 11 IS - 42 ER - TY - JOUR A1 - Ahmed, Bilal A1 - Ojha, Animesh K. A1 - Hirsch, Florian A1 - Fischer, Ingo A1 - Patrice, Donfack A1 - Materny, Arnulf T1 - Tailoring of enhanced interfacial polarization in WO\(_3\) nanorods grown over reduced graphene oxide synthesized by a one-step hydrothermal method JF - RSC Advances N2 - In the present report, well-defined WO3 nanorods (NRs) and a rGO–WO\(_3\) composite were successfully synthesized using a one-pot hydrothermal method. The crystal phase, structural morphology, shape, and size of the as-synthesized samples were studied using X-ray diffraction (XRD) and transmission electron microscopy (TEM) measurements. The optical properties of the synthesized samples were investigated by Raman, ultraviolet-visible (UV-Vis) and photoluminescence (PL) spectroscopy. Raman spectroscopy and TEM results validate the formation of WO\(_3\) (NRs) on the rGO sheet. The value of the dielectric constant (ε′) of WO3 NRs and rGO–WO\(_3\) composite is decreased with an increase in frequency. At low frequency (2.5 to 3.5 Hz), the value of ε′ for the rGO–WO3 composite is greater than that of pure WO\(_3\) NRs. This could be due to the fact that the induced charges follow the ac signal. However, at higher frequency (3.4 to 6.0), the value of ε′ for the rGO–WO\(_3\) composite is less compared to that of the pure WO3 NRs. The overall decrease in the value of ε′ could be due to the occurrence of a polarization process at the interface of the rGO sheet and WO3 NRs. Enhanced interfacial polarization in the rGO–WO\(_3\) composite is observed, which may be attributed to the presence of polar functional groups on the rGO sheet. These functional groups trap charge carriers at the interface, resulting in an enhancement of the interfacial polarization. The value of the dielectric modulus is also calculated to further confirm this enhancement. The values of the ac conductivity of the WO\(_3\) NRs and rGO–WO\(_3\) composite were calculated as a function of the frequency. The greater value of the ac conductivity in the rGO–WO\(_3\) composite compared to that of the WO\(_3\) NRs confirms the restoration of the sp:\(^{++}\) network during the in situ synthesis of the rGO–WO\(_3\) composite, which is well supported by the results obtained by Raman spectroscopy. KW - chemistry Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-181829 VL - 7 IS - 23 ER -