TY - THES A1 - Balk, Anja T1 - Ionic liquids of active pharmaceutical ingredients: A novel platform addressing solubility challenges of poorly water soluble drugs T1 - Ionische Flüssigkeiten von Arzneistoffen: Ein neues Konzept für Löslichkeitsprobleme von schwer wasserlöslichen Wirkstoffen N2 - Starting in the late 1990s ionic liquids (ILs) gained momentum both in academia as well as industry. ILs are defined as organic salts with a melting point below 100 °C. Active pharmaceutical ingredients (APIs) may be transferred into ILs by creating salts with a bulky counterion with a soft electron density. ILs have demonstrated the potential to tune important pharmaceutical features such as the solubility and the dissolution rate, particularly addressing the challenge of poor water soluble drugs (PWSD). Due to the tunability of ILs, modification of physico-chemical properties of APIs may be envisioned without any modifications of the chemical structure. In the first chapter the potential as well as the limitation of ILs are discussed. The chapter commences with an overview of preparation and characterization of API-ILs. Moreover, examples for pharmaceutical parameters are presented which may be affected by IL formation, including the dissolution rate, kinetic solubility or hygroscopicity as well as biopharmaceutical performance and toxicology. The impact of IL formation on those pharmaceutically relevant features is highlighted, resulting in a blueprint for a novel formulation concept to overcome PWSD challenges without the need for structural changes of the API. Within the second chapter the IL concept is detailed for one specific API - counterion combination. A poorly water soluble acidic API against migraine attacks was transformed into an IL in an effort to minimize the time to maximum plasma concentration (tmax) and optimize the overall bioavailability. These studies were conducted in parallel to a prodrug of the API for comparison of the IL strategy versus a strategy involving modification of the API’s structure. A significantly longer duration of API supersaturation and a 700 fold faster dissolution rate of the IL in comparison to the free acid were obtained and the underlying mechanism was elucidated. The transepithelial absorption was determined using Caco-2 cell layers. For the IL about 3 times more substance was transported in comparison to the prodrug when substances were applied as suspensions, despite the higher permeability of the prodrug, as increased solubility of the IL exceeded this effect. Cytotoxicity of the counterion was assessed in hepatic, renal and macrophage cell lines, respectively, and IC50 values were in the upper µM / lower mM range. The outcome of the study suggested the IL approach instrumental for tuning biopharmaceutical properties, without structural changes of the API as required for preparation of prodrugs. Thus the toolbox for formulation strategies of poorly water soluble drugs could be extended by an efficient concept. The third chapter focuses on the effect of different counterions on the physico-chemical properties of an API-IL, in particular to overcome the challenge of poor water solubility. Therefore, the same poorly water soluble acidic API against migraine attacks mentioned above was combined with 36 counterions resulting in ILs and low lattice enthalpy salts (LLES). Depending on the counterions, different dissolution rates, durations of supersaturation and hygroscopicities were obtained and release profiles could be tailored from immediate to sustained release. Besides, in vitro the cytotoxicity of the counterions was assessed in three cell lines. Using molecular descriptors such as the number of hydrophobic atoms, the graph theoretical diameter and the number of positive charges of the counterion, the dissolution rate, supersaturation and hygroscopicity as well as the cytotoxicity of counterions could be adequately modeled, rendering it possible to predict properties of new