TY - THES A1 - Zinnitsch, Sabrina T1 - DNA-Strangbruchinduktion, Mikrokernbildung, Zellzyklusalteration und Apoptose durch Zahnwerkstoffe in humanen Lymphozyten T1 - DNA strand breake induction, micronuclei formation, cell cycle alteration and apoptosis through dental materials in human lymphocytes N2 - Die Zahnwerkstoffe HEMA (Hydroxyethylmethacrylat) und TEGDMA (Triethylenglycol-dimethacrylat) gehören zu den so genannten Restmonomeren. Sie liegen nach der Polymerisation noch ungebunden vor und werden anschließend freigesetzt. Sie gelangen in den Organismus über die Pulpa, die Gingiva oder über den Speichel und können biologisch wirksam werden. Bisherige Studien zeigen dosisabhängige mutagene Effekte in tierischen und menschlichen Zellen. HEMA und TEGDMA führen zu DNA-Strangbrüchen, Mikrokernbildung, Apoptosen und nehmen Einfluss auf den Zellzyklus (G1- und G2-Verzögerung). Ebenso wurden ein allergenes Potential und eine toxische Wirkung auf die Niere beschrieben. In dieser Arbeit wurden genotoxische Effekte von HEMA und TEGDMA in humanen Lymphozyten in Konzentrationsbereichen überprüft, wie sie auch im Körper auftreten können. Hierfür wurden die Lymphozyten 24 Stunden mit 10 µM, 100 µM und 1 mM HEMA und mit 1 µM, 10 µM und 100 µM TEGDMA behandelt. Mit dem Comet Assay werden DNA-Einzel- und Doppelstrangbrüche sowie die Reparatur zuvor induzierter DNA-Schäden erfasst. Durch die Modifikation des Comet Assay mit dem Fpg-Protein werden zusätzlich oxidativ geschädigte Basen mit hoher Sensitivität nachgewiesen. Der Mikrokerntest weist manifeste DNA-Schäden auf DNA-Ebene in Form von Mikrokernen nach. Daneben lassen sich auch andere zelluläre Reaktionen wie Mitosen und Apoptosen sowie die Proliferationsrate der Zellen bestimmen. Der Chromosomen-aberrationstest dient zum Nachweis von Veränderungen in der Struktur und/oder in der Anzahl von Chromosomen eines Genoms. Mit dem Schwesterchromatidaustauschtest werden ebenfalls Chromosomenmutationen nachgewiesen. Durchflusszytometrische Methoden werden zum Nachweis von Apoptosen und zur Zellzyklusanalyse eingesetzt. Im herkömmlichen Comet Assay zeigen HEMA und TEGDMA keine signifikante Wirkung auf die DNA (OTM < 2). Es kann aber gezeigt werden, dass die Behandlung mit Fpg zu einer Verdoppelung des OTM führt. Bei 1 mM HEMA und 100 µM TEGDMA wird dadurch das OTM auf > 2 angehoben. HEMA und TEGDMA wirken sich nicht auf die Mikrokernbildung aus, jedoch wird durch den Mikrokerntest ab 1 mM HEMA und 100 µM TEGDMA eine Einflussnahme auf die Proliferation gezeigt. Die Rate früher (< 10%) und später Apoptosen Apoptosen (< 4 %) bleibt im Durchschnitt weitgehend konstant. Eine Ausnahme sind 1 mM HEMA, die die frühen Apoptosen auf > 10 % anheben. Eine Einflussnahme auf den Zellzyklus, in Form einer Verzögerung, üben 1 mM HEMA in der S-Phase und 100 µM TEGDMA in der G1-Phase aus. In den Chromosomentests werden einerseits ein dosisabhängiger Anstieg der Aberrationen und andererseits vermehrte Chromatidaustausche beobachtet. In dieser Arbeit wird die Verbindung von HEMA und TEGDMA zu oxidativen Stress im Comet Assay mit Fpg gezeigt. Da die tatsächlich in vivo erreichbaren Konzentrationen unter 100 µM liegen, ist zu schließen, dass HEMA und TEGDMA in diesem niedrigen Konzentrationsbereich keine nachteiligen Effekte ausüben, denn nur die hohen Konzentrationen (1 mM HEMA, 100 µM TEGDMA) sind in der Lage eine genotoxische Wirkung zu entfalten. Jedoch kann das Auslösen von Mutationen mit dem Chromosomenaberrationstest und Schwesterchromatidaustauschtest bestätigt werden. Um das Schädigungsprofil dieser häufig eingesetzten Zahnwerkstoffe detaillierter beschreiben zu können, müssen Untersuchungen auf Chromatidebene intensiviert werden. N2 - The dental materials HEMA (2-hydroxyethylmethacrylate) and TEGDMA (triethylengylcol-dimethacrylate) belong to the so-called rest monomers. After the polymerisation they are still unbound and can be released afterwards. They reach the organism through the pulp, the gingiva or through the saliva and can become biological effective. Present studies indicate dose-dependent mutagene effects in animal and human cells. HEMA and TEGDMA induce DNA strand breaks, micronuclei formation, apoptosis and have influence on the cell cycle (G1 and G2 delay). Also an allergic potential and a toxic effect on kidneys were described. In this study genotoxic effects were checked by HEMA and TEGDMA in human lymphocytes in concentration areas as they can also appear in the body. The lymphocytes were treated 24 hours with 10 µM, 100 µM and 1 mM HEMA and with 1 µM, 10 µM and 100 µM TEGDMA. With the comet assay DNA single and double strand breaks as well as the repair before induced DNA damage are grasped. By the modification of the comet assay with the Fpg protein oxidative injured bases are proved in addition with high sensitivity. The micronucleus test proves manifest DNA damages at DNA level in the form of micronuclei. Beside other cellular reactions like mitosis and apoptosis as well as the proliferation of the cell can also be determined. The chromosomal aberration test serves for the proof of changes in the structure and/or in the number of chromosomes of a genome. With the sister chromatid exchange test chromosomal mutations are also proved. Flow cytometric methods are used to the proof by apoptosis and to the cell cycle analysis. In the conventional comet assay HEMA and TEGDMA indicate no significant effect at the DNA (OTM < 2). However, it can be shown that the treatment with Fpg leads to a duplication of the OTM. At 1 mM HEMA and 100 µM TEGDMA the OTM is thereby raised on >2. HEMA and TEGDMA do not affect the induction of micronuclei, however the micronucleus test indicate a intervention on the proliferation from 1 mM HEMA and 100 µM TEGDMA. The rate earlier (< 10 %) and late apoptosis (< 4 %) remains widely steady on average. An exception is 1 mM HEMA which raise the early apoptosis on > 10 %. 1mM HEMA have an influence on the cell cycle, in form of a delay, in the S phase and 100 µM TEGDMA in the G1 phase. In the chromosomal tests are observed dose-dependent increase of the aberrations on the one hand and increased chromatid exchanges on the other hand. In this study the connection is shown by HEMA and TEGDMA to oxidative stress in the comet assay with Fpg. Because the really in vivo available concentration lie under 100 µM, is to be closed that HEMA and TEGDMA exert no disadvantageous effects in this low concentration area, because only the high concentrations (1 mM HEMA and 100 µM TEGDMA) are able to unfold a genotoxic effect. However, the release of mutations can be confirmed by the chromosomal aberration test and the sister chromatid exchange test. To be able to describe the damage profile of these often used dental materials more detailed investigations on chromatid level must be intensified. KW - Hydroxyethylmethacrylate KW - Comet Assay KW - Apoptosis KW - Mutagenität KW - Cytotoxizität KW - Komposit KW - Chromosomenaberration KW - Zellzyklus KW - Triethylenglycoldimethacrylat