TY - JOUR A1 - Banicka, Veronika A1 - Martens, Marie Christine A1 - Panzer, Rüdiger A1 - Schrama, David A1 - Emmert, Steffen A1 - Boeckmann, Lars A1 - Thiem, Alexander T1 - Homozygous CRISPR/Cas9 knockout generated a novel functionally active exon 1 skipping XPA variant in melanoma cells JF - International Journal of Molecular Sciences N2 - Defects in DNA repair pathways have been associated with an improved response to immune checkpoint inhibition (ICI). In particular, patients with the nucleotide excision repair (NER) defect disease Xeroderma pigmentosum (XP) responded impressively well to ICI treatment. Recently, in melanoma patients, pretherapeutic XP gene expression was predictive for anti-programmed cell death-1 (PD-1) ICI response. The underlying mechanisms of this finding are still to be revealed. Therefore, we used CRISPR/Cas9 to disrupt XPA in A375 melanoma cells. The resulting subclonal cell lines were investigated by Sanger sequencing. Based on their genetic sequence, candidates from XPA exon 1 and 2 were selected and further analyzed by immunoblotting, immunofluorescence, HCR and MTT assays. In XPA exon 1, we established a homozygous (c.19delG; p.A7Lfs*8) and a compound heterozygous (c.19delG/c.19_20insG; p.A7Lfs*8/p.A7Gfs*55) cell line. In XPA exon 2, we generated a compound heterozygous mutated cell line (c.206_208delTTG/c.208_209delGA; p.I69_D70delinsN/p.D70Hfs*31). The better performance of the homozygous than the heterozygous mutated exon 1 cells in DNA damage repair (HCR) and post-UV-C cell survival (MTT), was associated with the expression of a novel XPA protein variant. The results of our study serve as the fundamental basis for the investigation of the immunological consequences of XPA disruption in melanoma. KW - DNA repair KW - nucleotide excision repair KW - XPA KW - CRISPR KW - knockout KW - protein variant KW - melanoma KW - A375 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290427 SN - 1422-0067 VL - 23 IS - 19 ER - TY - JOUR A1 - Haake, Markus A1 - Haack, Beatrice A1 - Schäfer, Tina A1 - Harter, Patrick N. A1 - Mattavelli, Greta A1 - Eiring, Patrick A1 - Vashist, Neha A1 - Wedekink, Florian A1 - Genssler, Sabrina A1 - Fischer, Birgitt A1 - Dahlhoff, Julia A1 - Mokhtari, Fatemeh A1 - Kuzkina, Anastasia A1 - Welters, Marij J. P. A1 - Benz, Tamara M. A1 - Sorger, Lena A1 - Thiemann, Vincent A1 - Almanzar, Giovanni A1 - Selle, Martina A1 - Thein, Klara A1 - Späth, Jacob A1 - Gonzalez, Maria Cecilia A1 - Reitinger, Carmen A1 - Ipsen-Escobedo, Andrea A1 - Wistuba-Hamprecht, Kilian A1 - Eichler, Kristin A1 - Filipski, Katharina A1 - Zeiner, Pia S. A1 - Beschorner, Rudi A1 - Goedemans, Renske A1 - Gogolla, Falk Hagen A1 - Hackl, Hubert A1 - Rooswinkel, Rogier W. A1 - Thiem, Alexander A1 - Romer Roche, Paula A1 - Joshi, Hemant A1 - Pühringer, Dirk A1 - Wöckel, Achim A1 - Diessner, Joachim E. A1 - Rüdiger, Manfred A1 - Leo, Eugen A1 - Cheng, Phil F. A1 - Levesque, Mitchell P. A1 - Goebeler, Matthias A1 - Sauer, Markus A1 - Nimmerjahn, Falk A1 - Schuberth-Wagner, Christine A1 - Felten, Stefanie von A1 - Mittelbronn, Michel A1 - Mehling, Matthias A1 - Beilhack, Andreas A1 - van der Burg, Sjoerd H. A1 - Riedel, Angela A1 - Weide, Benjamin A1 - Dummer, Reinhard A1 - Wischhusen, Jörg T1 - Tumor-derived GDF-15 blocks LFA-1 dependent T cell recruitment and suppresses responses to anti-PD-1 treatment JF - Nature Communications N2 - Immune checkpoint blockade therapy is beneficial and even curative for some cancer patients. However, the majority don’t respond to immune therapy. Across different tumor types, pre-existing T cell infiltrates predict response to checkpoint-based immunotherapy. Based on in vitro pharmacological studies, mouse models and analyses of human melanoma patients, we show that the cytokine GDF-15 impairs