TY - THES A1 - Wolter, Patrick T1 - Characterization of the mitotic localization and function of the novel DREAM target GAS2L3 and Mitotic kinesins are regulated by the DREAM complex, often up-regulated in cancer cells, and are potential targets for anti-cancer therapy T1 - Charakterisierung der mitotischen Lokalisation und Funktion von GAS2L3, eines kürzlich gefundenen Zielgens des DREAM Komplexes und Mitotische Kinesine werden vom DREAM Komplex reguliert, sind in Krebszellen häufig hochreguliert und sind potentielle Zielle für die Krebstherapie N2 - The recently discovered human DREAM complex (for DP, RB-like, E2F and MuvB complex) is a chromatin-associated pocket protein complex involved in cell cycle- dependent gene expression. DREAM consists of five core subunits and forms a complex either with the pocket protein p130 and the transcription factor E2F4 to repress gene expression or with the transcription factors B-MYB and FOXM1 to promote gene expression. Gas2l3 was recently identified by our group as a novel DREAM target gene. Subsequent characterization in human cell lines revealed that GAS2L3 is a microtubule and F-actin cross-linking protein, expressed in G2/M, plays a role in cytokinesis, and is important for chromosomal stability. The aim of the first part of the study was to analyze how expression of GAS2L3 is regulated by DREAM and to provide a better understanding of the function of GAS2L3 in mitosis and cytokinesis. ChIP assays revealed that the repressive and the activating form of DREAM bind to the GAS2L3 promoter. RNA interference (RNAi) mediated GAS2L3 depletion demonstrated the requirement of GAS2L3 for proper cleavage furrow ingression in cytokinesis. Immunofluorescence-based localization studies showed a localization of GAS2L3 at the mitotic spindle in mitosis and at the midbody in cytokinesis. Additional experiments demonstrated that the GAS2L3 GAR domain, a putative microtubule- binding domain, is responsible for GAS2L3 localization to the constriction zones in cytokinesis suggesting a function for GAS2L3 in the abscission process. DREAM is known to promote G2/M gene expression. DREAM target genes include several mitotic kinesins and mitotic microtubule-associated proteins (mitotic MAPs). However, it is not clear to what extent DREAM regulates mitotic kinesins and MAPs, so far. Furthermore, a comprehensive study of mitotic kinesin expression in cancer cell lines is still missing. Therefore, the second major aim of the thesis was to characterize the regulation of mitotic kinesins and MAPs by DREAM, to investigate the expression of mitotic kinesins in cancer cell line panels and to evaluate them as possible anti-cancer targets. ChIP assays together with RNAi mediated DREAM subunit depletion experiments demonstrated that DREAM is a master regulator of mitotic kinesins. Furthermore, expression analyses in a panel of breast and lung cancer cell lines revealed that mitotic kinesins are up-regulated in the majority of cancer cell lines in contrast to non-transformed controls. Finally, an inducible lentiviral-based shRNA system was developed to effectively deplete mitotic kinesins. Depletion of selected mitotic kinesins resulted in cytokinesis failures and strong anti-proliferative effects in several human cancer cell lines. Thus, this system will provide a robust tool for future investigation of mitotic kinesin function in cancer cells. N2 - Der vor kurzem entdeckte humane DREAM Komplex (für DP,RB ähnlich, E2F und MuvB Komplex) ist ein Chromatin bindender Pocket-Protein-Komplex involviert in Zellzyklusphase abhängiger Genregulation. DREAM besteht aus fünf Kernproteinen, die entweder zusammen mit dem Pocket-Protein p130 und dem Transkriptionsfaktor E2F4 die Genexpression reprimieren oder zusammen mit den Transkriptionsfaktoren B-MYB und FOXM1 die Genexpression fördern. GAS2L3 wurde vor kurzem als neues Zielgen des DREAM Komplexes identifiziert. Eine anschließende Charakterisierung in humanen Zelllinien offenbarte, dass GAS2L3 in der Lage ist, das F-Aktin und das Mikrotubuli Cytoskelett zu binden und zu vernetzen. Außerdem ist GAS2L3 speziell während der G2/M Phase exprimiert, spielt eine Rolle in der Cytokinese und ist wichtig für die genomische Integrität. Der erste Teil der Arbeit hatte zum Ziel zu ergründen in welcher Art und Weise DREAM GAS2L3 reguliert. Außerdem sollte das Verständnis der Rolle von GAS2L3 in der Cytokinese erweitert