TY - THES A1 - Thierschmann, Holger T1 - Heat Conversion in Quantum Dot Systems T1 - Wärmeumwandlung in Quantenpunktsystemen N2 - This thesis treats the thermopower and other thermal effects in single quantum dots (QD) and quantum dot systems. It contributes new experimental results to the broad and active field of research on thermoelectrics in low dimensional systems. The thermopower experiments discussed in this work focus on QDs which exhibit a net spin and on tunnel-coupled double QDs (DQD). Furthermore, experiments are presented which address the realization of a QD device which extracts thermal energy from a heat reservoir and converts it into a directed charge current in a novel way. The samples used for these investigations have been fabricated from GaAs/AlGaAs heterostructures which contain a two dimensional electron gas. Using optical and electron beam lithography, the devices have been realized by means of the top-gate technology. All experiments have been performed at low temperature. In order to create a controllable temperature difference in the samples the current heating technique has been used. These experimental basics as well as fundamentals of electric and thermoelectric transport are introduced in Part I of this thesis. The experiments on the thermopower of a single QD are described in Part II. Essentially, they deal with the problem of how a single spin situated on a QD influences the thermoelectric properties of the system. In this context, the Kondo-effect plays a crucial role. Generally, the Kondo effect is the result of a many-body state which arises from an antiferromagnetic coupling of a magnetic impurity with the surrounding conduction electrons. Here, the magnetic impurity is represented by a QD which is occupied with an odd number of electrons so that it exhibits a net spin. For the first time the thermopower of a Kondo-QD has been studied systematically as a function of two parameters, namely the QD coupling energy and the sample temperature. Both parameters are crucial quantities for Kondo-physics to be observed. Based on these data, it is shown that the thermopower line shape as a function of QD energy is mainly determined by two competing contributions: On the one hand by the enhanced density of states around the Fermi level due to Kondo-correlations and on the other hand by thermopower contributions from the Coulomb resonances. Furthermore, the experiments confirm theoretical predictions which claim that the spectral DOS arising from Kondo-correlations shifts away from the Fermi level for those QD level configurations which are not electron-hole symmetric. Comparison with model calculations by T. Costi and V. Zlatic [Phys. Rev. B 81, 235127 (2010)] shows qualitative and partly even quantitative agreement. A finite thermovoltage at the center of the Kondo-region, which occurred in previous investigations, is also observed in the experiments presented here. It is not covered by the current theory of the Kondo effect. The dependence of this signal on temperature, coupling energy and magnetic field, which differ from non-Kondo regions, is analyzed. In order to clarify the physics behind this phenomenon further studies are desirable. Furthermore, it is shown by variation of the QD coupling energy over a wide range that Kondo-correlations can be detected in the thermopower even in the regime of very weak coupling. In contrast, no Kondo signatures are visible in the conductance in this energy range. It is found that in the limit of weak coupling the Kondo effect causes the thermopower to exhibit a diminished amplitude in close vicinity of a conductance resonance. Subsequent filling of spin-degenerate states then leads to a thermopower amplitude modulation (odd-even-effect). Although this effect had been observed in previous studies, no connection to Kondo physics had been established in order to explain the observations. Hence, the experiments on a single QD presented in this thesis provide unique insight into the complex interplay of different transport mechanisms in a spin-correlated QD. Moreover, the results confirm the potential of thermopower measurements as a highly sensitive tool to probe Kondo-correlations. In Part III thermal effects are investigated in systems which contain two coupled QDs. Such QD-systems are particularly interesting with respect to thermoelectric applications: Many proposals utilize the extremely sharp energy filtering properties of such coupled QDs and also different kinds of inter dot coupling to construct novel and highly efficient thermoelectric devices. In the present work, thermopower characterizations are performed on a tunnel-coupled DQD for the first time. The key result of these investigations is the thermopower stability diagram. Here it is found, that in such a system