TY - THES A1 - Mülek, Melanie T1 - Distribution and metabolism of constituents and metabolites of a standardized maritime pine bark extract (Pycnogenol®) in human serum, blood cells and synovial fluid of patients with severe osteoarthritis T1 - Verteilung und Metabolismus von Bestandteilen und Metaboliten eines standardisierten Kiefernrindenextraktes (Pycnogenol®) in humanem Serum, Blutzellen und Synovialflüssigkeit von Patienten mit schwerer Osteoarthritis N2 - Dietary polyphenols have been related to beneficial effects on humans’ health. Pycnogenol®, a dietary polyphenol-rich food supplement complies with the monograph “Maritime pine extract” in the United States Pharmacopeia (USP) and has demonstrated effects in different diseases. Several human trials concerning knee osteoarthritis have shown significant improvement of the symptoms like reducing the pain and the stiffness of the joint(s) upon intake of Pycnogenol®. After oral intake of multiple doses of Pycnogenol® previously low concentrations in the nanomolar range of monomeric extract constituents have been found in human plasma as well as a bioactive metabolite, δ-(3,4-dihydroxy-phenyl)-γ-valerolactone (M1), which is formed by the human intestinal flora from the procyanidins’ catechin units. It is not clear yet which compound(s) of the complex extract is (are) mainly responsible for the described clinical effects of Pycnogenol®. To gain deeper insights into the in vivo fate of the pine bark extract the distribution of its constitutents and metabolites was closer investigated in the present thesis. Initial in vitro experiments suggested a facilitated cellular uptake of M1 into human erythrocytes, possibly via GLUT-1 transporter. For elucidating further the in vitro and in vivo metabolism of M1 in human blood cells, a metabolomic approach was performed using UPLC-ESI-qTOF-MSE analysis, which revealed a comprehensive and rapid metabolism of M1 to a variety of biotransformation products in human blood cells. Predominant metabolites were found to be conjugates of glutathione (GSH) isomers, namely M1-S-GSH and M1-N-GSH. Further sulfur-containing biotransformation products of M1 were conjugates with oxidized glutathione (M1-GSSG) and cysteine (M1-CYS) and the sulfated derivative of M1 (M1-sulfated). Other in vitro biotransformation products constituted the open-chained ester form of M1 (M1-COOH), hydroxybenzoic acid and the methylated (M1-methylated), acetylated (M1-acetylated), hydroxylated (M1-hydroxylated) and ethylated (M1-ethylated) derivatives of M1. Indeed, six of these in vitro metabolites, respectively M1-COOH, M1-sulfated, hydroxybenzoic acid, M1-S-GSH, M1-methylated and M1-acetylated, were also identified in vivo in blood cells of human volunteers after ingestion of Pycnogenol®. Related reference material was synthesized for reliable confirmation of the metabolites M1-GSH, M1-GSSG, M1-CYS and M1-COOH. In the course of a randomized controlled clinical trial patients suffering from severe osteoarthritis ingested multiple doses of 200 mg/day Pycnogenol® for three weeks before they were scheduled for an elective knee replacement surgery. Various biological specimen, respectively blood cells, synovial fluid and serum samples, were to be analyzed to investigate the distribution and disposition of possibly bioactive constituents and metabolites. Therefore, highly sensitive methods were developed using liquid chromatography tandem mass spectrometry (LC-MS/MS)- technology because of the expected low concentrations of the analytes in the related matrices. Initially, for each matrix different sample preparation techniques (protein precipitation, liquid-liquid extraction, solid phase extraction and useful combinations thereof) were compared to achieve maximum detection sensitivity of the analytes that were of highest interest, namely M1, ferulic acid and taxifolin. By comparing 32 various sample clean-up procedures in human serum, the highest recovery of the metabolite M1 was achieved using a liquid-liquid extraction with ethyl acetate and tert-butyl methyl ether at a serum pH-value of 3.2. A similar extraction method was also chosen for analyte detection in human synovial fluid after comparing 31 different sample preparation techniques. Whole blood or blood cells are difficult to handle because of their high viscosity and strong coloration. The QuEChERS (quick, easy, cheap, effective, rugged and safe) approach which was originally developed for the food safety and thus for the determination of pesticide residues in fruits and vegetables yielded the highest total recovery rate of M1 in human blood cells when assessing 18 different sample clean-up techniques. By applying the QuEChERS method for the first time for the simultaneous and highly sensitive quantification of selected polyphenols in human blood cells it was demonstrated that this fast and inexpensive technique can be applied in clinical fields for cleaning-up highly complex and thus challenging biological matrices. All developed methods for the different biological specimen were optimized to achieve maximum sensitivity of the target analytes. The determined lower limits of quantification (LLOQs) were sufficient for the quantification of the study samples. The LLOQs ranged from 113 pg/mL for taxifolin to 48 ng/mL for caffeic acid in blood cells and from 80 pg/mL for taxifolin to 3 ng/mL for caffeic acid in synovial