KW - Mikrokernbildung KW - Zellzyklusalteration KW - Schwesterchromatidaustausch KW - triethylenglycoldimethacrylate KW - micronuclei formation KW - cell cycle alteration KW - sister chromatid exchange Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-53835 ER - TY - THES A1 - Wurster, Sebastian T1 - Die Bedeutung von LIN9 für die Regulation der Genexpression, die genomische Stabilität und die Tumorsuppression T1 - The significance of LIN9 for gene regulation, genomic stability and tumor suppression N2 - Pocket proteins and E2F transcription factors regulate the expression of cell cycle associated genes and play a central role in the coordination of cell division, differentiation, and apoptosis. Disorders of these pathways contribute to the development of various human tumor entities. Despite intensive research in the field of cell cycle regulation many details are not yet understood. The LIN complex (LINC / DREAM) is a recently discovered human multiprotein complex, which dynamically interacts with pocket proteins and E2F transcription factors. An essential component of the LIN complex is the LIN9 protein. In order to obtain a better insight into the function of this protein in cell cycle regulation and tumorigenesis, a conditional Lin9 knockout mouse model was established in our laboratory. The primary objective of this study was the phenotypic characterization of embryonic fibroblasts (MEFs) from these mice. Shortly after inactivation of Lin9 cell proliferation was massively impaired. Multiple types of mitotic defects such as structural abnormalities of the spindle apparatus, aberrant nuclei, failed nuclear segregation and cytokinesis failure have been observed in Lin9-depleted cells leading to a dramatic increase in polyploid and aneuploid cells. Ultimately these serious aberrations result in premature cellular senescence. If the senescence of Lin9-deficient cells is overcome by the Large T antigen the cells can adhere to the loss of Lin9, but show severe genomic instability and grow anchorage-independently in soft-agar as a sign of oncogenic transformation. In the second part of the thesis the gene expression of Lin9-deficient cells was assessed by quantitative real time PCR analyses to determine, whether the mitotic abnormalities are caused by transcriptional defects. Here a significant reduction of mitotic gene expression was observed in Lin9-depleted cells. Additionally chromatin immunoprecipitation experiments were performed to clarify the underlying molecular mechanisms. Compared to control cells epigenetic alterations at the promoters of mitotic target genes with regard to activating histone modifications were found in Lin9-deficient MEFs. In the last section of this study, the effects of Lin9 heterozygosity were analyzed. Lin9 heterozygous MEFs showed normal proliferation, although expression of different mitotic genes was slightly reduced. It appeared, however, that the mitotic spindle checkpoint of Lin9 heterozygous MEFs is weakened and thus over several cell generations an increase in polyploid cells was observed. Soft-agar assays showed that Lin9 heterozygosity contributes to oncogenic transformation. Taken together, these results document a crucial role of LIN9 in the regulation of cell cycle-associated gene expression. LIN9 is an essential factor for cell proliferation on one hand, while at the same time it functions as a tumor suppressor. N2 - Pocket-Proteine und E2F-Transkriptionsfaktoren regulieren die Expression von Zellzyklus-assoziierten Genen und spielen eine zentrale Rolle bei der Koordination der Zellteilung, Differenzierung und Apoptose. Störungen dieser Signalwege tragen zur Entstehung zahlreicher Tumorentitäten beim Menschen bei. Trotz der intensiven Untersuchung der Zellzyklusregulation sind viele Details noch unverstanden. Der LIN-Komplex (LINC / DREAM) ist ein kürzlich entdeckter humaner Multiprotein-komplex, welcher dynamisch mit Pocket-Proteinen und E2F-Transkriptionsfaktoren interagiert. Eine essentielle Komponente des LIN-Komplexes ist das LIN9-Protein. Um die Funktion dieses Proteins bei der Zellzyklusregulation und Tumorentstehung genauer untersuchen zu können, wurde in unserer Arbeitsgruppe ein konditionelles Lin9-Knockout-Mausmodell etabliert. Primäres Ziel der Arbeit war es, den Phänotyp embryonaler Fibroblasten (MEFs) aus diesen Mäusen zu charakterisieren. Bereits kurz nach Inaktivierung von Lin9 konnte ein stark verlangsamtes Zellwachstums beobachtet werden. In Lin9-depletierten MEFs wurden multiple mitotische Defekte detektiert, die u. a. strukturelle Auffälligkeiten des Spindelapparates, aberrante Zellkerne, Störungen der Chromosomensegregation sowie zytokinetische Defekte umfassen und in einer dramatischen Zunahme polyploider und aneuploider Zellen resultieren. Im Langzeitverlauf führen diese erheblichen Aberrationen zu einer vorzeitigen zellulären Seneszenz. Wird diese durch das Large T-Protoonkogen durchbrochen, können sich MEFs an den Verlust von Lin9 adaptieren, zeigen dann jedoch eine hochgradige genomische Instabilität und Substrat-unabhängiges Wachstum im Weichagar als Zeichen onkogener Transformation. Im zweiten Abschnitt der vorliegenden Arbeit wurde die Genexpression in Lin9-defizienten MEFs mittels quantitativer Real Time-PCR untersucht um zu klären, ob die beschriebenen Defekte auf Veränderungen der transkriptionellen Aktivität zurück-zuführen sind. Dabei wurde eine erhebliche Reduktion der Expressionslevel mitotischer Gene nach Verlust von Lin9 beobachtet. Des Weiteren wurden zur Klärung der zu Grunde liegenden molekularen Mechanismen Chromatin-Immunpräzipitations-Experimente (ChIP) durchgeführt. Im Vergleich zu Kontrollzellen wurden dabei in Lin9-defizienten Zellen signifikante epigenetische Veränderungen bezüglich aktivierender Histon-Modifikationen an den Promotoren mitotischer Lin9-Zielgene festgestellt. Im letzten Abschnitt der Arbeit sollten die Auswirkungen des heterozygoten Verlustes von Lin9 analysiert werden. Dabei zeigte sich, dass Lin9-haploinsuffiziente Zellen normal proliferieren, obwohl die Expression verschiedener G2/M-Gene leicht vermindert war. Es wurde jedoch eine Schwächung des mitotischen Spindelkontrollpunktes und in der Folge über mehrere Zellgenerationen eine Zunahme polyploider Zellen beobachtet. Mit Weichagar-Assays konnte gezeigt werden, dass bereits der heterozygote Verlust des Lin9-Gens zur onkogenen Transformation beiträgt. Zusammengenommen dokumentieren diese Studien, dass LIN9 eine entscheidende Bedeutung bei der Regulation von Zellzyklus-assoziierten Genen spielt und sowohl einen essentiellen Faktor für die Zellproliferation darstellt als auch durch die Gewährleistung genomischer Stabilität tumorsuppressive Eigenschaften aufweist. KW - Zellzyklus KW - Genexpression KW - Mitose KW - Knock-Out KW - LIN9 KW - Mausmodell KW - konditioneller Knockout Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-114967 ER - TY - THES A1 - Wolter, Patrick T1 - Characterization of the mitotic localization and function of