TY - JOUR A1 - Sonntag, Katja A1 - Hashimoto, Hisayoshi A1 - Eyrich, Matthias A1 - Menzel, Moritz A1 - Schubach, Max A1 - Döcker, Dennis A1 - Battke, Florian A1 - Courage, Carolina A1 - Lambertz, Helmut A1 - Handgretinger, Rupert A1 - Biskup, Saskia A1 - Schilbach, Karin T1 - Immune monitoring and TCR sequencing of CD4 T cells in a long term responsive patient with metastasized pancreatic ductal carcinoma treated with individualized, neoepitope-derived multipeptide vaccines: a case report JF - Journal of Translational Medicine N2 - Background Cancer vaccines can effectively establish clinically relevant tumor immunity. Novel sequencing approaches rapidly identify the mutational fingerprint of tumors, thus allowing to generate personalized tumor vaccines within a few weeks from diagnosis. Here, we report the case of a 62-year-old patient receiving a four-peptide-vaccine targeting the two sole mutations of his pancreatic tumor, identified via exome sequencing. Methods Vaccination started during chemotherapy in second complete remission and continued monthly thereafter. We tracked IFN-γ+ T cell responses against vaccine peptides in peripheral blood after 12, 17 and 34 vaccinations by analyzing T-cell receptor (TCR) repertoire diversity and epitope-binding regions of peptide-reactive T-cell lines and clones. By restricting analysis to sorted IFN-γ-producing T cells we could assure epitope-specificity, functionality, and TH1 polarization. Results A peptide-specific T-cell response against three of the four vaccine peptides could be detected sequentially. Molecular TCR analysis revealed a broad vaccine-reactive TCR repertoire with clones of discernible specificity. Four identical or convergent TCR sequences could be identified at more than one time-point, indicating timely persistence of vaccine-reactive T cells. One dominant TCR expressing a dual TCRVα chain could be found in three T-cell clones. The observed T-cell responses possibly contributed to clinical outcome: The patient is alive 6 years after initial diagnosis and in complete remission for 4 years now. Conclusions Therapeutic vaccination with a neoantigen-derived four-peptide vaccine resulted in a diverse and long-lasting immune response against these targets which was associated with prolonged clinical remission. These data warrant confirmation in a larger proof-of concept clinical trial. KW - pancreatic carcinoma KW - therapeutic vaccines KW - neoepitope-derived peptides KW - T-cell responses KW - CDR3 sequences Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239276 VL - 16 ER - TY - JOUR A1 - Mair, Dorothea A1 - Biskup, Saskia A1 - Kress, Wolfram A1 - Abicht, Angela A1 - Brück, Wolfgang A1 - Zechel, Sabrina A1 - Knop, Karl Christian A1 - Koenig, Fatima Barbara A1 - Tey, Shelisa A1 - Nikolin, Stefan A1 - Eggermann, Katja A1 - Kurth, Ingo A1 - Ferbert, Andreas A1 - Weis, Joachim T1 - Differential diagnosis of vacuolar myopathies in the NGS era JF - Brain Pathology N2 - Altered autophagy accompanied by abnormal autophagic (rimmed) vacuoles detectable by light and electron microscopy is a common denominator of many familial and sporadic non‐inflammatory muscle diseases. Even in the era of next generation sequencing (NGS), late‐onset vacuolar myopathies remain a diagnostic challenge. We identified 32 adult vacuolar myopathy patients from 30 unrelated families, studied their clinical, histopathological and ultrastructural characteristics and performed genetic testing in index patients and relatives using Sanger sequencing and NGS including whole exome sequencing (WES). We established a molecular genetic diagnosis in 17 patients. Pathogenic mutations were found in genes typically linked to vacuolar myopathy (GNE, LDB3/ZASP, MYOT, DES and GAA), but also in genes not regularly associated with severely altered autophagy (FKRP, DYSF, CAV3, COL6A2, GYG1 and TRIM32) and in the digenic facioscapulohumeral muscular dystrophy 2. Characteristic histopathological features including distinct patterns of myofibrillar disarray and evidence of exocytosis proved to be helpful to distinguish causes of vacuolar myopathies. Biopsy validated the pathogenicity of the novel mutations p.(Phe55*) and p.(Arg216*) in GYG1 and of the p.(Leu156Pro) TRIM32 mutation combined with compound heterozygous deletion of exon 2 of TRIM32 and expanded the phenotype of Ala93Thr‐caveolinopathy and of limb‐girdle muscular dystrophy 2i caused by FKRP mutation. In 15 patients no causal variants were detected by Sanger sequencing and NGS panel analysis. In 12 of these cases, WES was performed, but did not yield any definite mutation or likely candidate gene. In one of these patients with a family history of muscle weakness, the vacuolar myopathy was eventually linked to chloroquine therapy. Our study illustrates the wide phenotypic and genotypic heterogeneity of vacuolar myopathies and validates the role of histopathology in assessing the pathogenicity of novel mutations detected by NGS. In a sizable portion of vacuolar myopathy cases, it remains to be shown whether the cause is hereditary or degenerative. KW - autophagy KW - FSHD KW - glycogenin 1 KW - muscular dystrophy KW - myofibrillar myopathy KW - next generation sequencing (NGS) KW - Pompe disease KW - sarcotubular myopathy KW - TRIM32 KW - vacuolar myopathy Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-216048 VL - 30 IS - 5 SP - 877 EP - 896 ER -