maximal thermopower is generated in the vicinity of the so-called triple points (TP) at which three charge states of the DQD are degenerate. Along the axis of total energy, which connects two adjacent TP, a typical thermopower line shape is observed. It is explained and modeled within an intuitive picture that assumes two transport channels across the DQD, representing the TP. For those regions which are far away from the TP, the thermopower turns out to be very sensitive to the relative configuration of the QD energies. The conductance and thermopower data are well reproduced within a model that assumes transport via molecular states. Integration of both models into one then allows model calculations for a complete stability cell in conductance and thermopower to be done. Furthermore, experiments on two capacitively coupled QDs are presented. In these studies the focus lies on testing the feasibility of such systems for the manipulation and generation of charge currents from thermal energy. In a series of experiments it is shown that such a system of QDs can be utilized to increase or decrease a current flowing between two electron reservoirs by varying the temperature in a third reservoir. This effect is based on the cross-correlation of occupation fluctuations of the individual QDs. These are positive for certain QD energy level configurations and negative for others, which increases or decreases the charge current in the experiments, respectively. In the stability diagram this is manifested in a characteristic clover leaf shaped structure of positive and negative current changes in vicinity of the TP. All main experimental results are reproduced qualitatively in simple model calculations. Due to the close analogy between electrical and thermal conductance of a QD, this effect of thermal switching can, in principle, also be used to built a thermal transistor. Finally, it is shown that a system consisting of two Coulomb-coupled QDs, which couple a hot electron reservoir electrostatically to two cold electron reservoirs, can be utilized as a novel device which extracts heat from its environment and converts it into a directed charge current. The idea of this heat-to-current converter (HCC) was first proposed by R. Sánchez and M. Büttiker [Phys. Rev. B 83, 085428 (2011)]. It is not only characterized by the novelty of its working principle but also by the fact, that it decouples the directions of charge current and energy flow. In the experiments presented here, such HCC-currents are identified unambiguously: For certain QD-level configurations an electric current between the two cold reservoirs is observed if the temperature in the third reservoir is increased. The direction of this current is shown to be independent of an external voltage. In contrast, the direction of the current exhibits a characteristic dependence on the tunneling coefficients of the QDs, as predicted by theory: By adjusting the thickness and the shape of the respective tunnel junctions, a charge current can be generated between two cold reservoirs, and it can even be inverted. The experimental observations are quantitatively reproduced by model calculations by R. Sánchez and B. Sothmann. Thus, the results represent direct evidence for the existence of HCC-currents. Due to the novelty of the working principle of the HCC and its relevance from a fundamental scientific point of view, the results presented here are an important step towards energy harvesting devices at the nano scale. N2 - Die vorliegende Arbeit befasst sich mit der Thermokraft und anderen thermischen Effekten in einzelnen Quantenpunkten (QP) und Quantenpunktsystemen. Sie liefert durch neue experimentelle Ergebnisse einen Beitrag zu dem breiten und besonders in jüngster Zeit stark beachteten Themenkomplex der Thermoelektrik in niedrigdimensionalen Systemen. Im Fokus stehen hier die Thermokraft von spin-besetzten QP und tunnelgekoppelten Doppelquantenpunkten (DQP) sowie die Realisierung von neuartigen W\ärmemaschinen mit Hilfe von QP-Systemen. Die für diese Untersuchungen verwendeten Proben wurden mit Hilfe der sogenannten split-gate Technologie lithographisch in einem zweidimensionalen Elektronengas innerhalb des Halbleiterschichtsystems GaAs/AlGaAs realisiert. Sämtliche Experimente wurden bei tiefen Systemtemperaturen durchgeführt. Zur kontrollierten Erzeugung einer Temperaturdifferenz wurde die sogenannte Stromheiztechnik verwendet. Diese experimentellen Grundlagen sowie allgemeine Hintergründe zur Physik von elektrischem und thermoelektrischem Transport werden im Gundlagenteil, Teil I, behandelt. Die Thermokraftexperimente an einzelnen QP sind in Teil II dieser Arbeit beschrieben. Sie befassen sich im Kern mit der Frage, auf welche Art einzelne Spins in einem QP die Thermokraft des Systems beeinflussen. In