TY - THES A1 - Hümmer, Svenja T1 - Neutrinos aus photohadronischen Wechselwirkungen in kosmischen Beschleunigern T1 - Neutrinos from photohadronic interactions in cosmic accelereators N2 - In dieser Arbeit untersuchen wir die Produktion von Neutrinos in astrophysikalischen Quellen. Bei der Beschreibung der Wechselwirkung betrachten wir resonante, direkte und Multipion-Produktion. Zusätzlich berücksichtigen wir die Produktion von Neutronen und positiv geladenen Kaonen. Wir beachten explizit die Energieverluste der Sekundärteilchen - Pionen, Myonen und Kaonen - auf Grund von Synchrotronstrahlung derselben und adiabatischer Expansion. In Bezug auf den Neutrinofluss berücksichtigen wir Flavor-Mischungen der Neutrinos auf dem Weg zum Beobachter. Zunächst führen wir eine Analyse basierend auf einem generischen Quellmodell durch, in der wir den Einfluss von Magnetfeld und Größe der Quelle auf die Neutrinospektren und das Verhältnis der verschiedenen Neutrino-Flavor untersuchen. Es stellt sich heraus, dass man im Rahmen dieses generischen Modells verschiedene Regionen im Parameterraum anhand des Flavor-Verhältnisses, das für hohe Magnetfelder von dem zumeist angenommenen Verhältnis (nu_e:nu_mu:nu_tau)=(1:2:0) abweicht, klassifizieren kann. In einer zweiten Analyse bestimmen wir die erwarteten Neutrinospektren von Gammablitzen im Rahmen des Feuerball-Modells aus beobachteten Photonspektren. Es zeigt sich, dass auf Grund grober Abschätzungen in der Literatur, der Neutrinofluss zumeist um etwa eine Größenordnung überschätzt wird. Deshalb berechnen wir den erwarteten Neutrinofluss der Gammablitze neu, die während der 40-Leinen-Konfiguration des IceCube-Detektors gemessen wurden, und folgern, dass entgegen der Behauptung der IceCube-Kollaboration, das Feuerball-Modell noch nicht ausgeschlossen ist. Des Weiteren quantifizieren wir systematische und astrophysikalische Unsicherheiten in dem vorhergesagten Neutrinofluss. N2 - In this work we investigate the photohadronic neutrino production within astrophysical environments. In the description of the photohadronic interactions we consider resonant, direct and multipion production. In addition we include the production of neutrons and positiv charged kaons. For the secondaries - pions, muons, kaons - we take into account the effects of energy losses due to synchrotron radiation and adiabatic expansion. We also consider flavor effects on the neutrino flux. In a first analysis we define a generic model for a neutrino source and investigate the effect of the magnetic field and the size of the source on the neutrino flux and flavor ratio. We find that within the model we can classify different regions in the parameter space by the flavor ratio which for higher magnetic field differs from the often used assumption of (nu_e:nu_mu:nu_tau)=(1:2:0). In a second analysis we recompute the expected neutrino flux expected from gamma-ray bursts in the fireball model and see that the neutrino flux in the literature typically overestimates the flux by one order of magnitude due to rough approximations. We therefore reconsider the expected neutrino flux from the gamma-ray bursts measured during the 40-string-configuration of IceCube. As a result we conclude that against the claim of the IceCube collaboration the fireball model is not excluded yet. Furthermore we quantify the systematical and astrophysical uncertainties on the neutrino flux prediction. KW - Neutrino KW - Gamma-Burst KW - Photon-Hadron-Wechselwirkung KW - hochenergetische Neutrinos KW - kosmische Beschleuniger KW - Flavour-Verhältnis KW - photohadronische Wechselwirkung KW - Neutrinoteleskop KW - high-energy neutrino KW - flavor ratio KW - photohadronic interaction KW - cosmic accelerator KW - GRB KW - Flavourmischung Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-77519 ER - TY - THES A1 - Bustamante, Mauricio T1 - Ultra-high-energy neutrinos and cosmic rays from gamma-ray bursts: exploring and updating the connection T1 - Ultra-Hochenergie-Neutrinos und die kosmische Strahlung von Gammastrahlenausbrüche: die Erforschung und die Aktualisierung der Verbindung N2 - It is natural to consider the possibility that the most energetic particles detected (> 10^18 eV), ultra-high-energy cosmic rays (UHECRs), are originated at the most luminous transient events observed (> 10^52 erg s^-1), gamma-ray bursts (GRBs). As a result of the interaction of highly-accelerated, magnetically-confined protons and ions with the photon field inside the burst, both neutrons and UHE neutrinos are expected to be created: the former escape the source and beta-decay into protons which propagate to Earth, where they are detected as UHECRs, while the latter, if detected, would constitute