LLESs. Within the forth chapter different poorly water soluble APIs were combined with the counterion tetrabutylphosphonium (TBP) studying the impact on the pharmaceutical and physical properties of the APIs. TBP-ILs and low lattice enthalpy salts were prepared of the acidic APIs Diclofenac, Ibuprofen, Ketoprofen, Naproxen, Sulfadiazine, Sulfamethoxazole and Tolbutamide. NMR and IR spectroscopy, DSC, XRPD, DVS and dissolution rate measurements, release profiles and saturation concentration measurements were used to characterize the free acids and TBP salts as compared to the corresponding sodium salts. The TBP salts as compared to the free acids displayed lower melting points and glass transition temperatures and up to 1000 times higher dissolution rates. The increase in the dissolution rate directly correlated with the salts’ hygroscopicity, an aspect which is critically discussed in terms of pharmaceutical translation challenges. In summary TBP ILs of solid salts were proved instrumental to approach the challenge of poor water solubility. The outcome profiled tailor-made counterions as a powerful formulation strategy to address poor water solubility, hence bioavailability and ultimately therapeutic potential of challenging APIs. In summary, a plethora of ILs and LLESs were prepared by combination of different acidic APIs and counterions. The IL and LLESs concept was compared to conventional salt and prodrug strategies. By choice of the counterion, biopharmaceutical relevant parameters were deliberately modified and release profiles were tuned ranging from immediate to prolonged release. The impact of distinct structural counterion features controlling the dissolution, supersaturation, hygroscopicity and counterion cytotoxicity were identified, correlations were presented and predictive models were built. ILs and LLESs could be proven to be a powerful concept for the formulation of poorly water soluble acidic APIs. N2 - Seit etwa 1990 haben Ionische Flüssigkeiten (IL) großes Interesse sowohl in der universitären als auch in der industriellen Forschung geweckt. ILs werden als organische Salze definiert, die einen Schmelzpunkt von unter 100 °C aufweisen. Arzneistoffe können in ILs umgewandelt werden, indem man Salze herstellt, mit einem voluminösen Gegenion mit delokalisierter Elektronendichte. ILs ermöglichen es wichtige pharmazeutische Eigenschaften wie Löslichkeit und Auflösungsgeschwindigkeit bewusst zu verändern, und im Besonderen stellen sie eine Möglichkeit dar, die Herausforderung, die schwer wasserlösliche Arzneistoffe mit sich bringen, zu bewältigen. Aufgrund der Variabilität von ILs, wird die Anpassung von physikochemischen Eigenschaften von Wirkstoffen denkbar, ohne die chemische Struktur des Stoffes zu modifizieren. Im ersten Kapitel werden die Potentiale aber auch die Grenzen von ILs dargestellt. Zu Beginn des Kapitels wird eine Übersicht über die Herstellung und Charakterisierung von ILs gegeben. Des Weiteren werden pharmazeutisch relevante Parameter gezeigt, die durch die IL Herstellung beeinflusst werden können, wie beispielsweise die Auflösungsgeschwindigkeit, die kinetische Löslichkeit oder die Hygroskopizität. Daneben können biopharmazeutische Größen und die Toxizität modifiziert werden. Der Einfluss der IL Bildung auf diese pharmazeutisch relevanten Parameter wird zusammengefasst und ein Formulierungskonzept aufgezeigt, um die schlechte Wasserlöslichkeit von Arzneistoffen zu überwinden ohne den Wirkstoff strukturell zu verändern. Im zweiten Kapitel wird das IL Konzept für eine spezifische Wirkstoff-Gegenion Kombination gezeigt. Ein schwer wasserlöslicher Arzneistoff gegen Migräne wird in ein IL umgewandelt, um eine schnellere und bessere Bioverfügbarkeit im Vergleich zu einem Prodrug zu erreichen. Eine signifikant verlängerte Übersättigung des Wirkstoffes und eine 700-fach schnellere Auflösung des ILs im Vergleich zur freien Säure wurden gemessen und der zugrunde liegende Mechanismus aufgeklärt. Die