TY - JOUR A1 - Thiess, Torsten A1 - Mellerup, Soren K. A1 - Braunschweig, Holger T1 - B–B Cleavage and Ring-Expansion of a 1,4,2,3-Diazadiborinine with N-Heterocyclic Carbenes JF - Chemistry - A European Journal N2 - A 1,4,2,3‐diazadiborinine derivative was found to form Lewis adducts with strong two‐electron donors such as N‐heterocyclic and cyclic (alkyl)(amino)carbenes. Depending on the donor, some of these Lewis pairs are thermally unstable, converting to sole B,N‐embedded products upon gentle heating. The products of these reactions, which have been fully characterized by NMR spectroscopy, elemental analysis, and single‐crystal X‐ray diffraction, were identified as B,N‐heterocycles with fused 1,5,2,4‐diazadiborepine and 1,4,2‐diazaborinine rings. Computational modelling of the reaction mechanism provides insight into the formation of these unique structures, suggesting that a series of B−H, C−N, and B−B bond activation steps are responsible for these “intercalation” reactions between the 1,4,2,3‐diazadiborinine and NHCs. KW - B,N-heterocylcles KW - B-B bond activation KW - diazadiborinines KW - NHCs KW - ring-expansion reactions Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-206173 VL - 25 IS - 59 ER - TY - INPR A1 - Englert, Lukas A1 - Stoy, Andreas A1 - Arrowsmith, Merle A1 - Müssig, Jonas H. A1 - Thaler, Melanie A1 - Deißenberger, Andrea A1 - Häfner, Alena A1 - Böhnke, Julian A1 - Hupp, Florian A1 - Seufert, Jens A1 - Mies, Jan A1 - Damme, Alexander A1 - Dellermann, Theresa A1 - Hammond, Kai A1 - Kupfer, Thomas A1 - Radacki, Krzysztof A1 - Thiess, Torsten A1 - Braunschweig, Holger T1 - Stable Lewis Base Adducts of Tetrahalodiboranes: Synthetic Methods and Structural Diversity T2 - Chemistry - A European Journal N2 - A series of 22 new bis(phosphine), bis(carbene) and bis(isonitrile) tetrahalodiborane adducts has been synthesized, either by direct adduct formation with highly sensitive B2X4 precursors (X = Cl, Br, I) or by ligand exchange at stable B2X4(SMe2)2 precursors (X = Cl, Br) with labile dimethylsulfide ligands. The isolated compounds have been fully characterized using NMR spectroscopic, (C,H,N)- elemental and, for 20 of these compounds, X-ray crystallographic analysis, revealing an unexpected variation in the bonding motifs. Besides the classical B2X4L2 diborane(6) adducts, some of the more sterically demanding carbene ligands induce a halide displacement leading to the first halide-bridged monocationic diboron species, [B2X3L2]A (A = BCl4, Br, I). Furthermore, low-temperature 1:1 reactions of B2Cl4 with sterically demanding N-heterocyclic carbenes led to the formation of kinetically unstable mono-adducts, one of which was structurally characterized. A comparison of the NMR and structural data of new and literature-known bis-adducts shows several trends pertaining to the nature of the halides and the stereoelectronic properties of the Lewis bases employed. KW - diborane(6) KW - Lewis-base adducts KW - ligand exchange KW - crystallography KW - NMR spectroscopy Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-184888 N1 - This is the pre-peer reviewed version of the following article: L. Englert, A. Stoy, M. Arrowsmith, J. H. Muessig, M. Thaler, A. Deißenberger, A. Häfner, J. Böhnke, F. Hupp, J. Seufert, J. Mies, A. Damme, T. Dellermann, K. Hammond, T. Kupfer, K. Radacki, T. Thiess, H. Braunschweig, Chem. Eur. J. 2019, 25, 8612. https://doi.org/10.1002/chem.201901437, which has been published in final form at https://doi.org/10.1002/chem.201901437. This article may be used for non-commercial purposes in accordance with Wiley Terms and Conditions for Use of Self-Archived Versions. ER -