TY - JOUR A1 - Meyer, Malin Tordis A1 - Watermann, Christoph A1 - Dreyer, Thomas A1 - Ergün, Süleyman A1 - Karnati, Srikanth T1 - 2021 update on diagnostic markers and translocation in salivary gland tumors JF - International Journal of Molecular Sciences N2 - Salivary gland tumors are a rare tumor entity within malignant tumors of all tissues. The most common are malignant mucoepidermoid carcinoma, adenoid cystic carcinoma, and acinic cell carcinoma. Pleomorphic adenoma is the most recurrent form of benign salivary gland tumor. Due to their low incidence rates and complex histological patterns, they are difficult to diagnose accurately. Malignant tumors of the salivary glands are challenging in terms of differentiation because of their variability in histochemistry and translocations. Therefore, the primary goal of the study was to review the current literature to identify the recent developments in histochemical diagnostics and translocations for differentiating salivary gland tumors. KW - salivary gland tumors KW - epithelial salivary gland KW - adenoid cystic carcinoma (ACC) KW - pleomorphic adenoma KW - mucoepidermoid carcinoma KW - diagnostic markers Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261057 SN - 1422-0067 VL - 22 IS - 13 ER - TY - JOUR A1 - Kleefeldt, Florian A1 - Bömmel, Heike A1 - Broede, Britta A1 - Thomsen, Michael A1 - Pfeiffer, Verena A1 - Wörsdörfer, Philipp A1 - Karnati, Srikanth A1 - Wagner, Nicole A1 - Rueckschloss, Uwe A1 - Ergün, Süleyman T1 - Aging‐related carcinoembryonic antigen‐related cell adhesion molecule 1 signaling promotes vascular dysfunction JF - Aging Cell N2 - Aging is an independent risk factor for cardiovascular diseases and therefore of particular interest for the prevention of cardiovascular events. However, the mechanisms underlying vascular aging are not well understood. Since carcinoembryonic antigen‐related cell adhesion molecule 1 (CEACAM1) is crucially involved in vascular homeostasis, we sought to identify the role of CEACAM1 in vascular aging. Using human internal thoracic artery and murine aorta, we show that CEACAM1 is upregulated in the course of vascular aging. Further analyses demonstrated that TNF‐α is CEACAM1‐dependently upregulated in the aging vasculature. Vice versa, TNF‐α induces CEACAM1 expression. This results in a feed‐forward loop in the aging vasculature that maintains a chronic pro‐inflammatory milieu. Furthermore, we demonstrate that age‐associated vascular alterations, that is, increased oxidative stress and vascular fibrosis, due to increased medial collagen deposition crucially depend on the presence of CEACAM1. Additionally, age‐dependent upregulation of vascular CEACAM1 expression contributes to endothelial barrier impairment, putatively via increased VEGF/VEGFR‐2 signaling. Consequently, aging‐related upregulation of vascular CEACAM1 expression results in endothelial dysfunction that may promote atherosclerotic plaque formation in the presence of additional risk factors. Our data suggest that CEACAM1 might represent an attractive target in order to delay physiological aging and therefore the transition to vascular disorders such as atherosclerosis. KW - aging KW - anti‐aging KW - cytokines KW - inflammation KW - mouse KW - reactive oxygen species Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201231 VL - 2019 IS - 18 ER - TY - JOUR A1 - Karnati, Srikanth A1 - Seimetz, Michael A1 - Kleefeldt, Florian A1 - Sonawane, Avinash A1 - Madhusudhan, Thati A1 - Bachhuka, Akash A1 - Kosanovic, Djuro A1 - Weissmann, Norbert A1 - Krüger, Karsten A1 - Ergün, Süleyman T1 - Chronic Obstructive Pulmonary Disease and the Cardiovascular System: Vascular Repair and Regeneration as a Therapeutic Target JF - Frontiers in Cardiovascular Medicine N2 - Chronic obstructive pulmonary disease (COPD) is a