transepitheliale Aufnahme wurde anhand von Caco-2 Zellen untersucht. Vom IL wurde 3mal mehr Substanz transportiert als von dem Prodrug, wenn Suspensionen der Substanzen appliziert wurden und dies trotz der höheren Permeabilität des Prodrugs, da die verbesserte Löslichkeit des ILs hier überwog. Die Zytotoxizität des Gegenions wurde in einer Leber- und einer Nierenzellinie und in Makrophagen getestet und die IC50 Werte lagen im oberen µM- und unteren mM-Bereich. Die Ergebnisse der Untersuchungen legen dar, dass das IL Konzept hilfreich sein kann, um biopharmazeutische Eigenschaften zu variieren, ohne strukturelle Veränderung des Arzneistoffes, wie es für ein Prodrug nötig ist. Entsprechend konnten die Strategien, um schwer wasserlösliche Arzneistoffe zu formulieren, um ein neues und effizientes Konzept ergänzt werden. Der Fokus des dritten Kapitels liegt auf dem Einfluss von verschiedenen Gegenionen auf die physikochemischen Eigenschaften von Arzneistoff-ILs, insbesondere um Probleme aufgrund von schlechter Wasserlöslichkeit zu lösen. Dazu wurde der bereits im zweiten Kapitel genannte, saure und schwer wasserlösliche Arzneistoff gegen Migräne mit 36 Gegenionen kombiniert, wodurch ILs und Salze mit einer geringen Gitterenthalpie (LLES) erhalten wurden. In Abhängigkeit vom Gegenion wurden verschiedene Auflösungsgeschwindigkeiten, Übersättigungsdauern und Hygroskopizitäten erhalten. Durch Verändern des Gegenions konnte sowohl eine sofortige als auch verzögerte Freisetzung des Arzneistoffs erreicht werden. Daneben wurde in vitro die Zytotoxizität in drei Zelllinien bestimmt. Mittels zwei-dimensionaler Deskriptoren, wie der Anzahl der hydrophoben Atomen, dem graphentheoretischen Durchmesser und der Anzahl an positiven Ladungen des Gegenions, konnten die Auflösungsgeschwindigkeit, die Übersättigung und die Hygroskopizität sowie die Zytotoxizität des Gegenions berechnet werden, wodurch es gleichzeitig möglich wird, diese Eigenschaften für neue LLES vorherzusagen. Im vierten Kapitel werden verschiedene schwer wasserlösliche Arzneistoffe mit dem Gegenion Tetrabutylphosphonium (TBP) kombiniert und der Einfluss auf die pharmazeutischen und physikochemischen Eigenschaften des Wirkstoffes untersucht. TBP-ILs und Salze mit niedrigem Schmelzpunkt wurden von den sauren Arzneistoffen Diclofenac, Ibuprofen, Ketoprofen, Naproxen, Sulfadiazin, Sulfamethoxazol und Tolbutamid hergestellt. NMR- und IR-Spektroskopie, DSC, XRPD, DVS und Auflösungsgeschwindigkeitsmessungen wurden verwendet, um die freien Säuren und die TBP-Salze im Vergleich zu den entsprechenden Natrium-Salzen zu untersuchen. Die TBP-Salze zeigten im Vergleich zu den freien Säuren niedrigere Schmelzpunkte und Glasübergangstemperaturen und eine bis zu 1000-fach schnellere Auflösungsgeschwindigkeit. Ein Nachteil der Salze, die eine schneller Auflösungsrate zeigten, war die damit einhergehende erhöhte Hygroskopizität. Zusammenfassend lässt sich sagen, dass die Herstellung von flüssigen und festen TBP-Salzen hilfreich sein kann, um die Wasserlöslichkeit von Arzneistoffen zu verbessern. Die Untersuchungen lassen den Schluss zu, dass durch maßgeschneiderte Gegenionen neue Formulierungsstrategien für schlecht wasserlösliche Arzneistoffe zugänglich werden, wodurch die Bioverfügbarkeit und der therapeutische Nutzen optimiert werden kann. Insgesamt wurde eine Vielzahl von ILs und LLESs durch die Kombination von verschiedenen sauren Arzneistoffen und Gegenionen hergestellt. Das IL- und LLES-Konzept wurde mit der klassischen Salz– und Prodrug-Strategie verglichen. Durch die Wahl des Gegenions konnten biopharmazeutisch Parameter bewusst verändert werden und die Freisetzungsprofile von sofortiger bis hin zu verzögerter Freisetzung gewählt werden. Die strukturellen Merkmale der Gegenionen, die entscheidend für die Auflösungsgeschwindigkeit, die Übersättigung, die Hygroskopizität und die Gegenionen-Zytotoxizität waren, konnten gezeigt werden und Berechnungen dazu wurden präsentiert. Abschließend lässt