diesem Zusammenhang ist der Kondoeffekt von zentraler Bedeutung. Der Kondoeffekt resultiert allgemein aus einem Vielteilchenzustand, der durch die antiferromagnetische Kopplung einer magnetischen Verunreinigung mit Leitungselektronen der angrenzenden Reservoire hervorgerufen wird. Die magnetische Verunreinigung wird hier durch einen QP dargestellt, der Aufgrund einer ungeraden Besetzungszahl von Elektronenspins ein magnetisches Moment besitzt. In den präsentierten Experimenten wird erstmals systematisch der Verlauf der Thermokraft eines Kondo-QP in Abhängigkeit von den beiden Parametern Kopplungsenergie und Systemtemperatur untersucht. Diese beiden Parameter legen im Wesentlichen die Ausprägung des Kondozustandes fest. Auf der Basis dieser Daten wird gezeigt, dass der Verlauf der Thermokraft maßgeblich von dem konkurrierenden Einfluss zweier Beiträge bestimmt wird: Einerseits der Thermokraft resultierend aus einer erhöhten Zustandsdichte nahe der Fermienergie aufgrund von Kondokorrelationen und andererseits dem Beitrag der Coulombresonanzen. Des Weiteren belegen die Experimente die theoretisch vorhergesagte Verschiebung der spektralen Zustandsdichte auf dem QP weg von der Fermienergie, und zwar für solche Energieniveaukonfigurationen, welche nicht elektron-loch-symmetrisch sind. Vergleiche mit numerischen Berechnungen von T. Costi und V. Zlatic [Phys. Rev. B 81, 235127 (2010)] zeigen qualitative und teilweise sogar quantitative Übereinstimmung. Eine im Zentrum des Kondobereiches entstehende, elektronenartige Thermospannung, wie sie bereits in früheren Untersuchungen zum Kondoeffekt beobachtet wurde, kann auch in den Experimenten hier festgestellt werden. Sie wird durch die gegenwärtige Theorie zum Kondoeffekt nicht erklärt. Die experimentell gefundenen Abhängigkeiten dieses Signals von Temperatur, Kopplungsenergie und Magnetfeld unterscheiden sich von denen in Nicht-Kondobereichen und werden analysiert. Zur Klärung des physikalischen Hintergrundes dieses Phänomens sind weiterführende Experimente wünschenswert. Durch Variation der Kopplungsenergie über einen sehr weiten Bereich wird zudem gezeigt dass sich Kondokorrelationen noch bis hin zu sehr schwacher Kopplung in der Thermokraft nachweisen lassen. In diesen Energiebereichen weist der entsprechende Leitwert keinerlei Kondosignaturen mehr auf. Für die Thermospannung bewirkt der Kondoeffekt im Grenzfall schwacher Kopplung eine Reduktion der Amplitude nahe der Coulombresonanzen. Bei regelmäßiger Auffüllung von spin-entartetn QP-Orbitalen führt dies zu einer Amplitudenmodulation (Ungerade-Gerade-Effekt), wie sie bereits in früheren Arbeiten beobachtet, dort jedoch nicht mit Kondokorrelationen in Verbindung gebracht wurde. In ihrer Summe geben die Experimente auf einzigartige Weise neue Einblicke in das komplexe Zusammenwirken verschiedener Transportmechanismen in einem spinkorrelierten QP. Sie belegen das Potenzial von Thermokraftmessungen als hochsensitives Instrument zur Erforschung von Kondokorrelationen. In Teil III werden thermische Effekte in Systemen untersucht, welche zwei gekoppelte QP enthalten. Solche QP-Systeme sind insbesondere für thermoelektrische Anwendungen interessant: Zahlreiche Vorschläge nutzen die besonders präzisen Energiefiltereigenschaften von gekoppelten QP, aber auch unterschiedliche Arten der Kopplung zwischen den QP, zur Konzeption von neuen, hocheffizienten thermoelektrischen Bauteilen und neuartigen Wärme-Strom-Wandlern. In der vorliegenden Arbeit werden erstmalig Thermokraftmessungen an einem tunnelgekoppelten DQP in serieller Anordnung untersucht. Das zentrale Ergebnis dieser Experimente ist das Thermokraftstabilitätsdiagramm. Hier lässt sich beobachten, dass das System in der Region um die Tripelpunkte (TP), an denen drei Ladungszustände des DQP entartet sind, maximale Thermospannungen erzeugt. Entlang der Achse der Gesamtenergie wird ein charakteristischer Verlauf der Thermospannung beobachtet, der unter Annahme zweier Transportkanäle über den DQP, die TP, erklärt und modelliert werden kann. Abseits der TP zeigt sich, dass die Thermospannung höchst sensitiv auf die relative Anordnung der einzelnen QP-Energien reagiert. Eine Beschreibung des Ladungstransports durch molekülartige Zustände gibt hier die experimentellen Beobachtungen sehr gut wieder. Zusammenführung der Modelle für den Bereich nahe und fernab der TP erlaubt schliesslich die vollständige Modellierung des Stabilitätsdiagramms in Leitwert und Thermokraft. Des Weiteren werden Experimente an QP-Systemen mit zwei kapazitiv gekoppelten QP gezeigt. Hier steht die Nutzung solcher Systeme zur Manipulation oder Generation von elektrischen Strömen durch thermische Energie im Mittelpunkt. Es wird gezeigt, dass sich ein System kapazitiv gekoppelter QP eignet, den elektrischen Strom zwischen zwei