major cause of morbidity and mortality worldwide and encompasses chronic bronchitis and emphysema. It has been shown that vascular wall remodeling and pulmonary hypertension (PH) can occur not only in patients with COPD but also in smokers with normal lung function, suggesting a causal role for vascular alterations in the development of emphysema. Mechanistically, abnormalities in the vasculature, such as inflammation, endothelial dysfunction, imbalances in cellular apoptosis/proliferation, and increased oxidative/nitrosative stress promote development of PH, cor pulmonale, and most probably pulmonary emphysema. Hypoxemia in the pulmonary chamber modulates the activation of key transcription factors and signaling cascades, which propagates inflammation and infiltration of neutrophils, resulting in vascular remodeling. Endothelial progenitor cells have angiogenesis capabilities, resulting in transdifferentiation of the smooth muscle cells via aberrant activation of several cytokines, growth factors, and chemokines. The vascular endothelium influences the balance between vaso-constriction and -dilation in the heart. Targeting key players affecting the vasculature might help in the development of new treatment strategies for both PH and COPD. The present review aims to summarize current knowledge about vascular alterations and production of reactive oxygen species in COPD. The present review emphasizes on the importance of the vasculature for the usually parenchyma-focused view of the pathobiology of COPD. KW - COPD KW - emphysema KW - pulmonary hypertension KW - hypoxia KW - oxidative stress Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235631 SN - 2297-055X VL - 8 ER - TY - JOUR A1 - Gredic, Marija A1 - Karnati, Srikanth A1 - Ruppert, Clemens A1 - Guenther, Andreas A1 - Avdeev, Sergey N. A1 - Kosanovic, Djuro T1 - Combined pulmonary fibrosis and emphysema: when Scylla and Charybdis ally JF - Cells N2 - Combined pulmonary fibrosis and emphysema (CPFE) is a recently recognized syndrome that, as its name indicates, involves the existence of both interstitial lung fibrosis and emphysema in one individual, and is often accompanied by pulmonary hypertension. This debilitating, progressive condition is most often encountered in males with an extensive smoking history, and is presented by dyspnea, preserved lung volumes, and contrastingly impaired gas exchange capacity. The diagnosis of the disease is based on computed tomography imaging, demonstrating the coexistence of emphysema and interstitial fibrosis in the lungs, which might be of various types and extents, in different areas of the lung and several relative positions to each other. CPFE bears high mortality and to date, specific and efficient treatment options do not exist. In this review, we will summarize current knowledge about the clinical attributes and manifestations of CPFE. Moreover, we will focus on pathophysiological and pathohistological lung phenomena and suspected etiological factors of this disease. Finally, since there is a paucity of preclinical research performed for this particular lung pathology, we will review existing animal studies and provide suggestions for the development of additional in vivo models of CPFE syndrome. KW - CPFE KW - lung fibrosis KW - emphysema KW - animal models Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-313571 SN - 2073-4409 VL - 12 IS - 9 ER - TY - JOUR A1 - Meyer, Malin Tordis A1 - Watermann, Christoph A1 - Dreyer, Thomas A1 - Wagner, Steffen A1 - Wittekindt, Claus A1 - Klussmann, Jens Peter A1 - Ergün, Süleyman A1 - Baumgart-Vogt, Eveline A1 - Karnati, Srikanth T1 - Differential expression of peroxisomal proteins in distinct types of parotid gland tumors JF - International Journal of Molecular Sciences N2 - Salivary gland cancers are rare but aggressive