sich sagen, dass die Herstellung von ILs und LLESs ein wirkungsvolles Konzept ist, um schwer wasserlösliche, saure Arzneistoffe zu formulieren. KW - Arzneimittel KW - Wirkstofffreisetzung KW - Löslichkeit KW - Salz KW - Ionic Liquids KW - Poorly water soluble drugs KW - Active pharmaceutical ingredients KW - Supersaturation Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121925 ER - TY - THES A1 - Werner, Vera T1 - Pharmaceutically relevant protein-protein interactions for controlled drug delivery T1 - Pharmazeutisch relevante Protein-Protein-Wechselwirkung für "Controlled drug delivery" N2 - Protein-protein interactions play a crucial role in the development of drug delivery devices for the increasingly important biologicals, including antibodies, growth factors and cytokines. The understanding thereof might offer opportunities for tailoring carriers or drug proteins specifically for this purpose and thereby allow controlled delivery to a chosen target. The possible applications range from trigger-dependent release to sustained drug delivery and possibly permanently present stimuli, depending on the anticipated mechanism. Silk fibroin (SF) is a biomaterial that is suitable as a carrier for protein drug delivery devices. It combines processability under mild conditions, good biocompatibility and stabilizing effects on incorporated proteins. As SF is naturally produced by spiders and silkworms, the understanding of this process and its major factors might offer a blueprint for formulation scientists, interested in working with this biopolymer. The natural process of silk spinning covers a fascinating versatility of aggregate states, ranging from colloidal solutions through hydrogels to solid systems. The transition among these states is controlled by a carefully orchestrated process in vivo. Major players within the natural process include the control of spatial pH throughout passage of the silk dope, the composition and type of ions, and fluid flow mechanics within the duct, respectively. The function of these input parameters on the spinning process is reviewed before detailing their impact on the design and manufacture of silk based drug delivery systems (DDS). Examples are reported including the control of hydrogel formation during storage or significant parameters controlling precipitation in the presence of appropriate salts, respectively. The review details the use of silk fibroin to develop liquid, semiliquid or solid DDS with a focus on the control of SF crystallization, particle formation, and drug-SF interaction for tailored drug load. Although we were able to show many examples for SF drug delivery applications and there are many publications about the loading of biologics to SF systems, the mechanism of interaction between both in solution was not yet extensively explored. This is why we made this the subject of our work, as it might allow for direct influence on pharmaceutical parameters, like aggregation and drug load. In order to understand the underlying mechanism for the interaction between SF and positively charged model proteins, we used isothermal titration calorimetry for thermodynamic characterization. This was supported by hydrophobicity analysis and by colloidal characterization methods including static light scattering, nanoparticle tracking analysis and zeta potential measurements. We studied the effects of three Hofmeister salts – NaCl (neutral), NaSCN (chaotropic) and Na2SO4 (cosmotropic) – and the pH on the interaction of SF with the model proteins in dependence of the ratio from one to another. The salts impacted the SF structure by stabilizing (cosmotropic) or destabilizing (chaotropic) the SF micelles, resulting in completely abolished (cosmotropic) or strongly enhanced (chaotropic) interaction. These effects were responsible for different levels of loading and coacervation when varying type of salt and its concentration. Additionally, NaCl and NaSCN were able to prolong the stability