fluid. In human serum the LLOQs even ranged down to 35 pg/mL for taxifolin and up to 8 ng/mL for caffeic acid. All analytical methods were subjected to a full validation according to current EMA and FDA guidelines and fulfilled those criteria, showing excellent performance and reliability of the developed and optimized methods. Serum, blood cells and synovial fluid samples of the osteoarthritis patients were all processed with an enzymatic incubation with ß-glucuronidase/sulfatase to hydrolyse conjugates (phase-II-metabolism) prior the actual sample preparation. Additionally, serum samples of the osteoarthritis patients were prepared without enzymatic hydrolysis to determine the individual degree of conjugation with sulfate and glucuronic acid of the analytes. All determined concentrations in the patients’ samples were in the lower ng/mL range. Notably, highest total concentrations of the polyphenols were not detected in serum, in which the degree of analyte conjugation with sulfate and glucuronic acid ranged from 54.29 ± 26.77% for catechin to 98.34 ± 4.40% for M1. The flavonoids catechin and taxifolin mainly partitioned into blood cells, whereas the metabolite M1, ferulic and caffeic acid primarily resided in the synovial fluid. The concentration of M1 in the blood cells was low, however, this could be explained by the previously observed extensive and rapid intracellular metabolism in vitro. This was now supported by the in vivo evidence in samples of patients who received Pycnogenol® in which the open-chained ester form of M1 (M1-COOH) as well as the glutathione conjugate of M1 (M1-GSH) were identified, indicating that M1 does not accumulate in its original form in vivo. Possibly, a variety of bioactive metabolites exist which might play an important role for the clinical effects of Pycnogenol®. Although the study participants were requested to avoid polyphenol-rich food and beverages within the last two days before the blood samplings this was obviously difficult for most of the patients. Hence, no statistically significantly difference was observed in the mean polyphenol concentrations in serum, blood cells and synovial fluid between the intervention and the control group. Nevertheless, it was possible to identify marker compounds for Pycnogenol® intake under real life conditions with occasional or regular consumption of polyphenol-rich foods and beverages. Thereby, ferulic acid was found in serum samples exclusively after intake of Pycnogenol®, confirming that ferulic acid is a suitable marker of consumption of French maritime pine bark extract. Taxifolin was present in serum and synovial fluid exclusively in the intervention group indicating a role as further marker of Pycnogenol® intake. Taxifolin, ferulic acid and caffeic acid were detected in both serum and synovial fluid only in the intervention group. Moreover, the metabolite M1, taxifolin and ferulic acid were only detected simultaneously in all matrices (serum, blood cells and synovial fluid) after ingestion of Pycnogenol®. Thus, deeper insights into the distribution of bioactive constituents and metabolites of Pycnogenol® into serum, blood cells and synovial fluid after oral administration to patients with severe osteoarthritis were gained. The present study provides the first evidence that polyphenols indeed distribute into the synovial fluid of patients with osteoarthritis where they might contribute to clinical effects. N2 - Polyphenole in Nahrungsmitteln werden mit positiven Wirkungen auf die menschliche Gesundheit in Verbindung gebracht. Pycnogenol®, ein polyphenolreiches Nahrungs-ergänzungsmittel, welches der Monographie "Maritime Pine Extract" im US-Amerikanischen Arzneibuch (United States Pharmacopeia, USP) entspricht, wurde bereits Effekte bei verschiedenen Krankheiten zugeschrieben. Eine orale Einnahme von Pycnogenol® hat in mehreren Humanstudien, welche sich mit Arthrose am Knie beschäftigt haben, eine signifikante Verbesserung der Symptome wie die Reduzierung von Schmerzen und der Steifheit des Gelenks gezeigt. Nach Mehrfacheinnahmen von Pycnogenol® wurden im menschlichen Plasma bereits niedrige Konzentrationen (im nanomolaren Bereich) von monomeren Extraktbestandteilen gefunden sowie ein bioaktiver Metabolit, δ-(3,4-Dihydroxy-phenyl)-γ-Valerolacton (M1), welcher durch die menschliche Darmflora aus den Catechin-Einheiten der Procyanidine gebildet wird. Bis jetzt ist noch unklar, welche Verbindung(en) des komplexen Extraktes für die beschriebenen klinischen Wirkungen von Pycnogenol® hauptsächlich verantwortlich ist (sind). Um einen tieferen Einblick in das in vivo Verhalten des Kiefernrindenextraktes zu gewinnen, wurde in der vorliegenden Arbeit die Verteilung von Bestandteilen und Metaboliten des Extraktes näher untersucht. Erste in vitro Experimente wiesen auf eine erleichterte zelluläre Aufnahme von M1 in menschliche Erythrozyten hin, möglicherweise vermittelt über den GLUT-1-Transporter. Um den in vitro und in vivo Metabolismus von M1 in menschlichen Blutzellen weiter aufzuklären, wurden metabolomische Untersuchungen mittels UPLC-ESI-qTOF-MS-Analyse durchgeführt, welche eine umfassende und schnelle Metabolisierung von M1 in menschlichen Blutzellen zu einer Vielzahl von Biotransformationsprodukten zeigten. Die Hauptmetabolite waren Konjugate von Glutathion(GSH)-Isomeren, nämlich M1-S-GSH und M1-N-GSH. Daneben entstanden schwefelhaltige