Elektronenreservoiren durch Änderung der Temperatur in einem dritten Reservoir kontrolliert zu vergrössern oder zu vermindern. Der Effekt basiert dabei auf der Kreuzkorrelation der Elektronenbesetzungsfluktuation der beiden QP, welche in einigen QP-Energiekonstellationen positiv und in anderen Einstellungen negativ ist. So führt ersteres in den Experimenten bei Erhöhung der Temperatur zu einer Vergrösserung, letzters zu einer Verminderung des Stromflusses. Im Stabilitätsdiagramm erzeugt dieser Mechansimus ein charakteristisches Kleeblattmuster aus positiven und negativen Stromänderungen im Bereich der TP. Durch einfache Modellrechnungen können sämtliche experimentellen Beobachtungen qualitativ reproduziert werden. Aufgrund der Analogie zwischen Ladungstransport und Wärmetransport in einem QP ist auch eine Funktionsweise als rein thermischer Transistor denkbar. Schliesslich wird nachgewiesen, dass ein solches System aus zwei elektrostatisch wechselwirkenden QP und drei Elektronenreservoiren dazu genutzt werden kann, um auf neuartige Weise thermische Energie in einen gerichteten Ladungsstrom umzuwandeln. Das Konzept dieses Wärme-Strom-Wandlers (engl: Heat-to-Current Converter, HCC) folgt dabei einem Vorschlag von R. Sánchez und M. Büttiker [Phys. Rev. B 83, 085428 (2011)]: Es zeichnet sich nicht nur dadurch aus, dass der zugrundeliegende Mechanismus der Wärmewandlung neu ist, sondern auch dadurch, dass in diesem System die Richtungen von elektrischem Strom und Wärmestrom voneinander entkoppelt sind. In den hier präsentierten Experimenten können solche HCC-Ströme eindeutig nachgewiesen werden: Für bestimmte QP-Energiekonfigurationen wird ein elektrischer Strom zwischen den beiden kalten Reservoiren beobachtet, wenn die Temperatur in dem dritten Reservoir erhöht wird. Es wird gezeigt, dass die Richtung dieses Stroms unabhängig von einer extern angelegten Spannung ist. Die Stromrichtung läßt sich jedoch, wie durch die Theorie gefordert, durch Änderung der Tunnelkoeffizienten der QP beeinflussen. Sie kann durch Variation der Dicke und der Form der entsprechenden Tunnelbarrieren invertiert werden. Die experimentellen Beobachtungen werden durch Modellrechnungen von B. Sothmann und R. Sánchez quantitativ reproduziert. Sie sind somit ein direkter Beleg für die Existenz von HCC-Strömen. Aufgrund der Neuartigkeit des Konzepts und seiner Bedeutung für weitere thermoelektrische Anwendungen sind die hier präsentierten Ergebnisse ein wichtiger Schritt auf dem Weg hin zur Realisierung von Wärmemaschinen auf der Nanoskala. KW - Quantenpunkt KW - Thermoelektrizität KW - multi-terminal devices KW - coulomb coupled quantum dots KW - thermoelectrics KW - heat conversion KW - single electron transistor KW - Coulomb-Blockade KW - Kondo-Effekt KW - Energy Harvesting Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133348 ER - TY - THES A1 - Weber, Stefan T1 - Simulation Studies on the New Small Wheel Shielding of the ATLAS Experiment and Design and Construction of a Test Facility for Gaseous Detectors T1 - Simulationsstudien zur New Small Wheel Abschirmung des ATLAS Experiments und Entwurf und Konstruktion eines Teststandes für Gasdetektoren N2 - In this thesis two main projects are presented, both aiming at the overall goal of particle detector development. In the first part of the thesis detailed shielding studies are discussed, focused on the shielding section of the planned New Small Wheel as part of the ATLAS detector upgrade. Those studies supported the discussions within the upgrade community and decisions made on the final design of the New Small Wheel. The second part of the thesis covers the design, construction and functional demonstration of a test facility for gaseous detectors at the University of Würzburg. Additional studies on the trigger system of the facility are presented. Especially the precision and reliability of reference timing signals were investigated. N2 - In dieser Arbeit werden zwei Projekte vorgestellt, welche beide das gemeinsame Ziel der Entwicklung von Teilchendetektoren verfolgen. Im ersten Teil der Arbeit werden ausführliche Simulationsstudien zur Abschirmung behandelt, die sich auf die Abschirmungsbereiche des geplanten New Small Wheels als Teil der ATLAS-Detektor Verbesserungen konzentrieren. Diese Studien unterstützten die Diskussionen innerhalb der Upgrade-Gemeinschaft und Entscheidungen, welche für die endgültige Kostruktionsplanung des New Small Wheels getroffen wurden. Der zweite Teil der Arbeit umfasst die Konstruktion, den Aufbau sowie den Funktionsnachweis eines Teststandes für Gasdetektoren an der Universität Würzburg. Ebenfalls werden Studien über das Triggersystems des Teststandes dargestellt. Insbesondere wurden die Präzision und Verlässlichkeit von Referenzzeitsignalen untersucht. KW - Teilchendetektor KW - Abschirmung