of aqueous SF solution during storage at 25°C in a preliminary study. Another approach to influence protein-protein interactions was followed by covalent modification. Interleukin-4 (IL-4) is a cytokine driving macrophages to M2 macrophages, which are known to provide anti-inflammatory effects. The possibility to regulate the polarization of macrophages to this state might be attractive for a variety of diseases, like atherosclerosis, in which macrophages are involved. As these cases demand a long-term treatment, this polarization was supposed to be maintained over time and we were planning to achieve this by keeping IL-4 permanently present in an immobilized way. In order to immobilize it, we genetically introduced an alkyne-carrying, artificial amino acid in the IL-4 sequence. This allowed access to a site-specific click reaction (Cu(I)-catalyzed Huisgen azide-alkyne cycloaddition) with an azide partner. This study was able to set the basis for the project by successful expression and purification of the IL-4 analogue and by proving the availability for the click reaction and maintained bioactivity. The other side of this project was the isolation of human monocytes and the polarization and characterization of human macrophages. The challenge here was that the majority of related research was based on murine macrophages which was not applicable to human cells and the successful work was so far limited to establishing the necessary methods. In conclusion, we were able to show two different methods that allow the influence of protein-protein interactions and thereby the possible tailoring of drug loading. Although the results were very promising for both systems, their applicability in the development of drug delivery devices needs to be shown by further studies. N2 - Die Wechselwirkungen zwischen Proteinen spielen eine entscheidende Rolle in der Entwicklung von Freigabesystemen für die immer wichtiger werdenden Protein-Therapeutika, wie Antikörper, Wachstumsfaktoren und Zytokine. Das Verständnis dieser Mechanismen würde die Möglichkeit eröffnen, sowohl die Träger, als auch die zu verabreichenden Proteine so zu verändern und zu steuern, dass sie auf kontrollierte Weise an einem bestimmten Ort freigesetzt werden. Die Anwendungen hierfür reichen von Trigger gesteuerter Freisetzung, über verzögerte Freigabe bis zur permanenten Präsentation von Stimuli, abhängig davon was für die jeweilige Applikation gewünscht ist. Seidenfibroin (SF) ist ein Biomaterial, welches verschiedene positive Eigenschaften für die Anwendung als Trägermaterial in sich vereint, indem es unter sehr milden Bedingungen verarbeitet werden kann, gut biokompatibel ist und stabilisierend auf eingebettete Proteine wirken kann. Da SF in der Natur von Spinnen und Seidenraupen produziert wird, könnte das Verständnis dieses Prozesses, sowie seiner wichtigsten Faktoren eine Vorlage für die Formulierung dieses Biopolymers geben. Der natürliche Prozess des Seidenspinnens vereint eine faszinierende Vielfalt von Aggregatszuständen, die von kolloidalen Lösungen über Hydrogele bis hin zu festen System reichen. Die Übergänge zwischen diesen Zuständen sind in vivo sehr sorgfältig kontrolliert. Die Hauptfaktoren dieses Prozesses sind der pH-Wert während der Passage der Spinnlösung durch die Drüse, sowie die Art und Zusammensetzung der Ionen und die herrschenden Scherkräfte. Die Funktion dieser einzelnen Faktoren auf den Spinnprozess wurde recherchiert und wird beschrieben, bevor ihr Einfluss auf die Entwicklung und Herstellung von seidenbasierten Freigabesystemen untersucht wird. Es werden Beispiele vorgestellt, die die Kontrolle der Hydrogelbildung während der Lagerung untersuchen oder signifikante Parameter für die kontrollierte Präzipitation in Gegenwart bestimmter Salze zeigen. Der Review betrachtet den Einsatz von Seidenfibroin in der Entwicklung von flüssigen, halbfesten oder festen Freigabesystemen und legt besonderen Fokus auf die Kontrolle der SF