the novel DREAM target GAS2L3 and Mitotic kinesins are regulated by the DREAM complex, often up-regulated in cancer cells, and are potential targets for anti-cancer therapy T1 - Charakterisierung der mitotischen Lokalisation und Funktion von GAS2L3, eines kürzlich gefundenen Zielgens des DREAM Komplexes und Mitotische Kinesine werden vom DREAM Komplex reguliert, sind in Krebszellen häufig hochreguliert und sind potentielle Zielle für die Krebstherapie N2 - The recently discovered human DREAM complex (for DP, RB-like, E2F and MuvB complex) is a chromatin-associated pocket protein complex involved in cell cycle- dependent gene expression. DREAM consists of five core subunits and forms a complex either with the pocket protein p130 and the transcription factor E2F4 to repress gene expression or with the transcription factors B-MYB and FOXM1 to promote gene expression. Gas2l3 was recently identified by our group as a novel DREAM target gene. Subsequent characterization in human cell lines revealed that GAS2L3 is a microtubule and F-actin cross-linking protein, expressed in G2/M, plays a role in cytokinesis, and is important for chromosomal stability. The aim of the first part of the study was to analyze how expression of GAS2L3 is regulated by DREAM and to provide a better understanding of the function of GAS2L3 in mitosis and cytokinesis. ChIP assays revealed that the repressive and the activating form of DREAM bind to the GAS2L3 promoter. RNA interference (RNAi) mediated GAS2L3 depletion demonstrated the requirement of GAS2L3 for proper cleavage furrow ingression in cytokinesis. Immunofluorescence-based localization studies showed a localization of GAS2L3 at the mitotic spindle in mitosis and at the midbody in cytokinesis. Additional experiments demonstrated that the GAS2L3 GAR domain, a putative microtubule- binding domain, is responsible for GAS2L3 localization to the constriction zones in cytokinesis suggesting a function for GAS2L3 in the abscission process. DREAM is known to promote G2/M gene expression. DREAM target genes include several mitotic kinesins and mitotic microtubule-associated proteins (mitotic MAPs). However, it is not clear to what extent DREAM regulates mitotic kinesins and MAPs, so far. Furthermore, a comprehensive study of mitotic kinesin expression in cancer cell lines is still missing. Therefore, the second major aim of the thesis was to characterize the regulation of mitotic kinesins and MAPs by DREAM, to investigate the expression of mitotic kinesins in cancer cell line panels and to evaluate them as possible anti-cancer targets. ChIP assays together with RNAi mediated DREAM subunit depletion experiments demonstrated that DREAM is a master regulator of mitotic kinesins. Furthermore, expression analyses in a panel of breast and lung cancer cell lines revealed that mitotic kinesins are up-regulated in the majority of cancer cell lines in contrast to non-transformed controls. Finally, an inducible lentiviral-based shRNA system was developed to effectively deplete mitotic kinesins. Depletion of selected mitotic kinesins resulted in cytokinesis failures and strong anti-proliferative effects in several human cancer cell lines. Thus, this system will provide a robust tool for future investigation of mitotic kinesin function in cancer cells. N2 - Der vor kurzem entdeckte humane DREAM Komplex (für DP,RB ähnlich, E2F und MuvB Komplex) ist ein Chromatin bindender Pocket-Protein-Komplex involviert in Zellzyklusphase abhängiger Genregulation. DREAM besteht aus fünf Kernproteinen, die entweder zusammen mit dem Pocket-Protein p130 und dem Transkriptionsfaktor E2F4 die Genexpression reprimieren oder zusammen mit den Transkriptionsfaktoren B-MYB und FOXM1 die Genexpression fördern. GAS2L3 wurde vor kurzem als neues Zielgen des DREAM Komplexes identifiziert. Eine anschließende Charakterisierung in humanen Zelllinien offenbarte, dass GAS2L3 in der Lage ist, das F-Aktin und das Mikrotubuli Cytoskelett zu binden und zu vernetzen. Außerdem ist GAS2L3 speziell während der G2/M Phase exprimiert, spielt eine Rolle in der Cytokinese und ist wichtig für die genomische Integrität. Der erste Teil der Arbeit hatte zum Ziel zu ergründen in welcher Art und Weise DREAM GAS2L3 reguliert. Außerdem sollte das Verständnis der Rolle von GAS2L3 in der Cytokinese erweitert werden. Hierzu durchgeführte ChIP Analysen zeigten, dass sowohl der reprimierende als auch der aktivierende DREAM Komplex an den Promoter von GAS2L3 bindet. Experimente, in denen GAS2L3 durch RNA-Interferenz (RNAi) depletiert wurde, demonstrierten, dass GAS2L3 in der Cytokinese am Prozess der Einschnürung der Teilungsfurche beteiligt ist. Anschließende auf Immunfluoreszenzmikroskopie basierende Lokalisationsstudien zeigten, dass GAS2L3 an der mitotischen Spindel in der Mitose und am Midbody in der Cytokinese lokalisiert ist. Weiterführende Studien zeigten, dass die GAR Domäne von GAS2L3, eine mutmaßliche Mikrotubuli- Bindedomäne, für die Lokalisierung von GAS2L3 in der für die Abszission wichtigen Konstriktionszone verantwortlich ist. Dieses Ergebnis lässt vermuten, dass GAS2L3 eine Rolle in diesem Prozess spielt. Der DREAM Komplex ist bekannt dafür G2/M Genexpression zu fördern. G2/M Zielgene des Komplexes sind unter anderem mehrere mitotische Kinesine und mitotische Mikrotubuli-Bindeproteine. Bisher ist die Art und Weise und das Ausmaß der Regulierung dieser Proteingruppen durch DREAM aber nur ungenügend untersucht worden. Des Weiteren fehlt bisher eine umfassende Charakterisierung der Expression von mitotischen Kinesinen in Krebszellen. Deswegen befasste sich der zweite Teil der Arbeit mit der Charakterisierung der Regulation von mitotischen Kinesinen und Mikrotubuli-Bindeproteinen durch DREAM, untersuchte die Expression dieser beiden Proteingruppen in Krebszelllinien und evaluierte diese anschließend als potentielle Ziele für die Krebstherapie. Eine Kombination aus ChIP Analysen und RNAi Experimenten zeigte, dass DREAM eine zentrale Rolle in der Regulierung von mitotischen Kinesinen spielt. Expressions- analysen deckten auf, dass mitotische Kinesine in der Mehrheit der Krebszelllinien hochreguliert sind im Gegensatz zu den nicht entarteten Kontrollzelllinien. Schließlich wurde ein auf Lentiviren basierendes induzierbares shRNA System etabliert, welches mitotische Kinesine effektiv herunterregulieren konnte. Depletion ausgewählter mitotischer Kinesine führte zu Fehlern in der Cytokinese und hatte starke Auswirkungen auf das Wachstumsverhalten von mehreren Krebszelllinien. Aufgrund dieser Erkenntnisse wird das lentivirale System eine solide Ausgangsbasis für zukünftige Untersuchungen von mitotischen Kinesinen in Krebszellen bilden. KW - Zellzyklus KW - GAS2L3 KW - B-MYB KW - DREAM KW - cytokinesis KW - mitosis KW - kinesin KW - cancer KW - FOXM1 KW - regulation KW - Zellteilung KW - Regulation KW - Krebs KW - Biologie / Zellbiologie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122531 ER - TY - THES A1 - Wickert, Thomas T1 - In vitro-Studien zur