tumors that have poor prognosis and lack effective cure. Of those, parotid tumors constitute the majority. Functioning as metabolic machinery contributing to cellular redox balance, peroxisomes have emerged as crucial players in tumorigenesis. Studies on murine and human cells have examined the role of peroxisomes in carcinogenesis with conflicting results. These studies either examined the consequences of altered peroxisomal proliferators or compared their expression in healthy and neoplastic tissues. None, however, examined such differences exclusively in human parotid tissue or extended comparison to peroxisomal proteins and their associated gene expressions. Therefore, we examined differences in peroxisomal dynamics in parotid tumors of different morphologies. Using immunofluorescence and quantitative PCR, we compared the expression levels of key peroxisomal enzymes and proliferators in healthy and neoplastic parotid tissue samples. Three parotid tumor subtypes were examined: pleomorphic adenoma, mucoepidermoid carcinoma and acinic cell carcinoma. We observed higher expression of peroxisomal matrix proteins in neoplastic samples with exceptional down regulation of certain enzymes; however, the degree of expression varied between tumor subtypes. Our findings confirm previous experimental results on other organ tissues and suggest peroxisomes as possible therapeutic targets or markers in all or certain subtypes of parotid neoplasms. KW - peroxisomes KW - parotid gland KW - salivary KW - tumors KW - pleomorphic adenoma KW - mucoepidermoid carcinoma KW - acinic cell carcinoma KW - differential expression KW - immunohistochemistry KW - mRNA Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261047 SN - 1422-0067 VL - 22 IS - 15 ER - TY - JOUR A1 - Rajendran, Ranjithkumar A1 - Böttiger, Gregor A1 - Dentzien, Niklas A1 - Rajendran, Vinothkumar A1 - Sharifi, Bischand A1 - Ergün, Süleyman A1 - Stadelmann, Christine A1 - Karnati, Srikanth A1 - Berghoff, Martin T1 - Effects of FGFR tyrosine kinase inhibition in OLN-93 oligodendrocytes JF - Cells N2 - Fibroblast growth factor (FGF) signaling is involved in the pathogenesis of multiple sclerosis (MS). Data from neuropathology studies suggest that FGF signaling contributes to the failure of remyelination in MS. In MOG\(_{35–55}\)-induced EAE, oligodendrocyte-specific deletion of FGFR1 and FGFR2 resulted in a less severe disease course, reduced inflammation, myelin and axon degeneration and changed FGF/FGFR and BDNF/TrkB signaling. Since signaling cascades in oligodendrocytes could not be investigated in the EAE studies, we here aimed to characterize FGFR-dependent oligodendrocyte-specific signaling in vitro. FGFR inhibition was achieved by application of the multi-kinase-inhibitor dovitinib and the FGFR1/2/3-inhibitor AZD4547. Both substances are potent inhibitors of FGF signaling; they are effective in experimental tumor models and patients with malignancies. Effects of FGFR inhibition in oligodendrocytes were studied by immunofluorescence microscopy, protein and gene analyses. Application of the tyrosine kinase inhibitors reduced FGFR1, phosphorylated ERK and Akt expression, and it enhanced BDNF and TrkB expression. Furthermore, the myelin proteins CNPase and PLP were upregulated by FGFR inhibition. In summary, inhibition of FGFR signaling in oligodendrocytes can be achieved by application of tyrosine kinase inhibitors. Decreased phosphorylation of ERK and Akt is associated with an upregulation of BDNF/TrkB signaling, which may be responsible for the increased production of myelin proteins. Furthermore, these data suggest that application of FGFR inhibitors may have the potential to promote remyelination in the CNS. KW - multiple sclerosis KW - oligodendrocytes KW - dovitinib KW - AZD4547 KW - FGFR signaling KW - myelin Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239600 SN - 2073-4409 VL - 10 IS - 6 ER - TY - JOUR A1 - Kustiati, Ulayatul A1 - Ergün, Suleyman A1 - Karnati, Srikanth A1 - Nugrahaningsih, Dwi Aris Agung A1 - Kusindarta, Dwi Liliek A1 - Wihadmadyatami, Hevi T1 - Ethanolic extract of Ocimum sanctum Linn. Inhibits cell migration of human lung adenocarcinoma cells (A549) by downregulation of integrin αvβ3, α5β1, and VEGF JF - Scientia Pharmaceutica N2 - Adenocarcinoma lung cancer is a type of non-small cell lung carcinoma (NSCLC), which accounts for 85% of lung cancer incidence globally. The therapies that are being applied, both conventional therapies and antibody-based treatments, are still found to have side effects. Several previous studies have demonstrated the ability of the ethanolic extract of Ocimum sanctum Linn. (EEOS) as an ethnomedicine with anti-tumor properties. The aim of this study was to determine the effect of Ocimum sanctum Linn. ethanolic extract in inhibiting the proliferation, angiogenesis, and migration of A549 cells (NSCLC). The adhesion as well as the migration assay was performed. Furthermore, enzyme-linked immunosorbent assay (ELISA) was used to measure the expression of αvβ3 integrins, α5β1 integrins, and VEGF. The cells were divided into the following treatment groups: control (non-treated/NT), positive control (AP3/inhibitor β3 80 µg/mL), cisplatin (9 µg/mL), and EEOS at concentrations of 50, 70, 100, and 200 µg/mL. The results showed that EEOS inhibits the adhesion ability and migration of A549 cells, with an optimal concentration of 200 µg/mL. ELISA testing showed that the group of A549 cells given EEOS 200 µg/mL presented a decrease in the optimal expression of integrin α5β1, integrin αvβ3, and VEGF. KW - EEOS KW - A549 cell line KW - integrin α5β1 KW - integrin αvβ3 KW - VEGF Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290540 SN - 2218-0532 VL - 90 IS - 4 ER - TY - JOUR A1 - Rajendran, Ranjithkumar A1 - Böttiger, Gregor A1 - Stadelmann, Christine A1 - Karnati, Srikanth A1 - Berghoff, Martin T1 - FGF/FGFR pathways in multiple sclerosis and in its disease models JF - Cells N2 - Multiple sclerosis (MS) is a chronic inflammatory and neurodegenerative disease of the central nervous system (CNS) affecting more than two million people worldwide. In MS, oligodendrocytes and myelin sheaths are destroyed by autoimmune-mediated inflammation, while remyelination is impaired. Recent investigations of post-mortem tissue suggest that Fibroblast growth factor (FGF) signaling may regulate inflammation and myelination in MS. FGF2 expression seems to correlate positively with macrophages/microglia and negatively with myelination; FGF1 was suggested to promote remyelination. In myelin oligodendrocyte glycoprotein (MOG)\(_{35–55}\)-induced experimental autoimmune encephalomyelitis (EAE), systemic deletion of FGF2 suggested that FGF2 may promote remyelination. Specific deletion of FGF receptors (FGFRs) in oligodendrocytes in this EAE model resulted in a decrease of lymphocyte and macrophage/microglia infiltration as well as myelin and axon degeneration. These effects were mediated by ERK/Akt phosphorylation, a brain-derived neurotrophic factor, and downregulation of inhibitors of remyelination. In the first part of this review, the most important pharmacotherapeutic principles for MS will be illustrated, and then we will review recent advances made on FGF signaling in MS. Thus, we will suggest application of FGFR inhibitors, which are currently used in Phase II and III cancer trials, as a therapeutic option to reduce inflammation and induce remyelination in EAE and eventually MS. KW - FGF KW - FGFR KW - multiple sclerosis KW - EAE KW - ERK KW - Akt KW - BDNF KW - LINGO-1 KW - SEMA3A Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-236594 SN - 2073-4409 