TY - JOUR A1 - Wester, Hans Jürgen A1 - Keller, Ulrich A1 - Schottelius, Margret A1 - Beer, Ambros A1 - Philipp-Abbrederis, Kathrin A1 - Hoffmann, Frauke A1 - Šimeček, Jakub A1 - Gerngross, Carlos A1 - Lassmann, Michael A1 - Herrmann, Ken A1 - Pellegata, Natalia A1 - Rudelius, Martina A1 - Kessler, Horst A1 - Schwaiger, Markus T1 - Disclosing the CXCR4 expression in lymphoproliferative diseases by targeted molecular imaging JF - Theranostics N2 - Chemokine ligand-receptor interactions play a pivotal role in cell attraction and cellular trafficking, both in normal tissue homeostasis and in disease. In cancer, chemokine receptor-4 (CXCR4) expression is an adverse prognostic factor. Early clinical studies suggest that targeting CXCR4 with suitable high-affinity antagonists might be a novel means for therapy. In addition to the preclinical evaluation of [\(^{68}\)Ga]Pentixafor in mice bearing human lymphoma xenografts as an exemplary CXCR4-expressing tumor entity, we report on the first clinical applications of [\(^{68}\)Ga]Pentixafor-Positron Emission Tomography as a powerful method for CXCR4 imaging in cancer patients. [\(^{68}\)Ga]Pentixafor binds with high affinity and selectivity to human CXCR4 and exhibits a favorable dosimetry. [\(^{68}\)Ga]Pentixafor-PET provides images with excellent specificity and contrast. This non-invasive imaging technology for quantitative assessment of CXCR4 expression allows to further elucidate the role of CXCR4/CXCL12 ligand interaction in the pathogenesis and treatment of cancer, cardiovascular diseases and autoimmune and inflammatory disorders. KW - acute myeloid leukemia KW - prognostic value KW - therapeutic target KW - chemokine receptor KW - CXCR4 KW - lymphoma KW - in vivo imaging KW - positron emission tomography Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144537 VL - 5 IS - 6 ER - TY - JOUR A1 - Lv, Xiaoqun A1 - Zhang, Lingyun A1 - Zhu, Yanyan A1 - Said, Harun M. A1 - Shi, Jimin A1 - Xu, Guoxiong T1 - Regulative effect of Nampt on tumor progression and cell viability in human colorectal cancer JF - Journal of Cancer N2 - Colorectal cancer (CRC) is the third most common cancer disease. Here we examined Nampt expression in patients with CRC and the effect of Nampt on cell viability in CRC cells. Nampt protein was overexpressed in colorectal adenoma as well as colorectal carcinoma. The immunoreactive staining of Nampt was negative in the adjacent normal colorectal tissue, weak in colorectal adenoma, and strong in colorectal carcinoma, which may represent tumor progression. Further evaluation of clinical data showed that Nampt expression was not correlated with the clinicopathological characteristics of CRC. Additionally, our in vitro studies demonstrated that Nampt promotes CRC cell viability, whereas the Nampt inhibitor FK866 suppressed CRC cell viability, which was in concordance with the previous studies in other cancer cells. Treatment with Nampt-siRNA reduced the Nampt protein expression resulting in the inhibition of the cell viability of HCT116 and Caco2. Thus, the involvement of Nampt in cell growth indicates that Nampt may play an important role in colorectal tumorigenesis. As a consequence, our results suggest that Nampt may be considered as a progression marker of colorectal tumor and a potentially therapeutic target for the treatment of CRC. KW - nicotinamide phosphoribosyltransferase KW - signaling pathways KW - gastric cancer KW - overexpression KW - cell proliferation KW - tumor biomarker KW - adenocarcinoma KW - Nampt KW - visfatin KW - PBEF KW - breast cancer KW - prognostic value KW - visfatin levels KW - inhibitor KW - expression KW - adipocytokines Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-144516 VL - 6 IS - 9 ER -