TY - JOUR A1 - Zoran, Tamara A1 - Seelbinder, Bastian A1 - White, Philip Lewis A1 - Price, Jessica Sarah A1 - Kraus, Sabrina A1 - Kurzai, Oliver A1 - Linde, Joerg A1 - Häder, Antje A1 - Loeffler, Claudia A1 - Grigoleit, Goetz Ulrich A1 - Einsele, Hermann A1 - Panagiotou, Gianni A1 - Loeffler, Juergen A1 - Schäuble, Sascha T1 - Molecular profiling reveals characteristic and decisive signatures in patients after allogeneic stem cell transplantation suffering from invasive pulmonary aspergillosis JF - Journal of Fungi N2 - Despite available diagnostic tests and recent advances, diagnosis of pulmonary invasive aspergillosis (IPA) remains challenging. We performed a longitudinal case-control pilot study to identify host-specific, novel, and immune-relevant molecular candidates indicating IPA in patients post allogeneic stem cell transplantation (alloSCT). Supported by differential gene expression analysis of six relevant in vitro studies, we conducted RNA sequencing of three alloSCT patients categorized as probable IPA cases and their matched controls without Aspergillus infection (66 samples in total). We additionally performed immunoassay analysis for all patient samples to gain a multi-omics perspective. Profiling analysis suggested LGALS2, MMP1, IL-8, and caspase-3 as potential host molecular candidates indicating IPA in investigated alloSCT patients. MMP1, IL-8, and caspase-3 were evaluated further in alloSCT patients for their potential to differentiate possible IPA cases and patients suffering from COVID-19-associated pulmonary aspergillosis (CAPA) and appropriate control patients. Possible IPA cases showed differences in IL-8 and caspase-3 serum levels compared with matched controls. Furthermore, we observed significant differences in IL-8 and caspase-3 levels among CAPA patients compared with control patients. With our conceptual work, we demonstrate the potential value of considering the human immune response during Aspergillus infection to identify immune-relevant molecular candidates indicating IPA in alloSCT patients. These human host candidates together with already established fungal biomarkers might improve the accuracy of IPA diagnostic tools. KW - host response KW - invasive pulmonary aspergillosis KW - alloSCT patients KW - galectin-2 KW - caspase-3 KW - matrix metallopeptidase-1 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-262105 SN - 2309-608X VL - 8 IS - 2 ER - TY - JOUR A1 - Tappe, Beeke A1 - Lauruschkat, Chris D. A1 - Strobel, Lea A1 - Pantaleón García, Jezreel A1 - Kurzai, Oliver A1 - Rebhan, Silke A1 - Kraus, Sabrina A1 - Pfeuffer-Jovic, Elena A1 - Bussemer, Lydia A1 - Possler, Lotte A1 - Held, Matthias A1 - Hünniger, Kerstin A1 - Kniemeyer, Olaf A1 - Schäuble, Sascha A1 - Brakhage, Axel A. A1 - Panagiotou, Gianni A1 - White, P. Lewis A1 - Einsele, Hermann A1 - Löffler, Jürgen A1 - Wurster, Sebastian T1 - COVID-19 patients share common, corticosteroid-independent features of impaired host immunity to pathogenic molds JF - Frontiers in Immunology N2 - Patients suffering from coronavirus disease-2019 (COVID-19) are susceptible to deadly secondary fungal infections such as COVID-19-associated pulmonary aspergillosis and COVID-19-associated mucormycosis. Despite this clinical observation, direct experimental evidence for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2)-driven alterations of antifungal immunity is scarce. Using an ex-vivo whole blood stimulation assay, we challenged blood from twelve COVID-19 patients with Aspergillus fumigatus and Rhizopus arrhizus antigens and studied the expression of activation, maturation, and exhaustion markers, as well as cytokine secretion. Compared to healthy controls, T-helper cells from COVID-19 patients displayed increased expression levels of the exhaustion marker PD-1 and weakened A. fumigatus- and R. arrhizus-induced activation. While baseline secretion of proinflammatory cytokines was massively elevated, whole blood from COVID-19 patients elicited diminished release of T-cellular (e.g., IFN-γ, IL-2) and innate immune cell-derived (e.g., CXCL9, CXCL10) cytokines in response to A. fumigatus and R. arrhizus antigens. Additionally, samples from COVID-19 patients showed deficient granulocyte activation by mold antigens and reduced fungal killing capacity of neutrophils. These features of weakened anti-mold immune responses were largely decoupled from COVID-19 severity, the time elapsed since diagnosis of COVID-19, and recent corticosteroid uptake, suggesting that impaired anti-mold defense is a common denominator of the underlying SARS-CoV-2 infection. Taken together, these results expand our understanding of the immune predisposition to post-viral mold infections and could inform future studies of immunotherapeutic strategies to prevent and treat fungal superinfections in COVID-19 patients. KW - COVID-19 KW - immune impairment KW - T cells KW - granulocytes KW - Aspergillus KW - Rhizopus Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-283558 SN - 1664-3224 VL - 13 ER -