Biotransformationsprodukte von M1, nämlich Konjugate mit oxidiertem Glutathion (M1-GSSG) und Cystein (M1-CYS) sowie ein Derivat von M1 mit Sulfat (M1-sulfatiert). Andere in vitro Biotransformationsprodukte waren die offenkettige Esterform von M1 (M1-COOH), Hydroxybenzoesäure, die methylierte (M1-methyliert), acetylierte (M1-acetyliert), hydroxylierte (M1-hydroxyliert) und ethylierte (M1-ethyliert) Form von M1. Sechs dieser in vitro Metabolite, nämlich M1-COOH, M1-sulfatiert, Hydroxybenzoesäure, M1-S-GSH, M1-methyliert und M1-acetyliert, wurden tatsächlich auch in vivo in humanen Blutzellen von freiwilligen Spendern identifiziert, welche zuvor Pycnogenol® oral eingenommen hatten. Für eine zuverlässige Bestätigung der Metaboliten M1-GSH, M1-GSSG, M1-CYS und M1-COOH wurde entsprechendes Referenzmaterial synthetisiert. Im Rahmen einer randomisiert-kontrollierten Studie wurden Patienten, welche an einer schweren Arthrose litten, eine orale Mehrfachdosis von 200 mg Pycnogenol® pro Tag über drei Wochen hinweg verabreicht, bevor sich diese anschließend einer notwendigen Kniegelenksersatz-Operation unterzogen. Um das Auftreten und die Verteilung von möglichen bioaktiven Bestandteilen und Metaboliten zu untersuchen, wurden verschiedene biologische Flüssigkeiten, nämlich Serum, Blutzellen und die Gelenkflüssigkeit analysiert. Da sehr geringe Konzentrationen der Analyten in den einzelnen Matrizes erwartet wurden, waren hochempfindliche Methoden erforderlich. Daher wurde Flüssigkeitschromatographie gekoppelt mit Tandem-Massenspektrometrie (LC-MS/MS) eingesetzt. Zunächst wurden unterschiedliche Probenvorbereitungstechniken (Proteinfällung, Flüssig-Flüssig-Extraktion, Festphasenextraktion und sinnvolle Kombinationen davon) für jede Matrix verglichen, um eine maximal empfindliche Detektion der wichtigsten Analyten, nämlich M1, Ferulasäure und Taxifolin, zu erzielen. Durch den Vergleich von 32 verschiedenen Probenaufarbeitungen in humanem Serum wurde die höchste Wiederfindung des Metaboliten M1 unter Verwendung einer Flüssig-Flüssig-Extraktion mit Essigsäureethylester und Methyl-tert-butylether bei einem pH-Wert im Serum von 3,2 erreicht. Zum Nachweis der Analyten in der humanen Gelenkflüssigkeit wurde nach einem Vergleich von 31 verschiedenen Probenaufarbeitungen eine ähnliche Extraktion angewandt. Aufgrund der hohen Viskosität und der starken Färbung ist die Aufarbeitung von Vollblut oder Blutzellen sehr anspruchsvoll. Das QuEChERS (quick, easy, cheap, effective, rugged and safe) Verfahren, welches ursprünglich für die Lebensmittelüberwachung zur Bestimmung von Pestizidrückständen in Obst und Gemüse entwickelt wurde, ergab bei der Bewertung von 18 Probenaufarbeitungs-techniken die höchste Gesamtwiederfindungsrate von M1 in menschlichen Blutzellen. Durch die erstmalige Anwendung von QuEChERS zur hochempfindlichen und simultanen Quantifizierung von ausgewählten Polyphenolen in menschlichen Blutzellen wurde gezeigt, dass diese schnelle und kostengünstige Methode durchaus auch in klinischen Bereichen zur Aufreinigung von sehr komplexen und anspruchsvollen biologischen Matrizes angewendet werden kann. Alle entwickelten Methoden wurden umfassend optimiert um eine maximal empfindliche Quantifizierung der Analyten zu erhalten. Die ermittelten unteren Bestimmungs-grenzen (lower limit of quantification, LLOQ) waren ausreichend für die Quantifizierung der Studienproben. Die LLOQs reichten in humanen Blutzellen von 113 pg/mL für Taxifolin bis 48 ng/mL für Kaffeesäure und in der menschlichen Gelenkflüssigkeit von 80 pg/mL für Taxifolin bis hin zu 3 ng/mL für Kaffeesäure. In humanem Serum bewegten sich die Bestimmungsgrenzen sogar bis zu 35 pg/mL für Taxifolin und bis zu 8 ng/mL für Kaffeesäure. Alle analytischen Methoden wurden einer „Full Validation“ nach den gegenwärtigen EMA- und FDA-Richtlinien unterzogen und erfüllten deren Kriterien, was eine hervorragende Leistungsfähigkeit und Zuverlässigkeit der entwickelten und optimierten Methoden bewies. Serum-, Blutzell- und Gelenkflüssigkeitsproben der Arthrose-Patienten wurden einer enzymatischen Inkubation mit ß-Glucuronidase/Sulfatase unterworfen, um die konjugierten (Phase-II-Metabolismus) Verbindungen vor der eigentlichen Probenvorbereitung zu hydrolysieren. Die Serumproben der Studienteilnehmer wurden zusätzlich noch ohne enzymatische Hydrolyse aufgearbeitet, um den individuellen Grad der Analytkonjugation mit Sulfat und Glucuronsäure zu bestimmen. Alle ermittelten Konzentrationen in den Patientenproben lagen im unteren ng/mL-Bereich. Bemerkenswerterweise wurden die höchsten Gesamtkonzentrationen der Polyphenole nicht in Serum, in welchem der Grad der Analytkonjugation mit Sulfat und Glucuronsäure von 54,29 ± 26,77 % für Catechin bis 98,34 ± 4,40 % für M1 reichte, bestimmt. Die beiden Flavonoide Catechin und Taxifolin verteilten sich vor allem in die Blutzellen, während der Metabolit M1, Ferulasäure und Kaffeesäure in erster Linie in Gelenkflüssigkeit zu finden war. Die Konzentration von M1 in den Blutzellen war gering, was durch den zuvor beobachteten umfangreichen und schnellen intrazellulären in vitro Metabolismus erklärt werden konnte. Durch den in vivo Nachweis der offenkettigen Esterform von M1 (M1-COOH) als auch des Glutathion-Konjugats von M1 (M1-GSH) in Proben von Patienten, welche zuvor Pycnogenol® eingenommen hatten, konnte dies bestätigt werden. Dies deutet darauf hin, dass M1 in vivo nicht