TY - JOUR A1 - Scherthan, Harry A1 - Lee, Jin-Ho A1 - Maus, Emanuel A1 - Schumann, Sarah A1 - Muhtadi, Razan A1 - Chojowski, Robert A1 - Port, Matthias A1 - Lassmann, Michael A1 - Bestvater, Felix A1 - Hausmann, Michael T1 - Nanostructure of clustered DNA damage in leukocytes after in-solution irradiation with the alpha emitter Ra-223 JF - Cancers N2 - Background: Cancer patients are increasingly treated with alpha-particle-emitting radiopharmaceuticals. At the subcellular level, alpha particles induce densely spaced ionizations and molecular damage. Induction of DNA lesions, especially clustered DNA double-strand breaks (DSBs), threatens a cell's survival. Currently, it is under debate to what extent the spatial topology of the damaged chromatin regions and the repair protein arrangements are contributing. Methods: Super-resolution light microscopy (SMLM) in combination with cluster analysis of single molecule signal-point density regions of DSB repair markers was applied to investigate the nano-structure of DNA damage foci tracks of Ra-223 in-solution irradiated leukocytes. Results: Alpha-damaged chromatin tracks were efficiently outlined by γ-H2AX that formed large (super) foci composed of numerous 60–80 nm-sized nano-foci. Alpha damage tracks contained 60–70% of all γ-H2AX point signals in a nucleus, while less than 30% of 53BP1, MRE11 or p-ATM signals were located inside γ-H2AX damage tracks. MRE11 and p-ATM protein fluorescent tags formed focal nano-clusters of about 20 nm peak size. There were, on average, 12 (±9) MRE11 nanoclusters in a typical γ-H2AX-marked alpha track, suggesting a minimal number of MRE11-processed DSBs per track. Our SMLM data suggest regularly arranged nano-structures during DNA repair in the damaged chromatin domain. KW - complex DNA damage KW - DNA repair KW - high LET irradiation KW - Single Molecule Localization Microscopy (SMLM) KW - DSB focus substructure Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-193038 SN - 2072-6694 VL - 11 IS - 12 ER - TY - JOUR A1 - Göring, Lukas A1 - Schumann, Sarah A1 - Müller, Jessica A1 - Buck, Andreas K. A1 - Port, Matthias A1 - Lassmann, Michael A1 - Scherthan, Harry A1 - Eberlein, Uta T1 - Repair of a-particle-induced DNA damage in peripheral blood mononuclear cells after internal ex vivo irradiation with \(^{223}\)Ra JF - European Journal of Nuclear Medicine and Molecular Imaging N2 - Purpose As α-emitters for radiopharmaceutical therapies are administered systemically by intravenous injection, blood will be irradiated by α-particles that induce clustered DNA double-strand breaks (DSBs). Here, we investigated the induction and repair of DSB damage in peripheral blood mononuclear cells (PBMCs) as a function of the absorbed dose to the blood following internal ex vivo irradiation with [\(^{223}\)Ra]RaCl2. Methods Blood samples of ten volunteers were irradiated by adding [\(^{223}\)Ra]RaCl2 solution with different activity concentrations resulting in absorbed doses to the blood of 3 mGy, 25 mGy, 50 mGy and 100 mGy. PBMCs were isolated, divided in three parts and either fixed directly (d-samples) or after 4 h or 24 h culture. After immunostaining, the induced γ-H2AX α-tracks were counted. The time-dependent decrease in α-track frequency was described with a model assuming a repair rate R and a fraction of non-repairable damage Q. Results For 25 mGy, 50 mGy and 100 mGy, the numbers of α-tracks were significantly increased compared to baseline at all time points. Compared to the corresponding d-samples, the α-track frequency decreased significantly after 4 h and after 24 h. The repair rates R were (0.24 ± 0.05) h−1 for 25 mGy, (0.16 ± 0.04) h−1 for 50 mGy and (0.13 ± 0.02) h−1 for 100 mGy, suggesting faster repair at lower absorbed doses, while Q-values were similar. Conclusion The results obtained suggest that induction and repair of the DSB damage depend on the absorbed dose to the blood. Repair rates were similar to what has been observed for irradiation with low linear energy transfer. KW - DSB damage KW - irradiation KW - α-Particle KW - γ-H2AX KW - repair Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-324557 VL - 49 IS - 12 ER -