LFA-1/β2-integrin-mediated adhesion of T cells to activated endothelial cells, which is a pre-requisite of T cell extravasation. In melanoma patients, GDF-15 serum levels strongly correlate with failure of PD-1-based immune checkpoint blockade therapy. Neutralization of GDF-15 improves both T cell trafficking and therapy efficiency in murine tumor models. Thus GDF-15, beside its known role in cancer-related anorexia and cachexia, emerges as a regulator of T cell extravasation into the tumor microenvironment, which provides an even stronger rationale for therapeutic anti-GDF-15 antibody development. KW - cancer microenvironment KW - immunotherapy KW - T cells KW - tumour immunology Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357333 VL - 14 ER - TY - JOUR A1 - Thiem, Alexander A1 - Hesbacher, Sonja A1 - Kneitz, Hermann A1 - di Primio, Teresa A1 - Heppt, Markus V. A1 - Hermanns, Heike M. A1 - Goebeler, Matthias A1 - Meierjohann, Svenja A1 - Houben, Roland A1 - Schrama, David T1 - IFN-gamma-induced PD-L1 expression in melanoma depends on p53 expression JF - Journal of Experimental & Clinical Cancer Research N2 - Background Immune checkpoint inhibition and in particular anti-PD-1 immunotherapy have revolutionized the treatment of advanced melanoma. In this regard, higher tumoral PD-L1 protein (gene name: CD274) expression is associated with better clinical response and increased survival to anti-PD-1 therapy. Moreover, there is increasing evidence that tumor suppressor proteins are involved in immune regulation and are capable of modulating the expression of immune checkpoint proteins. Here, we determined the role of p53 protein (gene name: TP53) in the regulation of PD-L1 expression in melanoma. Methods We analyzed publicly available mRNA and protein expression data from the cancer genome/proteome atlas and performed immunohistochemistry on tumors with known TP53 status. Constitutive and IFN-ɣ-induced PD-L1 expression upon p53 knockdown in wildtype, TP53-mutated or JAK2-overexpressing melanoma cells or in cells, in which p53 was rendered transcriptionally inactive by CRISPR/Cas9, was determined by immunoblot or flow cytometry. Similarly, PD-L1 expression was investigated after overexpression of a transcriptionally-impaired p53 (L22Q, W23S) in TP53-wt or a TP53-knockout melanoma cell line. Immunoblot was applied to analyze the IFN-ɣ signaling pathway. Results For TP53-mutated tumors, an increased CD274 mRNA expression and a higher frequency of PD-L1 positivity was observed. Interestingly, positive correlations of IFNG mRNA and PD-L1 protein in both TP53-wt and -mutated samples and of p53 and PD-L1 protein suggest a non-transcriptional mode of action of p53. Indeed, cell line experiments revealed a diminished IFN-ɣ-induced PD-L1 expression upon p53 knockdown in both wildtype and TP53-mutated melanoma cells, which was not the case when p53 wildtype protein was rendered transcriptionally inactive or by ectopic expression of p53\(^{L22Q,W23S}\), a transcriptionally-impaired variant, in TP53-wt cells. Accordingly, expression of p53\(^{L22Q,W23S}\) in a TP53-knockout melanoma cell line boosted IFN-ɣ-induced PD-L1 expression. The impaired PD-L1-inducibility after p53 knockdown was associated with a reduced JAK2 expression in the cells and was almost abrogated by JAK2 overexpression. Conclusions While having only a small impact on basal PD-L1 expression, both wildtype and mutated p53 play an important positive role for IFN-ɣ-induced PD-L1 expression in melanoma cells by supporting JAK2 expression. Future studies should address, whether p53 expression levels might influence response to anti-PD-1 immunotherapy. KW - Melanoma KW - PD-L1 KW - CD274 KW - p53 KW - TP53 KW - JAK2 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-201016 VL - 38 ER -