in der ursprünglichen Form akkumuliert und möglicherweise eine Vielzahl von biologisch aktiven Metaboliten vorliegt, was für die klinische Wirkung von Pycnogenol® eine wichtige Rolle spielen könnte. Obwohl die Studienteilnehmer darum gebeten wurden in den letzten zwei Tagen vor den Blut-entnahmen weitestgehend auf polyphenolreiche Nahrungsmittel und Getränke zu verzichten, war die Umsetzung für die meisten der Patienten doch sehr schwierig. Daher wurden keine statistisch signifikanten Unterschiede zwischen der Interventions- und der Kontrollgruppe in den mittleren Polyphenolkonzentrationen im Serum, Blutzellen und in der Gelenkflüssigkeit beobachtet. Dennoch war es möglich, einige Markerverbindungen für eine Aufnahme von Pycnogenol® unter Alltagsbedingungen mit gelegentlichem oder regelmäßigem Konsum von polyphenolreichen Lebensmitteln und Getränken zu identifizieren. So wurde Ferulasäure nur in Serumproben nach der Einnahme von Pycnogenol® gefunden, was bestätigt, dass Ferulasäure ein geeigneter Marker für die Einnahme des Kiefernrindenextraktes ist. Taxifolin wurde ausschließlich im Serum und Gelenkflüssigkeit der Interventionsgruppe nachgewiesen, was auf einen weiteren Marker der Pycnogenol®-Einnahme hindeutet. Taxifolin, Ferulasäure und Kaffeesäure wurden nur in der Interventionsgruppe in den beiden Matrizes Serum und Gelenkflüssigkeit nachgewiesen. Darüber hinaus wurde das gleichzeitige Vorhandensein des Metaboliten M1, Taxifolin und Ferulasäure in allen Körperflüssigkeiten (Serum, Blutzellen und Gelenkflüssigkeit) nur nach einer Aufnahme von Pycnogenol® festgestellt. Somit konnten tiefere Einblicke in die Verteilung von bioaktiven Inhaltsstoffen und Metaboliten von Pycnogenol® in Serum, Blutzellen und Gelenkflüssigkeit nach oraler Verabreichung an Patienten mit schwerer Arthrose gewonnen werden. Die vorliegende Studie liefert den ersten Beweis dafür, dass sich Polyphenole durchaus in die Gelenkflüssigkeit von Patienten mit Osteoarthritis verteilen, in welcher diese möglicherweise zu klinischen Effekten beitragen können. KW - Pycnogenol KW - Pharmakokinetik KW - Metabolismus KW - Arthrose KW - LC-MS/MS KW - Kiefernrindenextrakt KW - Matrix Effekte KW - biologische Körperflüssigkeiten KW - Probenaufarbeitung KW - Osteoarthritis Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-128085 ER - TY - THES A1 - Bellwon, Patricia T1 - Kinetic assessment by in vitro approaches - A contribution to reduce animals in toxicity testing T1 - Evaluierung der Kinetik anhand von in vitro Systemen - Ein Beitrag um die Anzahl von Tierversuchen zur Toxizitätsprüfung zu reduzieren N2 - The adoption of directives and regulations by the EU requires the development of alternative testing strategies as opposed to animal testing for risk assessment of xenobiotics. Additionally, high attrition rates of drugs late in the discovery phase demand improvement of current test batteries applied in the preclinical phase within the pharmaceutical area. These issues were taken up by the EU founded 7th Framework Program “Predict-IV”; with the overall goal to improve the predictability of safety of an investigational product, after repeated exposure, by integration of “omics” technologies applied on well established in vitro approaches. Three major target organs for drug-induced toxicity were in focus: liver, kidney and central nervous system. To relate obtained dynamic data with the in vivo situation, kinetics of the test compounds have to be evaluated and extrapolated by physiologically based pharmacokinetic modeling. This thesis assessed in vitro kinetics of the selected test compounds (cyclosporine A, adefovir dipivoxil and cisplatinum) regarding their reliability and relevance to respective in vivo pharmacokinetics. Cells were exposed daily or every other day to the test compounds at two concentration levels (toxic and non-toxic) for up to 14 days. Concentrations of the test compounds or their major biotransformation products were determined by LC-MS/MS or ICP-MS in vehicle, media, cells and plastic adsorption samples generated at five different time-points on the first and the last treatment day. Cyclosporine A bioaccumulation was evident in primary rat hepatocytes (PRH) at the high concentration, while efficient biotransformation mediated by CYP3A4 and CYP3A5 was determined in primary human hepatocytes (PHH) and HepaRG cells. The lower biotransformation in PRH is in accordance with observation made in vivo with the rat being a poor model for CYP3A biotransformation. Further, inter-assay variability was noticed in PHH caused by biological variability in CYP3A4 and CYP3A5 activity in human donors. The inter-assay variability observed for PRH and HepaRG cells was a result of differences between vehicles regarding their cyclosporine A content. Cyclosporine A biotransformation was more prominent in HepaRG cells due to stable and high CYP3A4 and CYP3A5 activity. In addition, in vitro clearances were calculated and scaled to in vivo. All scaled in vitro clearances were overestimated (PRH: 10-fold, PHH: 2-fold, HepaRG cells: 2-fold). These results should be proven by physiologically-based pharmacokinetic modeling and additional experiments, in order to verify that these overestimations are constant for each system and subsequently can be diminished by implementation of further scaling factors. Brain cell cultures, primary neuronal culture of mouse cortex