VL - 10 IS - 4 ER - TY - JOUR A1 - Rajendran, Ranjithkumar A1 - Rajendran, Vinothkumar A1 - Gupta, Liza A1 - Shirvanchi, Kian A1 - Schunin, Darja A1 - Karnati, Srikanth A1 - Giraldo-Velásquez, Mario A1 - Berghoff, Martin T1 - Interferon beta-1a versus combined interferon beta-1a and oligodendrocyte-specific FGFR1 deletion in experimental autoimmune encephalomyelitis JF - International Journal of Molecular Sciences N2 - Recombinant beta interferons-1 (IFNβ-1) are used as first line therapies in patients with relapsing multiple sclerosis (MS), a chronic inflammatory and neurodegenerative disease of the CNS. IFNβ-1a/b has moderate effects on the prevention of relapses and slowing of disease progression. Fibroblast growth factors (FGFs) and FGF receptors (FGFRs) are known to play a key role in the pathology of MS and its model EAE. To investigate the effects of short-term treatment with s.c. IFNβ-1a versus the combined application of s.c. IFNβ-1a and oligodendrocyte-specific deletion of FGFR1 (Fgfr1\(^{ind−/−}\) mice) in MOG\(_{35-55}\)-induced EAE. IFNβ-1a (30 mg/kg) was applied s.c. from days 0–7 p.i. of EAE in controls and Fgfr1\(^{ind−/−}\) mice. FGFR signaling proteins associated with inflammation/degeneration in MS/EAE were analyzed by western blot in the spinal cord. Further, FGFR1 in Oli-neu oligodendrocytes were inhibited by PD166866 and treated with IFNβ-1a (400 ng/mL). Application of IFNβ-1a over 8 days resulted in less symptoms only at the peak of disease (days 9–11) compared to controls. Application of IFNβ-1a in Fgfr1\(^{ind−/−}\) mice resulted in less symptoms primarily in the chronic phase of EAE. Fgfr1\(^{ind−/−}\) mice treated with IFNβ-1a showed increased expression of pERK and BDNF. In Oli-neu oligodendrocytes, treatment with PD166866 and IFNβ-1a also showed an increased expression of pERK and BDNF/TrkB. These data suggest that the beneficial effects in the chronic phase of EAE and on signaling molecules associated with ERK and BDNF expression are caused by the modulation of FGFR1 and not by interferon beta-1a. FGFR may be a potential target for therapy in MS. KW - FGFR1 KW - interferon beta-1a KW - oligodendrocytes KW - EAE KW - multiple sclerosis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290401 SN - 1422-0067 VL - 23 IS - 20 ER - TY - JOUR A1 - Reschke, Moritz A1 - Salvador, Ellaine A1 - Schlegel, Nicolas A1 - Burek, Malgorzata A1 - Karnati, Srikanth A1 - Wunder, Christian A1 - Förster, Carola Y. T1 - Isosteviol sodium (STVNA) reduces pro-inflammatory cytokine IL-6 and GM-CSF in an in vitro murine stroke model of the blood–brain barrier (BBB) JF - Pharmaceutics N2 - Early treatment with glucocorticoids could help reduce both cytotoxic and vasogenic edema, leading to improved clinical outcome after stroke. In our previous study, isosteviol sodium (STVNA) demonstrated neuroprotective effects in an in vitro stroke model, which utilizes oxygen-glucose deprivation (OGD). Herein, we tested the hypothesis that STVNA can activate glucocorticoid receptor (GR) transcriptional activity in brain microvascular endothelial cells (BMECs) as previously published for T cells. STVNA exhibited no effects on transcriptional activation of the glucocorticoid receptor, contrary to previous reports in Jurkat cells. However, similar to dexamethasone, STVNA inhibited inflammatory marker IL-6 as well as granulocyte-macrophage colony-stimulating factor (GM-CSF) secretion. Based on these results, STVNA proves to be beneficial as a possible prevention and treatment modality for brain ischemia-reperfusion injury-induced blood–brain barrier (BBB) dysfunction. KW - IL-6 KW - ischemia KW - isosteviol sodium (STVNA) KW - dexamethasone KW - glucocorticoid receptor KW - cerebEND Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-286275 SN - 1999-4923 VL - 14 IS - 9 ER -