werden. Hierzu durchgeführte ChIP Analysen zeigten, dass sowohl der reprimierende als auch der aktivierende DREAM Komplex an den Promoter von GAS2L3 bindet. Experimente, in denen GAS2L3 durch RNA-Interferenz (RNAi) depletiert wurde, demonstrierten, dass GAS2L3 in der Cytokinese am Prozess der Einschnürung der Teilungsfurche beteiligt ist. Anschließende auf Immunfluoreszenzmikroskopie basierende Lokalisationsstudien zeigten, dass GAS2L3 an der mitotischen Spindel in der Mitose und am Midbody in der Cytokinese lokalisiert ist. Weiterführende Studien zeigten, dass die GAR Domäne von GAS2L3, eine mutmaßliche Mikrotubuli- Bindedomäne, für die Lokalisierung von GAS2L3 in der für die Abszission wichtigen Konstriktionszone verantwortlich ist. Dieses Ergebnis lässt vermuten, dass GAS2L3 eine Rolle in diesem Prozess spielt. Der DREAM Komplex ist bekannt dafür G2/M Genexpression zu fördern. G2/M Zielgene des Komplexes sind unter anderem mehrere mitotische Kinesine und mitotische Mikrotubuli-Bindeproteine. Bisher ist die Art und Weise und das Ausmaß der Regulierung dieser Proteingruppen durch DREAM aber nur ungenügend untersucht worden. Des Weiteren fehlt bisher eine umfassende Charakterisierung der Expression von mitotischen Kinesinen in Krebszellen. Deswegen befasste sich der zweite Teil der Arbeit mit der Charakterisierung der Regulation von mitotischen Kinesinen und Mikrotubuli-Bindeproteinen durch DREAM, untersuchte die Expression dieser beiden Proteingruppen in Krebszelllinien und evaluierte diese anschließend als potentielle Ziele für die Krebstherapie. Eine Kombination aus ChIP Analysen und RNAi Experimenten zeigte, dass DREAM eine zentrale Rolle in der Regulierung von mitotischen Kinesinen spielt. Expressions- analysen deckten auf, dass mitotische Kinesine in der Mehrheit der Krebszelllinien hochreguliert sind im Gegensatz zu den nicht entarteten Kontrollzelllinien. Schließlich wurde ein auf Lentiviren basierendes induzierbares shRNA System etabliert, welches mitotische Kinesine effektiv herunterregulieren konnte. Depletion ausgewählter mitotischer Kinesine führte zu Fehlern in der Cytokinese und hatte starke Auswirkungen auf das Wachstumsverhalten von mehreren Krebszelllinien. Aufgrund dieser Erkenntnisse wird das lentivirale System eine solide Ausgangsbasis für zukünftige Untersuchungen von mitotischen Kinesinen in Krebszellen bilden. KW - Zellzyklus KW - GAS2L3 KW - B-MYB KW - DREAM KW - cytokinesis KW - mitosis KW - kinesin KW - cancer KW - FOXM1 KW - regulation KW - Zellteilung KW - Regulation KW - Krebs KW - Biologie / Zellbiologie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122531 ER - TY - THES A1 - Friedrich, Alexandra T1 - Beeinflussung des Na+-D-Glukose-Kotransporters SGLT1 und der Na+-Nukleosidtransporter CNT durch Peptidmotive des Regulatorproteins RS1 im Darm T1 - Effects of RS1-derived peptides on Na+-D-glucose cotransporter SGLT1 and Na+- nucleoside cotransporters CNTs in small intestine N2 - Der Natrium-D-Glukose Kotransporter 1 (SGLT1) spielt eine wichtige Rolle bei der Aufnahme von Glukose aus dem Darmlumen in die Enterozyten des Darms. Anhand von Untersuchungen an Xenopus laevis-Oozyten konnte in unserem Labor das Protein RS1 als posttranslationales Regulatorprotein für SGLT1 und diverse andere Transporter ermittelt werden. Es wurde eine regulatorische Domäne aus RS1 mit vielen potentiellen Phosphorylierungsstellen isoliert (RS1-Reg) und gezeigt dass RS1-Reg die Abschnürung von Transporter enthaltenen Vesikeln vom Transgolgi-Netzwerk hemmt. Neben SGLT1 reguliert RS1 auch die konzentrierenden Nukleosidtransporter (CNTs) am TGN. Die Regulation der Transporter ist vom Phosphorylierungszustand von RS1-Reg abhängig. So wurde durch Versuche an Oozyten von Xenopus laevis und Injektion von RS1-Reg Mutanten gezeigt, dass die Phosphorylierung von RS1-Reg an einigen Stellen zu einer Inhibition von SGLT1 führte, während der Nukleosidtransporter CNT1 durch die dephosphorylierte Mutante herunterreguliert wurden. Neben der phosphorylierungsabhängigen Regulation konnte für SGLT1 auch gezeigt werden, dass die Herunterregulation nur unter Niedrigzucker-Bedingungen erfolgte, nicht jedoch bei hohen Glukosekonzentrationen. Für die CNTs war eine derartige Zuckerabhängigkeit nicht zu beobachten. Im Rahmen der vorliegenden Studie wurde untersucht, ob die Ergebnisse aus den Oozytenmessungen auch in vivo in einem Säugetier gezeigt werden können. Hierzu