Biofunktionalität von Betanin und Indicaxanthin sowie von Extrakten aus der Kaktusfeige (Opuntia ficus indica) T1 - In vitro-studies to evaluate the biofunctionality of betanine and indicaxanthine and prickly pear extracts (Opuntia ficus indica) N2 - Im Fokus dieser Studien standen mit Indicaxanthin und Betanin die beiden wichtigsten Vertreter der Betalaine sowie Kaktusfeigen- (Opuntia ficus indica) Extrakt. Die Durchführung der Studien erfolgte in folgenden Schritten: - Isolierung der Referenzsubstanzen Betanin und Indicaxanthin sowie Herstellung von Kaktusfeigen-Extrakt und daraus gewonnener Fraktionen, - Untersuchung der Cytotoxizität von Betanin, Indicaxanthin und Kaktusfeigen-Extrakt in humanen permanent Zell-Linien, - Beeinflussung der Apoptose und des Zellzyklus durch Betanin, Indicaxanthin und Kaktusfeigen-Extrakt in humanen permanent Zell-Linien, - Beeinflussung von Enzymen des Fremdstoffmetabolismus durch Betanin, Indica-xanthin und Kaktusfeigen-Extrakt in humanen permanent Zell-Linien. Die Gewinnung von Indicaxanthin (aus Kaktusfeigen), Betanin (aus Rote Beete-Konzentrat) sowie Kaktusfeigen-Extrakt erfolgte anhand literaturbekannter Methoden. Zur Bestimung der Cytotoxizität wurde untersucht, ob die Testsubstanzen die Proliferation von Caco2-, HT29- und HepG2-Zellen hemmen können. Als Ergebnis wurden EC50-Werte für die antiproliferative Wirkung von Betanin in Caco2-Zellen sowie für Kaktusfeigen-Extrakt in Caco2-, HT29- und HepG2-Zellen gefunden. Ein Einfluss der Testsubstanzen auf den Zellzyklus von Caco2- und HT29-Zellen wurde nicht beobachtet. Weiterhin induzierten die Testsubstanzen keine Apoptose in Caco2- oder HT29-Zellen. In den Studien zum Fremdstoffmetabolismus wurde beobachtet, dass vor allem Kaktusfeigen-Extrakt den Substratumsatz von Phase II-Enzyme wie UDP-Glucuronosyltransferase und Glutathion-S-Transferase steigern kann. N2 - For bioactivity studies of betalain colorants and prickly pear extracts the most important members of the betalain family, i.e. betanine and indicaxanthine, were in the center of interest. The studies were conducted as follows: - Isolation of the reference substances betanine and indicaxanthine as well as the preparation of the prickly pear extract and fractions herefrom, - study of the cytotoxicity of betanine, indicaxanthine and prickly pear extract in human permanent cell cultures, - study of the influence of betanine, indicaxanthine and prickly pear extract on apoptosis and cell cycle in human permanent cell cultures, - study of the influence of betanine, indicaxanthine and prickly pear extract on enzymes of the xenobiotic metabolism in human permanent cell cultures. The preparation of indicaxanthine (from prickly pear fruits), betanine (from red beet concentrate) and prickly pear extract was carried out on the basis of published methods. To evaluate the cytotoxicity was examined, wether the testcompounds are able to inhibit the proliferation of Caco2-, HT29- and HepG2-Cells. As result EC50-values for the antiproliferative effect of betanine in Caco2-cells as well as for prickly pear extract in Caco2-, HT29- and HepG2-cells have been measured. An influence of the testcompounds on the cell cycle of Caco2- and HT29-cells was not observed. Further the testcompounds were not able to induce apoptosis in Caco2- and HT29-cells. In the studies with xenobiotic metabolising enzymes was observed, that especially prickly pear extract was able increase the substrate transformation of the phase II-enzymes UDP-Glucuronosyltransferase and Glutathione-S-Transferase. KW - Betalaine KW - Feigenkaktus KW - Cytotoxizität KW - Zellzyklus KW - Biofunktionalität KW - Proliferation KW - Betanin KW - Kaktusfeige KW - Biofunctionality KW - Proliferation KW - Betanine KW - Prickly Pear Y1 - 2006 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-19881 ER - TY - THES A1 - von Papen, Hans Michael T1 - Untersuchungen zum Einfluss der Meningokokkeninfektion auf den Zellzyklus von Epithelzellen T1 - Disease and carrier isolates of Neisseria meningitidis cause G1 cell cycle arrest in human epithelial cells N2 - Zahlreiche humanpathogene bakterielle Erreger können ihre Fähigkeit zur Kolonisation epithelialer Barrieren optimieren, indem sie mit dem Zellzyklus der infizierten Wirtszelle in Wechselwirkung treten und so die Abschilferung und Erneuerung des Epithels verzögern. Die hierbei wirksamen bakteriellen Effektoren sind als „Cyclomoduline“ bekannt und gelten als neue Klasse bakterieller Pathogenitätsfaktoren. Ziel der vorliegenden Promotionsarbeit war es zu untersuchen, ob durch die Infektion menschlicher pharyngealer Epithelzellen mit N. meningitidis der Zellzyklus der Wirtszelle beeinflusst wird. Mit zwei verschiedenen Untersuchungsmethoden konnte übereinstimmend gezeigt werden, dass die Infektion der Epithelzelllinie Detroit 562 mit verschiedenen Meningokokkenisolaten zu einer signifikanten Akkumulation von Epithelzellen in der G1-Phase führte. Dieser Effekt wurde sowohl von pathogenen Meningokokkenstämmen als auch von Trägerstämmen ausgelöst, jedoch nur durch Isolate, die fähig zur Adhärenz und zur Invasion in die Epithelzelle waren. Durch Hitzebehandlung der Bakterien konnte der Zellzyklusarrest vollständig aufgehoben werden. Ebenso konnte der Effekt durch Inkubation der Epithelzellen mit bakteriellen Kulturüberständen und durch Infektion der Zellen mit E. coli-Stämmen, welche die Meningokokkenadhäsine Opa und Opc überexprimieren, nicht ausgelöst werden. Es konnte weiterhin nachgewiesen werden, dass die Infektion mit N. meningitidis in der Zielzelle zu einer signifikant gesteigerten Expression des CDK-Inhibitors p21WAF1/Cip1 führte, begleitet von einer vermehrten Lokalisation im Zellkern. Auch zeigte sich eine veränderte Proteinexpression der für die G1-Phase relevanten Cycline D und E. Diese scheint sich erst posttranslational zu ereignen, da die unterschiedliche Expression auf mRNA-Ebene nicht festgestellt werden konnte. Zusammenfassend konnte dargestellt werden, dass die Infektion von Pharynxepithelzellen mit lebenden, zur Adhärenz und Invasion fähigen Meningokokkenstämmen in der menschlichen Zielzelle einen Zellzyklusarrest in der G1-Phase verursacht, vermutlich durch veränderte Expression der Zellzyklusregulatoren p21WAF1/Cip1, Cyclin D und Cyclin E. Möglicherweise stellt die Induktion dieses Zellzyklusarrestes einen wichtigen Schritt in der Pathogenese der bakteriellen Kolonisation des oberen Atemwegsepithels durch N. meningitidis dar. N2 - Several microbial pathogens have developed mechanisms to modulate host cell cycle progression in order to improve bacterial colonization of epithelial barriers. The required bacterial effectors were summarized as “cyclomodulins” and have been proposed to be a new class of virulence factors. The objective of this doctoral research study was to analyze the capability of N. meningitidis to interfere with the cell cycle progression in human pharyngeal epithelial cells. Using two different methods for cell cycle analysis, we show that infection of