KW - Simulation KW - test facility KW - New Small Wheel KW - Teststand KW - Gasionisationsdetektor KW - European Organization for Nuclear Research. ATLAS Collaboration KW - Computersimulation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133084 ER - TY - THES A1 - Vogel, Patrick T1 - Traveling Wave Magnetic Particle Imaging T1 - Traveling Wave Magnetic Particle Imaging N2 - Magnetic Particle Imaging (MPI) ist eine noch sehr junge Technologie unter den nicht-invasiven tomographischen Verfahren. Seit der ersten Veröffentlichung 2005 wurden einige Scannertypen und Konzepte vorgestellt, welche durch die Messung des Antwortsignals von superparamagnetischen Eisennanopartikeln (SPIOs) auf wechselnde Magnetfelder ein dreidi-mensionales Bild ihrer Verteilung berechnen können. Durch die direkte Messung des Tracers handelt es sich beim MPI um eine sehr sensitive und hochspezifische bildgebende Methode. Zu Beginn dieser Forschungsarbeit gab es nur wenige bekannte MPI-Scanner, die jedoch alle ein nur kleines Field-of-View (FOV) vorweisen konnten. Der Grund dafür liegt in der Ver-wendung von Permanentmagneten. Das Ziel war es nun, ein neues Konzept auszuarbeiten und einen 3D-MPI-Scanner zu entwer-fen, der in der Lage ist, ein mausgroßes Objekt zu messen. In dieser Arbeit wird ein alternatives Scannerkonzept für die dreidimensionale Bildge-bung superparamagnetischer Eisennanopartikel vorgestellt. Der Traveling Wave MPI-Scanner (TWMPI) basiert auf einem neu entwickelten Hauptspulensystem, welches aus mehreren Elektromagneten besteht. Dadurch ist die Hardware bereits in der Lage, eine Linie entlang der Symmetrieachse über einen großen Bereich dynamisch zu kodieren. Mit Hilfe weiterer Ab-lenkspulen kann schließlich ein FOV von 65 x 25 x 25 Millimetern dreidimensional abgetastet werden. Dazu stehen mehrere Scanverfahren zur Verfügung, welche das Probenvolumen li-nienweise oder ebenenweise abtasten und mit einer Auflösung von ca. 2 Millimetern die Ver-teilung der SPIOs in wenigen Millisekunden abbilden können. Mit diesem neuen Hardwareansatz konnte erstmals ein MPI-Scanner mit einem MR-Tomographen (MRT) kombiniert werden. Das MPI/MRT-Hybridsystem liefert tomographi-sche Bilder des Gewebes (MRT) und zeigt die Verteilung des eisenhaltigen Kontrastmittels (MPI), ohne die Probe bewegen zu müssen. In einer in-vivo Echtzeitmessung konnte der TWMPI-Scanner mit 20 Bildern pro Se-kunde die dynamische Verteilung eines eisenhaltigen Kontrastmittels im Körper und speziell im schlagenden Herzen eines Tieres darstellen. Diese Echtzeitfähigkeit eröffnet in der kardi-ovaskuläre Bildgebung neue Möglichkeiten. Erste Messungen mit funktionalisierten Eisenpartikeln zeigen die spezifische Bildge-bung verschiedener Zelltypen und stellen einen interessanten Aspekt für die molekulare Bild-gebung dar. Die Sensitivität des Scanners liegt dabei im Bereich von wenigen Mikrogramm Eisen pro Milliliter, was für den Nachweis von wenigen 10.000 mit Eisen markierten Zellen ausreicht. Neben Messungen an diversen Ferrofluiden und eisenhaltigen Kontrastmitteln konnte der Einfluss von massiven Materialen, wie Eisenstückchen oder Eisenspänen, auf die rekon-struierten Bilder untersucht werden. Erste Messungen an Gestein zeigen die Verteilung von Eiseneinschlüssen und bieten die Möglichkeit einer weiteren zerstörungsfreien Untersuchungsmethode für Materialwissen-schaftler und Geologen. Weiterführende Testmessungen mit einer unabhängigen μMPI-Anlage zeigen erste Ergebnisse mit Auflösungen im Mikrometerbereich und liefern Erkennt-nisse für den Umgang und Messung mit starken Gradientenfeldern. Eine Modifizierung der Messanlage erlaubt es, in gerade einmal 500 μs ein komplettes Bild aufzunehmen, womit die Bewegung eines Ferrofluidtropfens in Wasser sichtbar gemacht werden konnte. Damit ist diese TWMPI-Anlage das schnellste MPI-System und eröffnet die Möglichkeit grundlegende Erfahrungen in der Partikeldynamik zu erlangen. Der vorgestellte Traveling Wave MPI-Scanner ist ein alternativer Scannertyp, welcher sich von anderen MPI-Scannern abhebt. Mit neuen Ansätzen ist in der Lage ein mausgroßes Objekt auf dynamische Weise sehr schnell abzutasten. Dabei konnten in verschiedenen Mes-sungen die Funktionalität und Leistungsfähigkeit des TWMPI-Konzeptes demonstriert wer-den, welche die gesteckten Ziele deutlich übertreffen. N2 - Magnetic particle imaging (MPI) is still a very young technology among the non-invasive tomographic modalities. Since its first publication in 2005, several types of scanners and concepts were presented, which can reconstruct a three-dimensional image of the distri-bution of superparamagnetic iron-oxide nanoparticles (SPIOs) by measuring their magnetiza-tion response to varying magnetic fields. Due to the direct measurement of the tracer MPI is a very sensitive and highly specific