wurden Mutanten der regulatorischen Domäne (RS1-Reg) des Maus-Proteins, welche den phosphorylierten Zustand simulierten (RS1-Reg (S19E)), oder die Phosphorylierung verhinderten (RS1-Reg (S19A)) eingesetzt. Diese wurden an ein Nanohydrogel gekoppelt, um eine Aufnahme in die Enterozyten im Darm zu gewährleisten. Es wurde in der RS1KO-Mausohne funktionelles RS1 gezeigt, dass auch im in vivo-System eine Herunterregulation von SGLT1 durch mRS1-Reg (S19E), nicht jedoch durch mRS1-Reg (S19A) erfolgte, während die CNTs nur durch mRS1-Reg (S19A) inhibiert wurden. Des Weiteren führte mRS1-Reg (S19A) in der Wildtypmaus bei niedrigen Zuckerkonzentrationen zu einer Stimulation von SGLT1, was für eine Kompetition mit dem endogenen RS1-Proteins spricht. Es konnte indirekt der Beweis erbracht werden, dass über Nanohydrogele längere Proteine in die Zelle gebracht werden können und dort funktionell freigesetzt werden. N2 - The Sodium-D-glucose cotransporter 1 (SGLT1) is important for the uptake of glucose from the intestinal lumen into the enterocytes. In experiments with Xenopus-laevis oocytes, which were performed in our laboratory, we identified protein RS1 as a regulatory protein for SGLT1. A sequence of 80 aminoacids was identified to be the regulatory domain of RS1 (RS1-Reg) and prevents the constriction of transporter-containing vesicles from the transgolgi-network (TGN). Besides SGLT1, RS1 is able to regulate concentrative nucleoside transporters (CNTs) and the organic cation transporter 2 (OCT2). The regulation of the transporters depends on the phosphorylation-state of RS1-Reg. While SGLT1 is inhibited by the phosphorylated form of the regulatory domain, CNTs are regulated by the dephosphorylated form. In addition, the regulation of SGLT1 depends on the glucose concentration of the cells. RS1 only inhibits SGLT1 under low glucose conditions, while the regulation of CNTs is independent of glucose. In the following study we analyzed whether the results of the oocyte measurements could be reproduced in vivo. For this, we used mutants of the mouse regulatory domain (mRS1-Reg). In one mutant, the phosphorylation was mimicked (mRS1-Reg (S19E)), in a second mutant, phosphorylation was prevented (mRS1-Reg (S19A)). The mutants were coupled to nanohydrogels, to enable the uptake into enterocytes. By usage of a mouse-strain without functional RS1 and a wildtype-mouse-strain, I was able to discriminate between direct effects of the mutant and competition of mutants with endogenous RS1. Only mRS1-Reg (S19E) down regulates SGLT1, but not mRS1-Reg (S19A), while CNTs were downregulated by mRS1-Reg (S19A) but not by mRS1-Reg (S19E). In the wildtype-mouse mRS1-Reg (S19A) leads to an increase of SGLT1-activity which could be due to a competition with the endogenous RS1. The fact, that some peptides were able to regulate transporters leads to the conclusion, that longer proteins can be transported into cells by nanohydrogels and that these proteins are released in the cells in a functional active state. KW - Glucosetransport KW - SGLT1 KW - RS1 KW - Regulation KW - Glatter Krallenfrosch KW - Oozyte KW - Glucosetransportproteine KW - Darm Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127394 ER - TY - THES A1 - Spannaus, Ralf T1 - Regulation der foamyviralen Proteaseaktivität T1 - Regulation of the foamy viral Protease Activity N2 - Alle Retroviren prozessieren ihre Pol- und Strukturproteine mit Hilfe der viralen Protease. In dieser Arbeit wurden zentrale Mechanismen der Regulation der foamyviralen Protease untersucht und charakterisiert. Dazu wurde eine chromatographische Virusreinigungsmethode entwickelt und die relative Pol- und Env-Enkapsidierung bestimmt. Foamyviren enthalten weniger Pol als andere Retroviren aber deutlich mehr Env als humane Immunodefizienzviren. Die Pol-Inkorporation könnte durch die limitierte Prozessierung mit nur einer einzigen Schnittstelle in Gag und Pol kompensiert werden. Deshalb wurde untersucht, ob die foamyvirale Protease ein beschränktes Schnittstellenrepertoire aufweist. In Zellkulturen sind die Schnitt-stellenpositionen P2’ und P2 auf die Aminosäurereste Valin und Valin/Asparagin beschränkt. Demnach hat die foamyvirale Protease ein eingeschränkteres Schnittstellenrepertoire als die Protease des humanen Immunodefizienzvirus. Weiterhin wurde hier gezeigt, dass die vollständige reverse Transkription die Prozessierung von Gag voraussetzt