the human pharyngeal epithelial cell line Detroit 562 with different meningococcal isolates induces an arrest of epithelial host cells in the G1 phase. This effect was caused by infection with both pathogenic isolates and carriage isolates, but only by strains able to adhere to and to invade into the host cells. Heat-inactivation of the bacteria prior to infection completely prevented the cell cycle arrest. Moreover treatment of epithelial cells with bacterial supernatants, as well as infection with E. coli strains expressing neisserial adhesins Opa and Opc did not induce the cell cycle arrest. We further demonstrate that infection of Detroit 562 cells with N. meningitidis leads to a significantly increased expression of the CDK-inhibitor p21WAF1/Cip1 in the host cell, as well as its increased nuclear localization. The protein expression of cyclin D and E, which are relevant for progression through the G1 phase, were altered by bacterial infection, too. This effect is most likely induced by posttranslational modification, since bacterial infection did not affect Cyclin D and E mRNA levels. In conclusion, we demonstrate that infection of human pharyngeal epithelial cells with different isolates of N. meningitidis arrests the host cells at the G1 phase, most likely by affecting the expression of the cell cycle regulators p21WAF1/Cip1, cyclin D and Cyclin E. Potentially, induction this cell cycle arrest is an important step in the pathogenesis of meningococcal colonization and further infection. KW - Neisseria meningitidis KW - Zellzyklus KW - Epithel KW - cell cycle Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-192862 ER - TY - THES A1 - Staykov, Nikola T1 - The Role of the GABPα/β Transcription Factor In the Proliferation of NIH-3T3 Cells T1 - Die Rolle des GABPα/β Transkriptionsfaktors bei der Proliferation von NIH-3T3 Zellen N2 - SUMMARY GABP is a heterodymeric member of Ets-family transcription factors. It consists of two subunits – GABPa which contains DNA binding domain and GABPb, which provides transcriptional activation domain and nuclear localization signal. GABPa/b complex is essential for transcriptional activation of multiple lineage-restricted and housekeeping genes, several viral genes, and in some cases might function as transcriptional repressor. Large variety of data indicates involvement of GABP in the complex regulation of cell growth, specified by quiescence, stimulation/proliferation, apoptosis and senescence. Expression level of GABPa subunit is rapidly increased when resting cells enter S-phase, and GABPa/b complex is critical to promote the continuity of the cell cycle. Conditional inactivation of GABPa expression in mouse embryonic fibroblasts results in a complete block of proliferation and acquisition of senescence-like phenotype. However, the influence of GABP on the other cell growth determinant – the apoptosis – remains largely obscure. Therefore we aimed to investigate the influence of GABPa/b expression level on the cell growth in vitro. Using siRNA approach we achieved efficient but only transient down-regulation of GABPa expression which precluded further cell growth studies. Persistent increase of the expression of GABPb subunit only resulted in a positive effect on the cell growth speed. Simultaneous conditional overexpression of both GABPa and GABPb subunits though, strongly reduced the growth of the affected cell cultures in reversible and in expression level dependent manner. Interestingly, GABPa/b overexpressing cells did show neither cell cycle arrest nor massive induction of apoptosis. However, more detailed analyses revealed that dampened apoptotic processes were taking place in GABPa/b−overexpressing cells, starting with a prominent activation of caspase-12. Interestingly, activation of downstream effector caspases was rather suppressed explaining a weak increase of apoptotic cells in GABPa/b overexpressing cultures. This effect suggests that the activation of caspase-12 by elevated amounts of exogenous GABPa/b reflects the normal physiological mechanism of caspase-12 regulation. N2 - ZUSAMMENFASSUNG GABP ist ein heterodimerisches Mitglied aus der Familie der Ets- Transkriptionsfaktoren. Es besteht aus zwei Untereinheiten – GABPa, welche die DNA-Bindedomäne enthält, sowie GABPb, welche sowohl die Transkriptions-Aktvierungsdomäne als auch das Kernimportsignal umfasst. GABPa/b ist für die Transkriptions-Aktivierung mehrerer differenzierungstypischer als auch sog. Housekeeping Gene, sowie einiger viraler Gene essentiell und kann, in einigen Fällen, auch als Transkriptionsrepressor fungieren. Eine Vielzahl von Daten deutet darauf hin, dass GABP in der komplexen Kontrolle des Wachstums von Zellen ein wichtige Rolle zukommt. Dies zeigt sich z. B. im Einfluss von GABP auf zelluläre Vorgänge wie der Stimulation/Proliferation, Apoptose und Seneszenz. So steigt z. B. der Spiegel der GABPa Untereinheit rapide an, nachdem ruhende Zellen die G0-Phase verlassen und in die S-Phase eintreten. Der aus beiden Untereinheiten gebildete Komplex ist dann für die Progression der Zellen durch den gesamten Zellzyklus von entscheidender Bedeutung. Die Unterdrückung der Expression der GABPa Untereinheit in embryonalen Mausfibroblasten hingegen führt zu einem vollkommenen Proliferations-Stopp dieser Zellen und induziert in diesen einen Seneszenz-artigen Phänotyp. Andererseits ist über den Einfluss von GABP auf andere wichtige das Zellwachstums beeinflussende Faktoren wie z. B. der Apoptose bislang noch recht wenig bekannt. Daher lag es im Fokus dieser vorliegenden Arbeit, den Einfluss der GABPa/b-Spiegels auf das Zellwachstum in vitro näher zu untersuchen. Mithilfe von siRNA-Ansätzen gelang uns die effiziente Herunterregulierung von GABPa. Diese war jedoch nur von vorübergehender Natur, so dass weitere Studien zum Zellwachstum nicht möglich waren. Die stabile Überexpression der GABPb Untereinheit führte dagegen nur zu einem Anstieg der Zellwachstumsgeschwindigkeit. Wurden jedoch sowohl beide Untereinheit gleichzeitig überexprimiert, so resultierte dies in einer deutlichen, Expressionsspiegel-abhängigen und reversiblen Wachstumshemmung der Zellen. Bemerkenswerterweise zeigte die GABPa/b-überexprimierende Zellpopulation weder einen erhöhten Anteil an G0-Phase noch war eine deutlich ausgeprägte Zunahme der Apoptose-Rate zu verzeichnen. In weiteren Experimenten konnte dennoch eine leichte Erhöhung der Apoptose-Rate in den überexprimierenden Zellen gezeigt werden, was sich durch die deutliche Aktivierung von Caspase-12 belegen ließ. Die Aktivierung von Effektor-Caspasen der Caspase-12 schien allerdings nicht zu erfolgen, was den nur schwach ausgeprägten Charakter der Apoptose zu erklären vermag. Diese Beobachtungen suggerieren, dass die Aktivierung der Caspase-12 durch erhöhte Mengen von exogenem GABPa/b den normalen physiologischen Mechanismus der Caspase-12 Regulation widerspiegelt. KW - Proliferation KW - Transkriptionsfaktor KW - Zellzyklus KW - GABP KW - Caspase 12 KW - NIH-3T3 KW - Apoptosis