the smoking gun of hadronic acceleration in the sources. Recently, km-scale neutrino telescopes such as IceCube have finally reached the sensitivities required to probe the neutrino predictions of some of the existing GRB models. On that account, we present here a revised, self-consistent model of joint UHE proton and neutrino production at GRBs that includes a state-of-the-art, improved numerical calculation of the neutrino flux (NeuCosmA); that uses a generalised UHECR emission model where some of the protons in the sources are able to "leak out" of their magnetic confinement before having interacted; and that takes into account the energy losses of the protons during their propagation to Earth. We use our predictions to take a close look at the cosmic ray-neutrino connection and find that the current UHECR observations by giant air shower detectors, together with the upper bounds on the flux of neutrinos from GRBs, are already sufficient to put tension on several possibilities of particle emission and propagation, and to point us towards some requirements that should be fulfilled by GRBs if they are to be the sources of the UHECRs. We further refine our analysis by studying a dynamical burst model, where we find that the different particle species originate at distinct stages of the expanding GRB, each under particular conditions. Finally, we consider a possibility of new physics: the effect of neutrino decay in the flux of UHE neutrinos from GRBs. On the whole, our results demonstrate that self-consistent models of particle production are now integral to the advancement of the field, given that the full picture of the UHE Universe will only emerge as a result of looking at the multi-messenger sky, i.e., at gamma-rays, cosmic rays, and neutrinos simultaneously. N2 - Es ist eine natürliche Annahme, dass die energiereichsten beobachteten Teilchen (> 1018 eV), die ultra-hochenergetische Kosmische Strahlung (UHECRs), möglicherweise in Verbindung mit den leuchtkräftigsten zeitlich beschränkten Ereignissen (> 1052 erg s−1), sogenannten Gammablitzen (GRBs), stehen. Als Folge der Wechselwirkungen zwischen den extrem beschleunigten, in Magnetfeldern gefangenen Protonen und Ionen und den Photonfeldern im Inneren der Gammablitze wer- den sowohl Neutronen als auch UHE Neutrinos erwartet. Erstere köonnen die Quelle verlassen und zerfallen zu Protonen via β-Zerfall, welche zur Erde propagieren und dort als UHECR detektiert werden köonnen, während Letztere, wenn detektiert, den eindeutigen Beweis für die Beschleunigung von Hadronen in besagten Quellen erbringen würden. Vor Kurzem haben km3-große Neutrinoteleskope, wie IceCube, endlich die benötigte Sensitivität erreicht, um die Neutrinovorhersagen für einige existierende GRB-Modelle zu testen. In diesem Zusammenhang präsentieren wir hier ein überarbeitetes, selbstkonsistentes Modell der gemein- samen Produktion von UHE Protonen und Neutrinos in GRBs. Dieses enthält eine hochmoderne, verbesserte numerische Kalkulation des Neutrinoflusses (NeuCosmA), ein verallgemeinertes Emissionsmodell für UHECR, welches darauf beruht, dass einige Protonen direkt aus den Magnetfeldern innerhalb der Quelle entkommen können ohne wechselzuwirken, und bezieht die Energieverluste der Protonen auf ihrem Weg zur Erde mit ein. Wir nutzen unsere Voraussagen, um einen genaueren Blick auf die Verbindung zwischen Kosmischer Strahlung und Neutrinos zu werfen, und stellen fest, dass aktuelle UHECR Beobachtungen mittels gigantischen Luftschauerdetektoren zusammen mit den oberen Schranken auf den Neutrinofluss von GRBs bereits ausreichen, um Widersprüche zu einigen Emissions- und Propagationsmodellen aufzuzeigen, und deuten uns in die Richtung einiger Voraussetzungen, die von GRBs erfüllt sein müssen, sollten diese die Quellen der UHECRs sein. Des Weiteren verfeinern wir unsere Analyse, indem wir ein dynamisches Explosionsmodell studieren, mittels welcher wir herausfinden, dass unterschiedliche Teilchen von bestimmten Phasen des expandieren GRBs stammen, welche durch unterschiedliche Bedingungen charakterisiert sind. Zum Schluss betrachten wir die Möglichkeit von ”neuer Physik”, den Zerfall von UHE Neutrinos im Neutrinofluss von GRBs. Im Großen und Ganzen zeigen unsere Ergebnisse, dass selbstkonsistente Modelle mittlerweile ein integraler Bestandteil für den Fortschritt dieses Feldes geworden sind, wenn man berücksichtigt, dass der Gesamtzusammenhang des UHE Universums erst sichtbar wird, wenn man den Himmel in unterschiedlichen Kanälen betrachtet, genauer gesagt gleichzeitig in Gammastrahlung, in Kosmischer Strahlung und in Neutrinos. KW - Gamma-Burst KW - cosmic ray KW - astroparticle KW - grb KW - gamma-ray burst KW - ultra