und Proteaseaktivität-defiziente oder Gag-Schnittstellen-defiziente Viren keine vollständige cDNA bilden können. Demnach kompensieren Foamyviren die niedrige Proteasekonzentration, indem sie sicherstellen, dass die reverse Transkription erst nach der Gag-Maturation vollendet werden kann. Weiterhin wird bei humanen Immunodefizienzviren durch die Gag-Maturation die essenzielle Mobilität der wenigen Env-Trimere auf der Hüllmembran getriggert. Die erstmals in dieser Arbeit bei Foamyviren quantifizierte Env-Menge ergab, dass Foamyviren 28 mal mehr Env- pro Gag-Molekül als humane Immunodefizienzviren besitzen. Wahrscheinlich dient dieser hohe Env-Gehalt der Kompensation der eingeschränkten Env-Mobilität, die durch die limitierte Gag-Prozessierung an nur einer carboxyterminalen Schnittstelle verursacht wird. Da für die Aktivierung der foamyviralen Protease virale Ribonukleinsäure benötigt wird, wurde untersucht, welche Pol-Domänen für die Aktivierung der Protease benötigt werden. Im Gegensatz zur Integrase, deren Deletion in reduzierter Proteaseaktivität resultierte, war die funktionelle RNaseH-Domäne essenziell für die Gag-Prozessierung. Die Substitution der foamyviralen RNaseH durch RNaseH-Domänen von anderen Retroviren resultierte in genomunabhängiger Proteaseaktivität in Zellen und genomabhängiger Proteaseaktivität in den rekombinanten Viren. Demnach scheint die dimerstabilisierende Funktion der RNaseH durch direkte Protein-Protein-Interaktion oder durch unspezifische RNA-Bindung verursacht zu werden. N2 - Retroviral Pol and structural proteins are processed by the viral protease. Here, central mechanisms of the foamy viral protease regulation were investigated and characterized. For determination of the relative Pol and Env encapsidation a novel chromatographic purification method was developed. In comparison with human immunodeficiency viruses, foamy viruses encapsidate less Pol but significantly more Env. Foamy viruses might compensate these low Pol amount by limiting Gag and Pol processing to a single cleavage site. I sought to investigate, whether a limited cleavage site repertoire of foamy viral protease might be a consequence of this restriction. In cell culture positions P2’ and P2 within the cleavage sites are invariant and restricted to valine and valine/asparagine, supporting the conclusion that foamy viral protease cleavage at more specific sites than its human immunodeficiency viral counterpart. Secondly, I could show that complete foamy viral reverse transcription is dependent on Gag maturation, since viruses deficient in protease activity or with an inactive Gag cleavage site were incapable of producing cDNA beyond the first strong stop. Thus, low protease encapsidation is compensated by a delay of the reverse transcription until sufficient Gag maturation occurred. The human immunodeficiency viral Gag processing triggers the mobility of the few Env trimmers on the viral membrane. This Env clustering was shown to be essential for infectivity. Here, foamy viral Env was quantified and found that foamy viruses incorporate 28 times more Env per Gag molecule than the human immunodeficiency viruses. It seems to be likely that these higher Env amounts are required to compensate for the lack of Env mobility due to the restricted Gag processing at a single site at the carboxyl terminus. The dimerization and activation of the foamy viral protease depends on the binding of viral RNA and protein-protein interactions. Since the protease is active in the Pol and in the PRRT context the Pol domains essential for protease activity were mapped. While deletion of the integrase in context of recombinant viruses resulted in reduced protease activity further deletion of the RNase H domains abolished protease function. Substituting the RNase H domain with the RNase H of other retroviruses could restore protease activity even in the absence of viral RNA in cells , but not in viruses. Thus, the RNase H domains serve as protein-protein interaction domain or might dimerize the PRRT domains by binding to unspecific RNA. KW - Spumaviren KW - Proteasen KW - Regulation KW - Reverse Transkriptase KW - Enzymaktivierung KW - Protease KW - protease KW - Foamyviren KW - foamy viruses KW - Regulation KW - regulation KW - reverse Transkription KW - reverse transcription KW - Proteaseaktivität KW - protease activity Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-113401 ER -