KW - GABP KW - Caspase 12 KW - NIH-3T3 Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-67655 ER - TY - THES A1 - Semmel, Britta Birgit T1 - Gentoxizität durch hormonell stimulierte Proliferation T1 - Stimulation of proliferation causes genetic instability N2 - Hormone spielen bei der Kanzerogenese eine wichtige Rolle, indem sie vor allem auf die Phase der Promotion einwirken und die Proliferation bereits initiierter Zellen steigern können. In dieser Arbeit wurden humane Ovarialkarzinomzellen mit Östrogen, Insulin, IGF und EGF zur Proliferation angeregt, woraus eine erhöhte Mikrokernrate resultierte. Mikrokerne sind chromatinhaltige Strukturen, die außerhalb des Zellkerns liegen. Somit lag nahe, dass durch die Steigerung der Proliferation eine genetische Instabiltät erzeugt wurde. Weitere Experimente zeigten eine Forcierung der genetisch geschädigten Zellen durch den Zellzyklus, so dass vermutet werden kann, dass schnell proliferierende Zellen durch Verringerung der zellulären Reparaturmechanismen eine erhöhte Rate an genetischer Instabilität aufweisen. Unterstützt wird diese Hypothese durch Analyse diverser Zellzyklusregulationsproteine mittel Wester-Blot. KW - Kanzerogenese KW - Hormone KW - Mikrokerne KW - Zellzyklus KW - cell-cycle KW - micronuclei KW - cancer Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18714 ER - TY - THES A1 - Schweinfurth, Philipp T1 - Der Einfluss von bub1b und p53 auf den Zellzyklus sowie die Sensitivität gegenüber Docetaxel - Untersuchungen am Mausmodell und an murinen embryonalen Fibroblasten T1 - The effect of bub1b and p53 on the cellcycle as well as the sensitivity against Docetaxel - Examinations on a mousemodell and on murine embryonic fibroblasts N2 - Chemotherapeutika, deren Wirkung am MSC von Zellen ansetzen, gehören zum Standardrepertoire der onkologischen Therapie in zahlreichen Malignomen. In der Uroonkologie hat insbesondere das Erstarken von Docetaxel-basierten Therapien im metastasierten Prostatakarzinom den Fokus erneut auf den MSC gerichtet. Diesbezüglich wurden aber sowohl schützende, als auch tumortreibende Teilfunktionen des MSCs in verschiedenen Tumorentitäten gezeigt und pleiotrope Effekte einzelner Gene des MSCs näher untersucht. Die vorliegende Arbeit untersucht daher eine mögliche Rolle von bub1b in der Tumorentstehung und in der Modulation der Ansprechbarkeit gegenüber Docetaxel. Da die Heterozygotie im Gen bub1b in den existierenden Mausmodellen jedoch nur zu alters-assoziierten Tumorerkrankungen führt, wurden in Rahmen dieser Arbeit bub1b heterozygote Tiere mit p53 defizienten Tieren verpaart. Eben diese Tiere wurden hinsichtlich ihres Überlebens sowie der Art der aufgetretenen Tumorentitäten untersucht. Zusätzlich wurden Proliferations- und Zellzyklusanalysen insbesondere unter Docetaxelstress an MEFs, die aus diesem Mausmodell gewonnen wurden, durchgeführt. In Sektionsstudien des Mausmodells wurde gezeigt, dass bei gleichzeitigem Vorliegen von Heterozygotie von bub1b und Homozygotie von p53 eine Verschiebung des Tumor- Phänotyps der p53 defizienten Tiere (Sarkome und Lymphome) erfolgte. Tiere des Genotyps bub1b het / p53 hom wiesen einen signifikant geringeren Anteil von Sarkomen im Vergleich zu den Lymphomen auf. Zusätzlich nahm bei den Lymphomen der Anteil von disseminierten Lymphomen gegenüber den thymoidalen Lymphomen zu. Aus diesen Ergebnissen kann geschlossen werden, dass eine Heterozygotie für bub1b die Entwicklung bestimmter Tumorentitäten (disseminierte Lymphome) begünstigt, während andere Tumorentitäten (z.B. Sarkome) durch den Verlust eines bub1b Allels eher verhindert werden. Die molekularen Ursachen für diesen Befund sind zurzeit noch unklar. In einem zweiten Teil dieser Arbeit wurde unter Verwendung von Zellkulturen muriner embryonaler Fibroblasten (MEFs), die mittels des vorhandenen Mausmodells etabliert wurden, gezeigt, dass MEFs der Genotypen bub1b wt / p53 hom, wie auch bub1b het / p53 hom im Vergleich zur Kontrollgruppe normal proliferieren und einen weitgehend normalen Zellzyklus aufweisen. Die zytostatische Wirkung des „Spindelcheckpoint Aktivators“ Docetaxel ist in MEFs mit einer Heterozygotie für bub1b reduziert, während MEFs der Genotypen bub1b wt / p53 hom, wie auch bub1b het / p53 hom sensitiver auf Docetaxel reagieren. Aus diesen Ergebnissen kann eine geringe Effektivität von Docetaxel als zytostatisches Therapeutikum in der Tumortherapie von bub1b heterozygoten Zellen abgeleitet werden. Bei gleichzeitigen Defekten im Gen p53 könnten sich bub1b heterozygote Zellen allerdings sensitiv gegenüber einer Therapie verhalten. In MEFs aller drei Genotypen konnte zudem gezeigt werden, dass die Aktivierung des MSCs durch Docetaxel unvollständig bzw. defekt ist. Dieser Defekt im MSC führt, wie bereits erwähnt, zu einem starken zytostatischen Effekt, aber auch zu einer signifikanten Steigerung der Anzahl und zur Persistenz von polyploiden Zellen in den Zellkulturen der MEFs mit dem Genotyp bub1b het / p53 hom. Aus diesen Ergebnissen kann geschlossen werden, dass eine Defizienz für p53 und eine Heterozygotie für bub1b einen additiven Effekt in der Entwicklung von polyploiden Zellen besitzen und somit die Entwicklung von Tumorvorstufen begünstigen. Ob diese Effekte auch in nativen Tumoren unter Docetaxel-Behandlung eine Rolle spielen und sich bub1b und p53 als mögliche Prädiktoren einer Docetaxel-Therapie im Menschen evaluieren lassen, müssten weiterführende Analysen zeigen, die den Verlauf einer Tumortherapie mit Hilfe eines Spindelgiftes abbilden. N2 - Chemotherapeutica whose effect begin at the mitotic spindle checkpoint (MSC) cells belong to the standard repertoire of oncological therapy concerning numerous tumors. In the field of urooncology, especially the increase of Docetaxel based therapies in prostate cancer has again focused our attention on MSC. Regarding this, not only protective but also cancerous partial functions of the MSC in different tumor entities were shown and pleiotrophic effects of single genes of the MSC were investigated more closely. Therefore, the doctoral presented looks into a possible role of bub 1b in the development of tumors and in the modulation of acceptability of Docetaxel. As the heterozygoty in the gene bub1b in the existing mouse models only leads to cancer diseases related to age, bub1b heterozygote animals were paired with p53 ones. It were these animals which were examined regarding their survival as well as the type of the cancer entities appearing. Additionally, proliferation and the analyses of cell cycles under stress of Docetaxel at murine embryonic fibroblasts (MEFs) won from this mouse model were made. In the sectional studies of the mouse model it was shown that when heterozygoty of bub1b and homozygoty of p53 exist at the same time the result is a shift of the cancer phenotype of the p53 deficient animals (sarcomas und lymphomas). Animals of the gene type bub1b het/p53 showed a significantly smaller amount of sarcomas compared with lymphomas. And concerning the lymphomas