TY - JOUR A1 - Went, Molly A1 - Sud, Amit A1 - Speedy, Helen A1 - Sunter, Nicola J. A1 - Försti, Asta A1 - Law, Philip J. A1 - Johnson, David C. A1 - Mirabella, Fabio A1 - Holroyd, Amy A1 - Li, Ni A1 - Orlando, Giulia A1 - Weinhold, Niels A1 - van Duin, Mark A1 - Chen, Bowang A1 - Mitchell, Jonathan S. A1 - Mansouri, Larry A1 - Juliusson, Gunnar A1 - Smedby, Karin E A1 - Jayne, Sandrine A1 - Majid, Aneela A1 - Dearden, Claire A1 - Allsup, David J. A1 - Bailey, James R. A1 - Pratt, Guy A1 - Pepper, Chris A1 - Fegan, Chris A1 - Rosenquist, Richard A1 - Kuiper, Rowan A1 - Stephens, Owen W. A1 - Bertsch, Uta A1 - Broderick, Peter A1 - Einsele, Hermann A1 - Gregory, Walter M. A1 - Hillengass, Jens A1 - Hoffmann, Per A1 - Jackson, Graham H. A1 - Jöckel, Karl-Heinz A1 - Nickel, Jolanta A1 - Nöthen, Markus M. A1 - da Silva Filho, Miguel Inacio A1 - Thomsen, Hauke A1 - Walker, Brian A. A1 - Broyl, Annemiek A1 - Davies, Faith E. A1 - Hansson, Markus A1 - Goldschmidt, Hartmut A1 - Dyer, Martin J. S. A1 - Kaiser, Martin A1 - Sonneveld, Pieter A1 - Morgan, Gareth J. A1 - Hemminki, Kari A1 - Nilsson, Björn A1 - Catovsky, Daniel A1 - Allan, James M. A1 - Houlston, Richard S. T1 - Genetic correlation between multiple myeloma and chronic lymphocytic leukaemia provides evidence for shared aetiology JF - Blood Cancer Journal N2 - The clustering of different types of B-cell malignancies in families raises the possibility of shared aetiology. To examine this, we performed cross-trait linkage disequilibrium (LD)-score regression of multiple myeloma (MM) and chronic lymphocytic leukaemia (CLL) genome-wide association study (GWAS) data sets, totalling 11,734 cases and 29,468 controls. A significant genetic correlation between these two B-cell malignancies was shown (Rg = 0.4, P = 0.0046). Furthermore, four of the 45 known CLL risk loci were shown to associate with MM risk and five of the 23 known MM risk loci associate with CLL risk. By integrating eQTL, Hi-C and ChIP-seq data, we show that these pleiotropic risk loci are enriched for B-cell regulatory elements and implicate B-cell developmental genes. These data identify shared biological pathways influencing the development of CLL and, MM and further our understanding of the aetiological basis of these B-cell malignancies. KW - cancer genetics KW - myeloma Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-233627 VL - 9 ER - TY - JOUR A1 - Breuer, René A1 - Mattheisen, Manuel A1 - Frank, Josef A1 - Krumm, Bertram A1 - Treutlein, Jens A1 - Kassem, Layla A1 - Strohmaier, Jana A1 - Herms, Stefan A1 - Mühleisen, Thomas W. A1 - Degenhardt, Franziska A1 - Cichon, Sven A1 - Nöthen, Markus M. A1 - Karypis, George A1 - Kelsoe, John A1 - Greenwood, Tiffany A1 - Nievergelt, Caroline A1 - Shilling, Paul A1 - Shekhtman, Tatyana A1 - Edenberg, Howard A1 - Craig, David A1 - Szelinger, Szabolcs A1 - Nurnberger, John A1 - Gershon, Elliot A1 - Alliey-Rodriguez, Ney A1 - Zandi, Peter A1 - Goes, Fernando A1 - Schork, Nicholas A1 - Smith, Erin A1 - Koller, Daniel A1 - Zhang, Peng A1 - Badner, Judith A1 - Berrettini, Wade A1 - Bloss, Cinnamon A1 - Byerley, William A1 - Coryell, William A1 - Foroud, Tatiana A1 - Guo, Yirin A1 - Hipolito, Maria A1 - Keating, Brendan A1 - Lawson, William A1 - Liu, Chunyu A1 - Mahon, Pamela A1 - McInnis, Melvin A1 - Murray, Sarah A1 - Nwulia, Evaristus A1 - Potash, James A1 - Rice, John A1 - Scheftner, William A1 - Zöllner, Sebastian A1 - McMahon, Francis J. A1 - Rietschel, Marcella A1 - Schulze, Thomas G. T1 - Detecting significant genotype–phenotype association rules in bipolar disorder: market research meets complex genetics JF - International Journal of Bipolar Disorders N2 - Background Disentangling the etiology of common, complex diseases is a major challenge in genetic research. For bipolar disorder (BD), several genome-wide association studies (GWAS) have been performed. Similar to other complex disorders, major breakthroughs in explaining the high heritability of BD through GWAS have remained elusive. To overcome this dilemma, genetic research into BD, has embraced a variety of strategies such as the formation of large consortia to increase sample size and sequencing approaches. Here we advocate a complementary approach making use of already existing GWAS data: a novel data mining procedure to identify yet undetected genotype–phenotype relationships. We adapted association rule mining, a data mining technique traditionally used in retail market research, to identify frequent and characteristic genotype patterns showing strong associations to phenotype clusters. We applied this strategy to three independent GWAS datasets from 2835 phenotypically characterized patients with BD. In a discovery step, 20,882 candidate association rules were extracted. Results Two of these rules—one associated with eating disorder and the other with anxiety—remained significant in an independent dataset after robust correction for multiple testing. Both showed considerable effect sizes (odds ratio ~ 3.4 and 3.0, respectively) and support previously reported molecular biological findings. Conclusion Our approach detected novel specific genotype–phenotype relationships in BD that were missed by standard analyses like GWAS. While we developed and applied our method within the context of BD gene discovery, it may facilitate identifying highly specific genotype–phenotype relationships in subsets of genome-wide data sets of other complex phenotype with similar epidemiological properties and challenges to gene discovery efforts. KW - bipolar disorder KW - subphenotypes KW - rule discovery KW - data mining KW - genotype-phenotype patterns Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220509 VL - 6 ER -