imaging modality. At the beginning of this project only a few MPI-scanners were known, but all of them are limited to a small field-of-view (FOV). The reason for this is the use of permanent mag-nets. The aim of this work was to develop a new concept and design for a 3D-MPI-scanner, which is able to measure a mouse sized object. In this thesis an alternative scanner concept for three-dimensional imaging of super-paramagnetic iron nanoparticles is presented. The Traveling Wave-MPI-scanner (TWMPI) is based on a newly developed main coil system, which consists of a series of electromagnets. This coil array is by itself able to dynamically encode a line along the symmetry axis over an extended length. With additional offset coils the system is able to scan a FOV of 65 x 25 x 25 millimeters in three dimensions. For scanning the whole volume several tech-niques are available, which map the data line-by-line or slice-by-slice in a few milliseconds and yield the distribution of SPIOs with a resolution of about 2 millimeters. Using this new hardware approach a MPI-scanner was successfully combined with an MRI-scanner for the first time. The MPI/MRI-hybrid-system provides tomographic images of the tissue (MRI) and detects the distribution of iron-containing contrast agent (MPI), without the need to move the sample. In an in-vivo real-time measurement using the TWMPI-scanner the dynamic distribu-tion of an iron-containing contrast agent was visualized in the body and especially in the beat-ing heart of an animal with a temporal resolution of 20 frames per second. This real-time ca-pability opens up new possibilities in cardio-vascular imaging. First measurements using functionalized iron-oxide nanoparticles specifically detect different cell types and thereby provide an interesting aspect for molecular imaging. The sensi-tivity of the scanner is in the range of a few micrograms of iron per milliliter, which is suffi-cient to detect about 50,000 iron-labeled cells. In several studies the influence of various ferrofluids, iron-containing contrast agents and solid materials, such as pieces of iron or iron filings, were examined on the reconstructed images. First measurements on ferrous rock show the location of iron-inclusions and offer an-other non-destructive imaging technique for material scientists and geologists. Additional tests with an independent μMPI-system were performed to explore resolutions in the micrometer range and provide insights for handling and measuring with a high gradient strength. A modification of the setup allows to acquire a full slice in just 500 microseconds, which enable the visualization of the motion of a droplet of ferrofluid in water. With this TWMPI is the fastest MPI-system available and gives access to fundamental studies of particle dynamics. The presented Traveling Wave MPI-system is an alternative scanner concept, which sets itself apart from other MPI-scanners. Mouse-sized objects can be imaged in a dynamic way in very short times. The feasibility and performance of the TWMPI-concept were suc-cessfully demonstrated in various measurements considerably exceeding the original aims. KW - Magnetpartikelbildgebung KW - Traveling Wave Magnetic Particle Imaging KW - Traveling Wave Magnetic Particle Imaging KW - tomographic imaging method KW - molecular imaging KW - field free point (FFP) KW - Tomografie Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132700 ER - TY - THES A1 - Praetorius, Christian Michael T1 - Ce M4,5 XAS and XMCD as Local Probes for Kondo and Heavy Fermion Materials - A Study of CePt5/Pt(111) Surface Intermetallics - T1 - Ce M4,5 XAS und XMCD als Lokale Sonden Für Kondo- und Schwere-Fermionen-Materialien - Eine Studie an intermetallischen CePt5/Pt(111) Oberflächenverbindungen - N2 - The aim of the present thesis is to explore the potential of X-ray magnetic circular dichroism(XMCD) experiments on gaining new insights into Kondo and heavy fermion materials. XMCD, which is derived from X-ray absorption spectroscopy (XAS), allows probing magnetic polarization specific to the different elements in a material and to their atomic orbitals. In particular, at the Ce M4,5 edges the method is sensitive to the localized 4f level, which provides the magnetic impurity moment responsible for Kondo physics in Ce compounds. Hence, Ce M4,5 XMCD is ideally suited to investigate local magnetism in the presence of interaction of impurity and conduction electrons in such materials. As a model material, CePt5/Pt(111) surface intermetallics were chosen for the present study. This thin-film material can be prepared by well-defined procedures involving molecular beam epitaxy. Crystalline Ordered samples are obtained by exploiting the single-crystallinity of the Pt(111) substrate. The surface character of thin films ideally