the share of the disseminated lymphomas compared with the thymoidal lymphomas increased. From these results it can be concluded that a heterozygoty for bub1b favours the development of certain tumor entities (disseminated lymphomas) whereas other tumor entities (e.g. sarkomas) can rather be avoided by the loss of a bub allels. At the moment the molecular reasons for this diagnosis are still unclarified. In a second part of the doctoral it was shown that by making use of cell cultures of MEFs established by means of the existing mouse model, MEFs of the gene types bub1b/p53 hom as well as bub1b het/p53 compared with the control group proliferate normally and show a largely normal cell cycle. The zytostatic effect of the "spindle checkpoint aktivator" Docetaxel is reduced in the MEFs with a heterozygoty for bub1b whereas MEFs of the gene types bub 1b wt/p53 and bub1b het/p.53 hom react more sensitively to Docetaxel. From these findings it can be said that Docetaxel has little effectiveness as a zytostatic medicine in the cancer therapy of bub1b heterozygotic cells. Bub1b heterozygote cells, however, being defective in the gene p53 at the same time could respond sensitively to a therapy. Furthermore, in the MEFs of all the three gene types it could be shown that the activating of the MSC by Docetaxel is incomplete ordeficient. This defect in the MSC not only leads, as mentioned before, to a strongly zytostatic effect but also to a significant increase in the number and persistence of polyploid cells in the cell cultures of the MEFs with the gene type bub1b het/p53 hom. These results demonstrate that a deficiency for p53 and a heterozygoty for bub1b have a additive effect in the development of polyploid cells and therefore favour the development of the early stages of cancer. Whether these effects play a role in the native tumors treated with Docetaxel and whether bub1b and p53 can be evaluated as a possibility for human treatment with Docetaxel must be shown in further analyses which illustrate the course of a tumor therapy by means of a poison of the spindle apparat. KW - Docetaxel KW - Zellzyklus KW - Prostatacarzinom KW - Gen p53 KW - Gen bub1b KW - Spindelapparat KW - Tumorgenese KW - Fibroblasten Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-182511 ER - TY - THES A1 - Schmitt, Kathrin T1 - Identification and Characterization of GAS2L3 as a Novel Mitotic Regulator in Human Cells T1 - Die Identifizierung und Charakterisierung von GAS2L3 als neuer Regulator der Mitose in humanen Zellen N2 - Precise control of mitotic progression is vital for the maintenance of genomic integrity. Since the loss of genomic integrity is known to promote tumorigenesis, the identification of knew G2/M regulatory genes attracts great attention. LINC, a human multiprotein complex, is a transcriptional activator of a set of G2/M specific genes. By depleting LIN9 in MEFs, a core subunit of LINC, Gas2l3 was identified as a novel LINC target gene. The so far uncharacterized Gas2l3 gene encodes for a member of the family of growth arrest specific 2 (GAS2) proteins, which share a highly conserved putative actin binding CH and a putative microtubule binding GAS2 domain. In the present study GAS2L3 was identified as a LINC target gene also in human cells. Gene expression analysis revealed that GAS2L3 transcription, in contrast to all other GAS2 family members, is highly regulated during the cell cycle with highest expression in G2/M. The GAS2L3 protein showed a specific localization pattern during the M phase: In metaphase, GAS2L3 localized to the mitotic spindle, relocated to the spindle midzone microtubules in late anaphase and concentrated at the midbody in telophase where it persisted until the end of cytokinesis. Overexpression of a set of different GAS2L3 deletion mutants demonstrated that the localization to the mitotic microtubule network is dependent on the C-terminus, whereas the midbody localization is dependent on full length GAS2L3 protein. Additionally, exclusive overexpression of the CH domain induced the formation of actin stress fibers, suggesting that the CH domain is an actin binding domain. In contrast, the GAS2 domain was neither needed nor sufficient for microtubule binding, indicating that there must be an additional so far unknown microtubule binding domain in the C-terminus. Interestingly, immunoblot analysis also identified the C-terminus as the domain responsible for GAS2L3 protein instability, partially dependent on proteasomal degradation. Consistent with its specific localization pattern, GAS2L3 depletion by RNAi demonstrated its responsibility for proper mitosis and cytokinesis. GAS2L3 depletion in HeLa cells resulted in the accumulation of multinucleated cells, an indicator for chromosome mis-segregation during mitosis. Also the amount of cells in cytokinesis was enriched, indicating failures in completing the last step of cytokinesis, the abscission. Strikingly, treatment with microtubule poisons that lead to the activation of the spindle assembly checkpoint (SAC) indicated that the SAC was weakened in GAS2L3 depleted cells. Although the exact molecular mechanism is still unknown, fist experiments support the hypothesis that GAS2L3 might be a regulator of the SAC master kinase BUBR1. In conclusion, this study provides first evidence for GAS2L3 as a novel regulator of mitosis and cytokinesis and it might therefore be an important guardian against tumorigenesis. N2 - Der korrekte Verlauf durch die Mitose des Zellzyklus trägt entscheidend zur Aufrechterhaltung der genomischen Integrität bei. Da ein Verlust der genomischen Integrität die Tumorentstehung begünstigt, ist die Identifizierung neuer G2/M regulatorischer Gene ein Forschungsbereich, der großes Interesse weckt. Der humane Multiproteinkomplex LINC ist für die transkriptionelle Aktivierung einer Vielzahl G2/M spezifischer Gene verantwortlich. Durch die Depletion von LIN9 in MEFs, einer Kernkomponente von LINC, wurde Gas2l3 als ein neues Zielgen von LINC identifiziert. Das bisher uncharakterisierte Gas2l3 Gen codiert für ein der GAS2 (growth arrest specific 2) Familie zugehöriges Protein, deren Mitglieder sich durch eine hoch konservierte putative Aktin-bindende Domäne (CH) und eine putative Mikrotubuli-bindende Domäne (GAS2) auszeichnen. In der vorliegenden Arbeit konnte gezeigt werden, dass GAS2L3 auch in humanen Zellen ein Zielgen von LINC ist. Die Transkription von GAS2L3 wies, im Gegensatz zu allen anderen GAS2 Familienmitgliedern, eine starke Regulation während des Zellzyklus auf, wobei die höchste Genexpression in der G2/M Phase vorlag. Das GAS2L3 Protein zeigte eine spezifische Lokalisation während der M Phase: In der Metaphase findet sich GAS2L3 an der mitotischen Spindel, wandert von dort an die Mikrotubuli der zentralen Spindel der Anaphase und konzentriert sich in der Telophase am Midbody, wo es bis zum Ende der Zytokinese verweilt. Der Einsatz unterschiedlicher Deletionsmutanten demonstrierte, dass die Lokalisation an die mitotischen