cells and primary aggregating rat brain cells, revealed fast achieved steady state levels of cyclosporine A. This indicates a chemical distribution of cyclosporine A between the aqueous and organic phases and only minor involvement of biological processes such as active transport and biotransformation. Hence, cyclosporine A uptake into cells is presumably transport mediated, supported by findings of transporter experiments performed on a parallel artificial membrane and Caco-2 cells. Plastic adsorption of cyclosporine A was significant, but different for each model, and should be considered by physiologically based pharmacokinetic modeling. Kinetics of adefovir dipivoxil highlights the limits of in vitro approaches. Active transporters are required for adefovir uptake, but were not functional in RPTECT/TERT1. Therefore, adefovir uptake was limited to passive diffusion of adefovir dipivoxil, which itself degrades time-dependently under culture conditions. Cisplatinum kinetics, studied in RPTEC/TERT1 cells, indicated intracellular enrichment of platinum, while significant bioaccumulation was not noted. This could be due to cisplatinum not reaching steady state levels within 14 days repeated exposure. As shown in vivo, active transport occurred from the basolateral to apical side, but with lower velocity. Hence, obtained data need to be modeled to estimate cellular processes, which can be scaled and compared to in vivo. Repeated daily exposure to two different drug concentrations makes it possible to account for bioaccumulation at toxic concentrations or biotransformation/extrusion at non-toxic concentrations. Potential errors leading to misinterpretation of data were reduced by analyses of the vehicles as the applied drug concentrations do not necessarily correspond to the nominal concentrations. Finally, analyses of separate compartments (medium, cells, plastic) give insights into a compound’s distribution, reduce misprediction of cellular processes, e.g. biotransformation, and help to interpret kinetic data. On the other hand, the limits of in vitro approaches have also been pointed out. For correct extrapolation to in vivo, it is essential that the studied in vitro system exhibits the functionality of proteins, which play a key role in the specific drug induced toxicity. Considering the benefits and limitations, it is worth to validate this long-term treatment experimental set-up and expand it on co-culture systems and on organs-on-chips with regard to alternative toxicity testing strategies for repeated dose toxicity studies. N2 - Die Erlassung von Richtlinien und Verordnungen durch die EU führte zu der Entwicklung von alternativen Testmethoden als Ersatz von Tierversuchen zur Risikobewertung von Xenobiotika. Des Weiteren weisen hohe Ausfallraten von Arzneimitteln in der späten Entwicklungsphase auf die Notwendigkeit hin, die bisher verwendeten Testmethoden der präklinischen Phase zu verbessern. Diese Punkte wurden in dem im siebten Rahmenprogramm der EU finanzierten Projekt „Predict-IV“ aufgegriffen. Ziel des Projektes war es, die Vorhersage der Arzneimittelsicherheit durch integrierte „omics“-Technologien, angewendet an etablierten in vitro Ansätzen, zu verbessern. Dabei standen drei Zielorgane bzgl. Arzneimittel-induzierter Organtoxizität im Mittelpunkt: Leber, Niere und zentrales Nervensystem, die jeweils durch Zelllinien oder primäre Zellen vertreten waren. Um die in vitro generierten Dynamik-Daten mit der in vivo Situation in Korrelation zu bringen, muss die Kinetik der Testsubstanz berücksichtigt und die Ergebnisse mit Hilfe von physiologisch-basierter pharmakokinetischer Modellierung extrapoliert werden. Ziel der vorliegenden Arbeit war es, Kinetik-Daten der gewählten Testsubstanzen (Cyclosporin A, Adefovir dipivoxil und Cisplatin) in vitro zu erheben und bzgl. ihrer Zuverlässigkeit sowie ihrer Relevanz verglichen mit in vivo Daten zu beurteilen. Hierfür wurden kultivierte Zellen täglich bzw. jeden zweiten Tag für zwei Wochen mit zwei verschiedenen Konzentrationen (toxisch und nicht toxisch) des Arzneimittels behandelt. Der Gehalt des applizierten Arzneimittels oder die Hauptmetaboliten wurden mittels LC MS/MS oder ICP-MS in Vehikel, Medium und Zellen sowie die vom Plastik adsorbierte Menge in Proben bestimmt, die am ersten und letzten Behandlungstag zu fünf unterschiedlichen Zeitpunkten gewonnen wurden. Eine eindeutige Bioakkumulation von Cyclosporin A wurde in primären Rattenhepatozyten nach Behandlung mit der hohen Konzentration festgestellt. Eine effiziente CYP3A4- und CYP3A5-vermittelte Biotransformation von Cyclosporin A wurde für primäre humane Hepatozyten sowie HepaRG Zellen beobachtet. Diese Ergebnisse stimmten mit der in vivo Situation überein. Ratten sind aufgrund ihrer geringen CYP3A Aktivität schlechte Tiermodelle für CYP3A-Biotransformationsstudien. Des Weiteren wurden Interassay-Schwankungen bei primären human Hepatozyten bemerkt, die auf die biologische Variabilität der CYP3A4- sowie CYP3A5-Aktivität zwischen den menschlichen Spendern zurückzuführen sind. Rattenhepatozyten und HepaRG Zellen hingegen wiesen Interassay-Schwankungen auf, die durch unterschiedliche Cyclosporin A Behandlungskonzentrationen zwischen den Replikaten verursacht wurden. Die Cyclosporin A Biotransformation war in HepaRG Zellen am stärksten ausgeprägt, was durch stabile und wesentlich höhere CYP3A4- und CYP3A5-Aktivität in