Kristallisation, Partikelbildung und Interaktion mit dem Arzneistoff für steuerbare Beladung. Obwohl wir viele Beispiele für die Anwendung von SF in Freigabesystemen zeigen konnten und viele Publikationen die Beladung von Proteinen auf SF-Systeme behandeln, wurde der Mechanismus der Interaktion zwischen beiden bisher nicht detailliert untersucht. Es gibt wenige Studien die einige Aspekte abdecken, aber keines beschäftigte sich spezifisch mit dieser Fragestellung. Darum machen wir dies zum Gegenstand unserer Arbeit, da dies einen direkten Einfluss auf pharmazeutische Parameter, wie Aggregation und Beladung, erlauben würde. Um den zugrundeliegenden Mechanismus der Wechselwirkung zwischen SF und einem positiv geladenen Modellprotein zu verstehen, nutzten wir isotherme Titrationskalorimetrie für eine thermodynamische Charakterisierung. Diese wurde durch kolloidale Charakterisierungsmethoden wie Statische Lichtstreuung, nanoparticle tracking analysis und Zeta-potentialmessungen, sowie Hydrophobitätsbestimmungen unterstützt. Wir untersuchten die Effekte von drei verschiedenen Hofmeister Salzen - NaCl (neutral), NaSCN (chaotrop) und Na2SO4 (kosmotrop) – und des pH Wertes auf die Interaktion von SF mit dem Modellprotein in Abhängigkeit vom Verhältnis der beiden zueinander. Die Salze beeinflussten die SF Struktur, indem sie die SF Mizellen entweder stabilisierten (kosmotrop) oder destabilisierten (chaotrop) und dadurch die Interaktion entweder vollständig unterbanden (kosmotrop) oder verstärkten (chaotrop). Diese Effekte waren verantwortlich für verschiedene Level des Loadings und der Koazervation, wenn Salzart und –konzentration variiert wurden. Außerdem waren NaCl und NaSCN in der Lage die Stabilität einer wässrigen SF-Lösung während der Lagerung bei 25°C zu verlängern. Ein andere Ansatz um die Wechselwirkung zwischen Proteinen zu beinflussen wurde mit kovalenter Modifikation verfolgt. Interleukin-4 (IL-4) ist ein Zytokin und kann Makrophagen zu M2 Makrophagen polarisieren, welche dann anti-inflammatorische Wirkungen haben. Die Möglichkeit diese Polarisation zu regulieren wäre für verschiedene Krankheiten, wie Arteriosklerose, bei denen Makrophagen eine Rolle spielen interessant. Da in diesen Fällen eine Langzeitbehandlung von Nöten ist sollte die Polarisation über die Zeit erhalten bleiben. Wir planten dies durch die Immobilisation von IL-4 zu erreichen, die für eine permanente Präsenz sorgen würde. Um IL-4 zu immobilisieren haben wir eine künstliche Aminosäure in die Sequenz eingeführt, die eine Alkingruppe trägt. Diese ermöglicht den Zugang zu einer Kupfer vermittelten, spezifischen Click-Reaktion (Cu(I)-catalyzed Huisgen azide-alkyne cycloaddition) mit einem Azid-Partner. Diese Studie war in der Lage die Basis für dieses Projekt zu erstellen, indem wir eine erfolgreiche Expression und Aufreinigung des IL-4 Analogons leisten konnten und dieses sowohl erhaltene Bioaktivität als auch Verfügbarkeit für die Clickreaktion zeigte. Die andere Seite dieses Projekts bestand aus der Isolation von humanen Monozyten und der Polarisation und Charakterisierung von humanen Makrophagen. Die Herausforderung hierbei lag darin dass die meiste Forschung auf diesem Gebiet an murinen Makrophagen durchgeführt wurde und dies nicht auf humane Zellen übertragbar war, und die erfolgreiche Arbeit bisher, beschränkte sich auf die Etablierung der nötigen Methoden. Zusammenfassend lässt sich sagen, dass wir in der Lage waren zwei verschiedene Methoden zur Beeinflussung der Protein-Protein Wechselwirkungen und damit der Beladung zu zeigen. Obwohl die Ergebnisse für beide Systeme vielversprechend waren muss ihre Anwendbarkeit in der Entwicklung von Freigabesystemen noch durch weitere Studien belegt werden. KW - Protein-Protein-Wechselwirkung KW - Makrophage KW - Seide KW - silk fibroin KW - drug delivery KW - click chemistry KW - interleukin-4 KW - thermodynamics KW - Wirkstofffreisetzung KW - Interleukin 4 Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117409 ER -