Mikrotubuli vom C-Terminus abhängig ist, wohingegen die Lokalisation am Midbody von der gesamten Proteinsequenz abhängt. Die Ausbildung von Aktin-Streß-Filamenten nach alleiniger Überexpression der CH Domäne deutete darauf hin, dass die CH Domäne eine Aktin-bindende Domäne ist. Die GAS2 Domäne hingegen wurde weder für die Interaktion mit Mikrotubuli gebraucht, noch war sie alleine für diese ausreichend. Alle Daten weisen darauf hin, dass GAS2L3 eine bisher unbekannte Mikrotubuli-bindende Domäne im C-Terminus trägt. Interessanterweise ist der C-Terminus auch für die hohe Instabilität des GAS2L3 Proteins, die teilweise durch den Abbau im Proteasom verursacht wird, verantwortlich. Entsprechend der spezifischen Lokalisation zeigte die Depletion von GAS2L3 durch siRNA Transfektion dessen Wichtigkeit für den korrekten Verlauf der M Phase. GAS2L3 depletierte HeLa Zellen zeigten eine Anreicherung von multinukleären Zellen, welche ein Indikator für die fehlerhafte Verteilung der Chromosomen in der Mitose sind. Ein Hinweis auf Probleme im Beenden der Zytokinese stellte die erhöhte Anzahl von Zellen dar, die sich in der Zytokinese befanden. Eines der auffallendsten Merkmale war ein geschwächter mitotischer Spindelkontrollpunkt, den GAS2L3 depletierte Zellen nach der Behandlung mit den Kontrollpunkt aktivierenden Mikrotubuli-Giften aufwiesen. Auch wenn der exakte molekulare Mechanismus hierbei noch unbekannt ist, deuten erste Experimente darauf hin, dass GAS2L3 die Aktivität von BUBR1, einer essentiellen Kinase des mitotischen Spindelkontrollpunkts, beeinflusst. Alle Daten dieser Arbeit verdeutlichen die Wichtigkeit von GAS2L3 als einen neuen Regulator der Mitose und Zytokinese. Somit ist anzunehmen, dass die korrekte Funktion von GAS2L3 entscheidend zum Schutz vor Tumorentstehung beiträgt. KW - Mensch KW - Zelle KW - Mitose KW - Kernspindel KW - Kontrolle KW - Genregulation KW - Spindelkontrollpunkt KW - Zytokinese KW - Midbody KW - GAS2L3 KW - LIN9 KW - Zellzyklus KW - LIN9 KW - GAS2L3 KW - mitosis KW - cytokinesis KW - spindle assembly checkpoint Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-52704 ER - TY - THES A1 - Schmit, Fabienne T1 - LINC, a novel protein complex involved in the regulation of G2/M genes T1 - LINC, ein neuer Proteinkomplex, der G2/M Gene reguliert N2 - Regulated progression through the cell cycle is essential for ordered cell proliferation. One of the best characterized tumor suppressors is the retinoblastoma protein pRB, which together with the E2F transcription factors regulates cell cycle progression. In the model organisms Drosophila melanogaster and Caenorhabditis elegans, RB/E2F containing multiprotein complexes have been described as transcriptional regulators of gene expression. This work first describes a homologous complex in human cells named LINC (for LIN complex). It consists of a stable core complex containing LIN-9, LIN-37, LIN-52, LIN-54 and RbAp48. This core complex interacts cell cycle-dependently with different pocket proteins and transcription factors. In quiescent cells, LINC associates with p130 and E2F4. In S-phase cells these interactions are lost and LINC binds to B-MYB and p107. The transient knock-down of LIN-54 in primary fibroblasts, as the depletion of LIN-9, leads to cell cycle defects. The cells are delayed before the entry into mitosis. This effect is due to the fact that the knock-down of LINC components leads to the downregulation of cell cycle genes responsible for the entry into and exit from mitosis as well as for checkpoints during mitosis. These LINC target genes are known E2F G2/M target genes, which are expressed later than the classical G1/S E2F target genes. The transcriptional regulation by LINC is a direct effect as LINC binds to the promoters of its target genes throughout the cell cycle. LINC contains three DNA-binding proteins. E2F4 and B-MYB, which cell cycle-dependently bind to LINC, are known DNA-binding transcription factors. Additionally, it is show here that the LINC core complex member LIN-54 also directly binds to the promoter of a LINC target gene. Although the exact molecular mechanism of LINC function needs to be analyzed further, data in this work provide a model for the delayed activation of G2/M target genes. B-MYB, a G1/S E2F target gene, binds to LINC upon its expression in S-phase. Then only LINC is a transcriptional activator that induces the expression of the G2/M genes. This provides an explanation for the delayed expression of these E2F G2/M target genes. N2 - Die Regulation des Zellzyklus ist unerlässlich für die fehlerfreie Zellteilung. Einer der am Besten charakterisierten Tumorsuppressoren ist das Retinoblastom-Protein pRB, welches zusammen mit den E2F Transkriptionsfaktoren den Zellzyklus reguliert. In den Modellorganismen Drosophila melanogaster und Caenorhabditis elegans wurden Multiproteinkomplexe beschrieben, die pRB und E2F Homologe enthalten und transkriptionell die Expression von Zielgenen regulieren. Diese Arbeit beschreibt erstmals LINC, einen homologen Komplex in humanen Zellen. Der LIN-Kernkomplex besteht aus LIN-9, LIN-37, LIN-52, LIN-54 and RbAp48 und assoziiert zellzyklus-abhängig mit Pocket Proteinen und Transkriptionsfaktoren. In ruhenden Zellen (G0) assoziiert LINC mit p130 und E2F4. In der S-Phase verlassen p130 und E2F4 den Komplex und B-MYB und p107 interagieren mit LINC. Die transiente Depletion von LIN-54, ebenso wie die Depletion von LIN-9, führt zu Defekten im Zellzyklus. Die „knock-down“-Zellen treten verzögert in die Mitose ein. Dies konnte darauf zurückgeführt werden, dass die Depletion von LINC Mitgliedern Gene herunterreguliert, die für den Eintritt in und den Austritt aus der Mitose, sowie für Regulationsprozesse während der Mitose verantwortlich sind. Diese LINC Zielgene wurden bisher als G2/M E2F Zielgene beschrieben, welche verglichen mit klassischen E2F Zielgenen verzögert exprimiert werden. Die transkriptionelle Regulation durch LINC ist ein direkter Effekt, da LINC in G0 und in der S-Phase an die Promotoren seiner Zielgene bindet. LINC enthält drei DNA-bindende Proteine. Die zellzyklus-abhängigen Komponenten von LINC E2F4 und BMYB sind bekannte DNA-bindende Transkriptionsfaktoren. Zusätzlich konnte in dieser Arbeit gezeigt werden, dass das LINC Kernprotein LIN-54 direkt an den Promoter eines LINC Zielgens, cdc2, bindet. Obwohl der genaue molekulare Mechanismus für die Funktion von LINC noch genauer untersucht werden muss, liefern Daten in dieser Arbeit ein Modell für die verzögerte Expression von G2/M Genen. B-MYB ist selbst ein E2F Zielgen und bindet an LINC sobald es exprimiert wird. Erst die Assoziation von B-MYB an LINC in der S-Phase macht LINC zu einem transkriptionellen Aktivator G2/M-spezifischer Gene. Dies erklärt die verzögerte Expression dieser E2F G2/M Zielgene. KW - Zellzyklus KW - Transkription KW - LINC KW - LIN-54 KW - G2/M Übergang KW - LINC KW - LIN-54 KW - cell cycle KW - G2/M transition KW - transcription Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29336 ER -