HepaRG Zellen zu erklären ist. Zusätzlich wurden die in vitro Clearance-Werte bestimmt und auf in vivo Clearance-Werte extrapoliert. Alle extrapolierten Werte waren zu hoch geschätzt (primäre Rattenhepatozyten: 10fach, primäre human Hepatpzyten: 2fach, HepaRG Zellen: 2fach). Diese Ergebnisse sollten mittels physiologisch-basierter pharmakokinetischer Modellierung sowie durch weitere Experimente überprüft werden, um zu ermitteln, ob diese hohen Schätzungen für jedes System konstant sind und somit durch die Einführung von weiteren Skalierungsfaktoren verringert werden können. Kultivierte Gehirnzellen, primäre Nervenzellkulturen der Kortex von Mäusen und primäre Hirnzellaggregate der Ratte, zeigten schnell erreichte Cyclosporin A Gleichgewichtskonzentrationen. Diese Ergebnisse deuteten auf eine Verteilung von Cyclosporin A zwischen der wässrigen und organischen Phase hin, wobei biologische Prozesse nur eine untergeordnete Rolle spielen. Daher scheint die intrazelluläre Cyclosporin A Aufnahme Transporter-vermittelt zu sein. Ergebnisse der Transporter Experimente, die an einer künstlichen Membran und Caco-2 Zellen durchgeführt wurden, unterstützten diese Hypothese. Messungen der Plastikbindung von Cyclosporin A zeigten signifikante, aber für jedes Zellsystem unterschiedliche, Adsorptionsraten, die mittels physiologisch-basierter pharmakokinetischer Modellierung berücksichtigt werden sollten. Die Kinetik von Adefovir dipivoxil machte auf die Nachteile von in vitro Versuchen aufmerksam. Für die intrazelluläre Aufnahme von Adefovir sind aktive Transportproteine nötig, die jedoch in der Nierenzelllinie RPTEC/TERT1 nicht funktionell vorhanden sind. Daher war die Aufnahme von Adefovir auf die passive Diffusion von Adefovir dipivoxil beschränkt, das aber auch zeitabhängig unter den experimentellen Konditionen zerfiel. Die an RPTEC/TERT1 Zellen untersuchte Kinetik von Cisplatin deutete auf eine intrazelluläre Platin-Anreicherung hin, die jedoch nicht in einer signifikanten Bioakkumulation resultierte. Möglicherweise sind innerhalb von 14 Tagen die Gleichgewichtskonzentrationen von Cisplatin noch nicht erreicht. Die Kinetikprofile von Cisplatin in Medium ließen einen aktiven, von der basolateralen zur apikalen Seite gerichteten Cisplatin Transport erkennen, wie schon in vivo beschrieben, wobei die Geschwindigkeit dieser Transportprozesse in vitro langsamer zu sein scheint als in der intakte Niere. Daher müssen die generierten Daten zur Schätzung von zellulären Prozessen modelliert werden, um durch anschließende Extrapolation mit in vivo Daten verglichen werden zu können. Abschließend bleibt zu sagen, dass das experimentelle Design vorteilhaft war. Wiederholte tägliche Administration von zwei unterschiedlichen Konzentrationen eines Medikaments ermöglichte die Erfassung von Bioakkumulation bei toxischen Konzentrationen sowie Biotransformation/Export bei nicht-toxischen Konzentrationen. Potenzielle Fehler, die zu einer Fehlinterpretation führen könnten, wurden durch die exakte Bestimmung der tatsächlich applizierten Arzneimittelmenge reduziert, da nicht immer die applizierte Konzentration mit der Nominalkonzentration übereinstimmt. Darüber hinaus erwies es sich als Vorteil, die Arzneimittelkonzentrationen in den einzelnen Kompartimenten (Medium, Zellen und Plastik) zu bestimmen. Somit konnten zum einen Erkenntnisse über die Verteilung der Substanz gewonnen werden und zum anderen Fehleinschätzungen von zellulären Prozessen, z.B. Biotransformation, verhindert werden, was letzten Endes bei die Interpretation von Kinetik-Daten behilflich ist. Jedoch, wurden auch die Grenzen von in vitro Ansätzen deutlich. Für eine korrekte Extrapolation ist es unverzichtbar, dass die untersuchten in vitro Systeme funktionierende Proteine aufweisen, die bei der untersuchten Arzneimittel-induzierten Toxizität eine Schlüsselrolle übernehmen. Abschließend kann festgehalten werden, dass es, unter Berücksichtigung der Vor- und Nachteile, von Nutzen sein kann diesen Versuchsansatz der Langzeitbehandlung zu validieren und darüber hinaus auf Co Kultursysteme sowie Organ-Chips anzuwenden hinsichtlich der Entwicklung von Alternativmethoden für Toxizitätsstudien bei wiederholter Gabe. KW - cell culture KW - pharmacokinetics KW - repeated dose KW - in vitro KW - toxicity testing KW - Zellkultur KW - In vitro KW - Pharmakokinetik KW - Toxizitätstest Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122693 ER - TY - THES A1 - Vollmers, Frederic T1 - Charakterisierung der pulmonalen Pharmakokinetik von Salmeterol und Insulin-like Growth Factor-1 T1 - Characterisation of the pulmonary pharmacokinetics of salmeterol and insulin-like growth factor-1 N2 - Für inhalativ applizierte Arzneimittel spielt das Ausmaß der pulmonalen Absorption eine entscheidende Rolle. Für Substanzen, die lokal in der Lunge wirken sollen, sind für eine gute Wirksamkeit hohe lokale Wirkstoffkonzentrationen, und für eine geringe Nebenwirkungsrate niedrige systemische Plasmaspiegel wichtig. Sollen allerdings Substanzen das Lungenepithel überwinden und im systemischen Kreislauf wirken, ist eine hohe systemische Verfügbarkeit für eine gute Wirkung gewünscht. Das Ziel dieser Studie war es mit in vitro und ex vivo Methoden das Absorptions- und Permeationsverhalten von pulmonal applizierten Substanzen zu studieren. Der Transportmechanismus über das Lungenepithel des langwirksamen ß2-Agonisten Salmeterol wurde