matches the probing depth of soft X-ray spectroscopy in the total electron yield mode. The XMCD and XAS experiments, taking into account dependence on temperature, angle of incidence, sample thickness and external magnetic field, revealed the presence of four relevant energy scales that influence the magnetic response: 1. The 4f level in CePt5/Pt(111) is subject to significant crystal field (CF) splitting, which leads to reorganization of the six j = 5/2 sublevels. The hexagonal symmetry of the crystal structure conserves mj as a good quantum number. The proposed CF scheme, which is derived from measurements of the paramagnetic susceptibility by XMCD as well as linear dichroism in XAS, consists of nearly degenerate |1/2> and |3/2> doublets with the |5/2> doublet excited by E5/2 = 15 ... 25 meV. 2. Single impurity Kondo interaction significantly couples the magnetic moments of the impurity and conduction electrons. A signature thereof is the f0 -> f1 contribution to Ce M4,5 XAS, the strength of which can be tuned by control of the sample thickness. This finding is in line with the observation of reduced effective 4f moments as detected by XMCD. 3. Ruderman-Kittel-Kasuya-Yosida (RKKY) interaction induces ferromagnetic correlations on the impurity lattice, which induces a positive Curie-Weiss temperature in the temperature-dependent inverse susceptibility. 4. Indications for the transition to a coherent heavy fermion state are found in the inverse susceptibility at T ~ 20 K; the ferromagnetic ground state is not observed. The fielddependence of the magnetic moment in the coherent state can be interpreted in terms of a metamagnetic transition. This allows studying basic characteristics of the renormalized band structure of a heavy fermion system by XMCD. The disentanglement of these different contributions to the 4f magnetism not only required extensive Ce M4,5 XAS and XMCD data, but also a thorough structural characterization of the material, a fundamental study of the Ce M4,5 line shape in relation to the degree of 4f hybridization and the development of a model for the paramagnetic susceptibility. The unit cell dimensions and sample morphology of CePt5/Pt(111) intermetallics were studied by low-energy electron diffraction (LEED) and scanning transmission electron microscopy (STEM). These experiments showed that well-defined intermetallic films form on top of the substrate. This lead to introduction of the film thickness t, measured in unit cells (u.c.), as a key feature to characterize the samples. Systematic LEED measurements in the thickness range t ~ 1 ... 15 u.c. allowed identification of six different phases, which could be interpreted as resulting from the same crystal structure with different rotational alignments and lattice constants. An accurate determination of the surface lattice constant at t ~ 3 u.c. could be achieved by interpretation of additional superstructure spots as arising from a well-defined combination of substrate and film lattices. The thicknessdependence of the lateral lattice constant could be explained in terms of lattice relaxation. Confirmation of the CePt5 stoichiometry and structure was performed by use of thicknessdependent XAS and a representative LEED-IV study. The results of this study indicate that the intermetallic films exhibit hexagonal CaCu5 structure over the entire range of thicknesses that were studied. The terminating layer consists purely of Pt with one additional Pt atom per unit cell compared to the bulk structure. The line shape of Ce M4,5 spectra was analyzed with the help of full multiplet calculations. Experimentally, characteristic variations of the line shape were observed with increasing f0 -> f1 contribution. The calculations show that these variations are not due to an admixture of j = 7/2 character to the ground state, as often stated in the literature. As alternatives, this observation can be explained by either considering an additional contribution to the spectrum or by assumption of an asymmetric lifetime profile. The model that was developed for the inverse paramagnetic susceptibility contains the hexagonal crystal field, magnetic coupling of the impurity moments in a mean field scheme and Kondo screening. The latter is included phenomenologically by screening factors for the effective moment. Assumption of doublet-specific screening factors, which means that the degree of Kondo interaction depends on the mj character of the 4f sublevels, allows satisfactory reproduction of the experimental data. N2 - Das Ziel der vorliegenden Arbeit ist die Untersuchung der Frage, welche neuen Einsichten in Kondo- und schwere Fermionen-Materialien mittels Röntgenzirkulardichroismus-Experimenten (XMCD) gewonnen werden können. Die Methode XMCD, die sich aus der Röntgenabsorption (XAS) ableitet, detektiert