high energy KW - Neutrino Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112480 ER - TY - THES A1 - Baerwald, Philipp T1 - Neutrinos from gamma-ray bursts, and the multi-messenger connection T1 - Neutrinos von Gammablitzen und die Verbindung zu multiplen Botenteilchen N2 - In this work, we take a look at the connection of gamma-ray bursts (GRBs) and ultra-high-energy cosmic rays (UHECR) as well as the possibilities how to verify this connection. The currently most promising approach is based on the detection of high-energy neutrinos, which are associated with the acceleration of cosmic rays. We detail how the prompt gamma-ray emission is connected to the prediction of a neutrino signal. We focus on the interactions of photons and protons in this regard. At the example of the current ANTARES GRB neutrino analysis, we show the differences between numerical predictions and older analytical methods. Moreover, we discuss the possibilities how cosmic ray particles can escape from GRBs, assuming that UHECR are entirely made up of protons. For this, we compare the commonly assumed neutron escape model with a new component of direct proton escape. Additionally, we will show that the different components, which contribute to the cosmic ray flux, strongly depend on the burst parameters, and test the applicability on some chosen GRBs. In a further step, we continue with the considerations regarding the connection of GRBs and UHECR by connecting the GRB source model with the cosmic ray observations using a simple cosmic ray propagation code. We test if it is possible to achieve the observed cosmic ray energy densities with our simple model and what the consequences are regarding the prompt GRB neutrino flux predictions as well as the cosmogenic neutrinos. Furthermore, we consider the question of neutrino lifetime and how it affects the prompt GRB neutrino flux predictions. In a final chapter, we show that it is possible to apply the basic source model with photohadronic interactions to other types of sources, using the example of the microquasar Cygnus X-3. N2 - In dieser Arbeit beschäftigen wir uns mit dem Zusammenhang von Gammablitzen (GRBs) und ultra-hochenergetischer kosmischer Strahlung (UHECR) sowie mit den Möglichkeiten, wie dieser Zusammenhang überprüft werden kann. Der zur Zeit erfolgsversprechendste Ansatz basiert auf der Detektion von hochenergetischen Neutrinos, die mit der Beschleunigung von kosmischer Strahlung assoziiert werden. Wir zeigen detailliert, wie die prompte Emission im Bereich der Gammastrahlung mit der Voraussage eines Neutrinosignals zusammenhängt. Ein besonderes Augenmerk legen wir hierbei auf die Wechselwirkung von Photonen und Protonen. Am Beispiel der aktuellen Analyse des ANTARES Neutrinoteleskops zu Neutrinos von Gammablitzen zeigen wir, wie sich numerische Voraussagen von älteren analytischen Methoden unterscheiden. Des Weiteren diskutieren wir Möglichkeiten, wie die Teilchen der kosmischen Strahlung aus einem Gammablitz entkommen können, wenn die ultra-hochenergetische kosmische Strahlung nur aus Protonen bestehen würde. Wir vergleichen dazu das meistens angenommene Entkommen in Form von Neutronen mit einer neuen Komponente von direkt ausströmenden Protonen. Auch zeigen wir, dass die unterschiedlichen Komponenten, die zur kosmischen Strahlung beitragen, stark von den verwendeten Parametern der Gammablitze abhängen, und uberprüfen die Modelle an einigen ausgewählten Gammablitzen. In einem weiteren Schritt führen wir die Überlegungen zu dem Zusammenhang von Gammablitzen und ultra-hochenergetischer kosmischer Strahlung fort, in dem wir mittels eines einfachen Propagationscodes für kosmische Strahlung eine Verbindung zwischen dem Quellmodell für Gammablitze und den Beobachtungsdaten der kosmischen Strahlung herstellen. Wir überprüfen, inwieweit sich die beobachteten Energiedichten der kosmischen Strahlung mittels unseres einfachen Modells realisieren lassen und welche Konsequenzen dies für die Voraussagen der prompten Neutrinoemission von Gammablitzen sowie den kosmogenischen Neutrinos hat. Außerdem gehen wir der Frage nach, wie die vorausgesagten prompten Neutrinoflüsse von einer endlichen Lebenszeit der Neutrinos beeinflusst werden würden. In einem letzten Kapitel übertragen wir das verwendete grundlegende Quellmodell mit photohadronischen Wechselwirkungen auf eine andere Klasse von Quellen, am Beispiel von Voraussagen fürden Mikroquasar Cygnus X-3. KW - Neutrino KW - Gamma-Burst KW - neutrinos KW - gamma-ray bursts KW - cosmic rays KW - multi-messenger physics KW - Gammablitze KW - Kosmische Strahlung KW - multiple Botenteilchen KW - UHECR KW - Burst Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-85333 ER -