mithilfe des humanen ex vivo Lungenperfusionsmodells untersucht. Die Anwendung von L-Carnitin als Hemmstoff von organischen Kationen/Carnitin Transportern (OCT/N) bewirkte eine Verringerung der pulmonalen Absorption von Salmeterol von ca. 90 %, was auf eine Beteiligung von Transportern, möglicherweise des OCTN2 oder OTCN1, für den Transport von Salmeterol über das Lungenepithel hindeutete. Es wurde somit zum ersten Mal erfolgreich gezeigt, dass Salmeterol wahrscheinlich als Substrat der Transportproteine fungiert und der Übertritt über das Lungenepithel von organischen Kationen/Carnitin Transportern abhängig ist. Bisher wurde eine Interaktion von Salmeterol mit den OCT/N nur in in vitro Versuchen studiert und Salmeterol wurde nur als Hemmstoff und nicht als Substrat untersucht. Die Beteiligung eines Transporters für die pulmonale Absorption von Salmeterol steht außerdem im Einklang mit Untersuchungen über weitere ß2-Agonisten wie das kurzwirksame Salbutamol und das langwirksame GW597901. Somit scheinen sowohl lipophile als auch hydrophile ß2-Agonisten Substrate für die OCT/N zu sein. Die Fähigkeit von IGF-1, nach pulmonaler Applikation in den systemischen Kreislauf zu gelangen, wurde in der vorliegenden Studie mit Hilfe des Lungenperfusionsmodells untersucht. Das IGF-1 wurde gebunden an Trehalose oder an Fibroin als Pulver verabreicht. Die Trehalose sollte eine schnelle Abgabe des IGF 1 bewirken, und das Fibroin sollte zum einen ein Trägermaterial mit schützenden Eigenschaften für das IGF 1 darstellen, und zum anderen sollte eine mögliche verzögerte Freisetzung von IGF-1 aus Fibroin in einem ex vivo Modell untersucht werden, die in vorausgegangenen in vitro Versuchen über 3 h lang vorhanden war. Das Peptid wurde nach der Applikation sowohl der Trehalosepartikel als auch der Fibroinpartikel pulmonal absorbiert und folgte einer linearen Verteilungskinetik. Dieses lineare Absorptionsverhalten des IGF-1 war vergleichbar mit der Kinetik von inhalativem Insulin, die in in vivo Studien beobachtet wurde. Somit konnte gezeigt werden, dass das IGF-1 nach pulmonaler Applikation systemisch verfügbar sein könnte und eine vergleichbare pulmonale Pharmakokinetik wie das strukturell ähnliche Insulin besitzt. Außerdem unterschied sich das Absorptionsverhalten von IGF-1, gebunden an Trehalose, nicht signifikant von dem von IGF-1/Fibroin, was im Gegensatz zu in vitro Untersuchungen stand, in denen das IGF-1 verzögert aus Fibroin freigesetzt wurde. Somit wirkte sich die kontrollierte Abgabe in vitro nicht auf die Verteilungskinetik ex vivo aus. Daraus ergibt sich, dass sowohl Trehalose als auch Fibroin als Trägermaterial für IGF-1 zur pulmonalen Applikation geeignet wären, und dass IGF-1, gebunden an Fibroin eine Formulierung wäre, die zum einen das IGF 1 schützen kann und die zum anderen eine gleiche pulmonale Kinetik wie IGF 1, gebunden an schnell auflösende Trägersubstanzen, besitzt. Außerdem wurde dadurch die Wichtigkeit betont, die Pharmakokinetik von pulmonal verabreichten Substanzen am intakten Organ mit erhaltener Komplexität und Funktionalität zu untersuchen, und dass das Lungenperfusionsmodell hierfür eine geeignete Methode darstellt. Darüber hinaus wurde belegt, dass mithilfe des Lungenperfusionsmodells erfolgreich pharmakokinetische Daten für nieder- und höhermolekulare Substanzen gesammelt werden können, die als Aerosol oder als Pulver appliziert werden. Auch in den in der vorliegenden Arbeit durchgeführten in vitro Permeationsversuchen, die mit der Bronchialepithelzelllinie Calu-3 durchgeführt wurden, zeigte IGF-1 vergleichbare lineare Permeationseigenschaften wie das Insulin, mit einem apparenten Permeationskoeffizienten von 1,49 * 10-8 cm/sec für IGF-1 und 2,11 * 10-8 cm/sec für Insulin. Das IGF 1 schien durch die Calu-3 Zellen sowohl parazellulär als auch transzytotisch zu permeieren, wie es für Makromoleküle generell vermutet wird. Durch die Verwendung von Hemmstoffen der Transzytose bzw. bestimmter endozytotischer Mechanismen in den Permeationsstudien konnte gezeigt werden, dass, wie bereits genannt, der Transport durch die Zellen eine wichtige Rolle für den Übertritt von IGF-1 über Calu-3 Zellmonolayer spielte. Die Studien ergaben außerdem, dass die zelluläre Aufnahme des IGF-1 unabhängig von Clathrin und abhängig von Dynamin war. Der Einsatz einer humanen bronchioalveolären Lavage in den Permeationsversuchen bewirkte zum einen eine Erhöhung des Transportes von IGF 1 durch die Calu-3 Zellen, und zum anderen war die zelluläre Aufnahme in diesem Fall unabhängig von Dynamin und unterschied sich somit von den vorherigen Untersuchungen, in denen keine Lavage eingesetzt wurde. Das bedeutet, dass Faktoren in einer bronchioalveolaren Lavage enthalten waren, die sowohl das Ausmaß der Permeation als auch den Mechanismus der zellulären Aufnahme von IGF-1 in Calu-3 Zellen beeinflussten. Zusammenfassend konnten in der vorliegenden Arbeit erfolgreich weitere Hinweise für die Beteiligung von Transportern an der pulmonalen Absorption von ß2-Agonisten mithilfe des ex vivo Lungenperfusionsmodells gefunden werden, was somit eine wertvolle Ergänzung zu bisher vorhanden in vitro Studien darstellt. Daneben wurde zum ersten Mal gezeigt, dass das IGF-1 nach Applikation in die Lunge pulmonal absorbiert werden könnte. Das belegt den Nutzen der Lunge als Eintrittsort in den systemischen Kreislauf, was vor allem für peptidische Arzneistoffe von Bedeutung ist. N2 - The extent of the pulmonary absorption plays an important role for drugs applied via inhalation. For substances meant to exhibit local effects within the lung, high local concentrations are crucial for maximum efficacy, and for a low rate of systemic adverse effects low plasma levels are advantageous. But if substances are meant to pass the lung epithelia and act in the systemic circulation a high systemic availability is requested for good efficacy. The aim of this study was to investigate the absorption and permeation behavior of pulmonarily applied substances using in vitro and ex vivo methods. The transport mechanism of the long acting ß2-agonist salmeterol through lung epithelia was studied with the help of an ex vivo lung perfusion model. The organic cation/carnitine transporter inhibitor l-carnitine caused a decrease of the pulmonary absorption of salmeterol of about 90 %, indicating an involvement of transporters, possibly OCTN2 or OCTN1, for the uptake of salmeterol through the lung epithelia. For the first time it was successfully shown that salmeterol acts as a substrate for transport proteins and that its transport through the lung epithelia is dependent on the organic cation/carnitine transporters (OCT/N). So far the interaction of salmeterol with the OCT/N had been studied only in vitro and salmeterol had been solely described as an inhibitor and not as a substrate. Furthermore the results on the pulmonary absorption of salmeterol are in accordance with studies about other ß2-agonists like the short acting salbutamol and the long acting GW597901. Apparently, lipophilic and hydrophilic ß2-agonists are substrates for the OCT/N. The pulmonary absorption of IGF-1 was investigated in this study using the lung perfusion model. IGF-1 was applied bound to trehalose or fibroin. The trehalose was used for a fast release of IGF-1. The fibroin as a carrier was meant to provide a protection of IGF-1, and a possible sustained release that was shown in previous in vitro assays over about 3 h, was to be studied in an ex vivo model. The peptide was absorbed pulmonarily after application of the treahlose and fibroin microparticles and exhibited linear distribution kinetics. This linear absorption behavior of IGF-1 was comparable to the kinetics of inhaled insulin observed in in vivo studies. Therefore it was shown that IGF-1 might be systemically available after pulmonary application and that IGF 1 displays comparable pulmonary pharmacokinetics to the structurally similar insulin. Additionally, the absorption behavoir of IGF-1 bound to trehalose was not significantly different from IGF 1/fibroin, which was in contrast to in vitro studies showing a sustained release of IGF-1 bound to fibroin. Thus, the in vitro controlled release was not mirrored in the distribution kinetics ex vivo. This suggests that both trehalose and fibroin are suitable carriers for pulmonary application of IGF-1 and that IGF-1 bound to fibroin provides a formulation that is able to protect IGF-1 and possesses comparable pulmonary kinetics to IGF-1 bound to fast dissolving carriers. Additionally these data demonstrated the importance to study the pharmacokinetics of pulmonarily applied substances by using the intact organ with conserved complexity and functionality, and that the human isolated perfused lung is a suitable model. Furthermore it was proven, that pharmakokinetic data of low and high molecular compounds applied as aerosol or powder, can be successfully obtained using the lung perfusion model. The in vitro permeation experiments of the present study employing Calu-3 bronchial epithelial cells also showed a linear absorption behavior of IGF-1 comparable to that of insulin, with an apparent permeability coefficient of 1,49 * 10-8 cm/sec for IGF-1 and 2,11 * 10-8 cm/sec for insulin. IGF-1 apparently passed the Calu-3 cells via a paracellular and transcytotical mechanisms, which are thought to be the major routes of macromolecules. The use of inhibitors of transcytosis and certain endocytotic pathways showed that the transport through the cells was important for the passage of IGF-1 through Calu-3 cell monolayers, as mentioned before. Furthermore the studies revealed that the cellular uptake of IGF-1 was independent of clathrin and dependent on dynamin. Human broncheoalveolar lavage caused an increase of the IGF-1 transport through the Calu-3 cells and in contrast to former investigations without a lavage the cellular uptake was independent of dynamin in this case. That implies that the broncheoalveolar lavage contained factors influencing both the extent and the mechanism of the cellular IGF-1 uptake into Calu-3 cells. In conclusion, this work employing an ex vivo lung perfusion model provides additional evidence for the involvement of transporters in the pulmonary absorption of ß2-agonists. These data demonstrate a valuable extension of knowledge compared to previous in vitro studies. Furthermore, for the first time it has been shown that IGF 1 might be pulmonarily absorbed after application to the lung. This shows the suitability of the lung as point of entrance into the systemic circulation, which is especially interesting for peptide drugs. KW - Lunge KW - Insulin-like Growth Factor I KW - Salmeterol KW - Pharmakokinetik KW - IGF-1 KW - Lungenperfusion KW - pulmonal Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-118632 ER -