die magnetischen Polarisation gezielt für die verschiedenen Elemente in einem Material und für deren Atomorbitale. Insbesondere an den Ce M4,5 Absorptionskanten bietet die Methode Zugang zum lokalisierten 4f Niveau und damit zum magnetische Störstellenmoment in Ce-Verbindungen, welches eine Voraussetzung für Kondo-Physik ist. Ce M4,5 XMCD ist daher bestens geeignet, um lokalen Magnetismus in Gegenwart von Wechselwirkung zwischen Störstellen- und Leitungselektronen zu studieren. Als Modellmaterial wurde für diese Arbeit CePt5/Pt(111), eine oberflächennahe intermetallische Verbindung, gewählt. Die Präparation dieses Dünnfilmmaterials mithilfe von Molekularstrahlepitaxie kann bestens kontrolliert werden. Die Ausnutzung des einkristallinen Pt(111) Substrats liefert kristallin geordnete Proben. Der Oberflächencharakter der Filme ist gut auf die Informationstiefe von Absorptionsspektroskopie im weichen Röntgenbereich abgestimmt, wenn im Modus totaler Elektronenausbeute gemessen wird. Die XAS- und XMCD-Experimente unter Variation von Temperatur, Einfallswinkel, Probendicke und Magnetfeld lassen die Gegenwart von vier relevanten Energieskalen für das magnetische Verhalten erkennen: 1. Das 4f Niveau in CePt5/Pt(111) ist einer deutlichen Kristallfeldaufspaltung unterworfen, welche eine Neuordnung der sechs j = 5/2 Unterniveaus bewirkt. Dabei erhält die hexagonale Symmetrie der Kristallstruktur mj als gute Quantenzahl. Basierend auf Messungen der paramagnetischen Suszeptibilität mit XMCD und des Lineardichroismus in XAS wird ein Niveauschema vorgeschlagen, das aus beinahe entarteten |1/2> und |3/2 > Dubletts besteht, das |5/2> Dublett folgt bei einer höheren Energie von E5/2 = 15 ... 25 meV. 2. Einzelstörstellen-Kondowechselwirkung bewirkt eine signifikante Kopplung der magnetischen Momente von Störstellen und Leitungszuständen. Dies ist anhand der f0 -> f1-Anteile in Ce M4,5 XAS ersichtlich, deren Stärke über die Probendicke kontrolliert werden kann. In Übereinstimmung damit werden reduzierte effektive 4f-Momente mit XMCD beobachtet. 3. Ruderman-Kittel-Kasuya-Yosida (RKKY) Wechselwirkung erzeugt ferromagnetische Kopplung auf dem Störstellengitter, was zu einer positiven Curie-Weiss-Temperatur in der temperaturabhängigen inversen Suszeptibilität führt. 4. Die inverse Suszeptibilität erlaubt Rückschlüsse auf einen Übergang in den kohärenten schwere-Fermionen-Zustand bei T ~ 20 K. Ein ferromagnetischer Zustand wurde nicht beobachtet. Die Magnetfeldabhängigkeit des magnetischen Moments in diesem Bereich kann im Sinne eines metamagnetischen Übergangs interpretiert werden. Dies eröffnet die Möglichkeit, grundlegende Charakteristika der renormalisierten Bandstruktur eines schweren Fermionen-Systems mittels XMCD zu erforschen. Die Entschlüsselung dieser unterschiedlichen Beiträge zum 4f-Magnetismus erforderte nicht nur umfangreiche Ce M4,5 XAS und XMCD Experimente, sondern auch eine gründliche strukturelle Charakterisierung des Materials, eine grundlegende Studie der spektralen Linienform in Abhängigkeit vom Grad der 4f-Hybridisierung sowie die Entwicklung eines Modells für die paramagnetische Suszeptibilität. Die Abmessungen der Einheitszelle sowie die Filmmorphologie wurden mit niederenergetischer Elektronenbeugung (LEED) und Rastertransmissionselektronenmikroskopie (STEM) analysiert, wobei sich zeigte, dass die intermetallische Verbindung wohldefinierte Filme auf dem Substrat bildet. Daher wird die Filmdicke t, gemessen in Einheitszellen (u.c.), als Hauptmerkmal zur Charakterisierung der Proben eingeführt. Mittels systematische LEED-Messungen im Dickenbereich t ~ 1 ... 15 u.c. wurden sechs verschiedene Phasen identifiziert, welche auf eine gemeinsame Kristallstruktur mit unterschiedlichem Drehwinkel zum Substrat und unterschiedlichen Gitterkonstanten zurückgeführt werden. Bei einer Dicke von t ~ 3 u.c. konnte eine genaue Bestimmung der Oberflächengitterkonstante durchgeführt werden, indem zusätzliche Überstrukturreflexe als Ergebnis von kombinierter Streuung an Substrat- und Filmgitter gedeutet wurden. Die Dickenabhängigkeit der Gitterkonstante kann als abnehmende Gitterverspannung erklärt werden. Die angenommene Stöchiometrie CePt5 und die zugehörige Kristallstruktur konnten mithilfe von dickenabhängigen XAS-Experimenten und einer repräsentativen LEED-IV Studie bestätigt werden. Die Ergebnisse der Letzteren weisen darauf hin dass die Filme im gesamten untersuchten Dickenbereich die CaCu5-Struktur aufweisen. Die Oberflächenabschlusslage besteht rein aus Pt und besitzt im Vergleich zum Volumengitter ein zusätzliches Pt-Atom pro Einheitszelle. Die Linienform von Ce M4,5 Spektren wurde mittels Gesamtmultiplett-Rechnungen analysiert. Die experimentellen Daten zeigen charakteristische Variationen der Linienform in Abhängigkeit des f0 -> f1-Gewichts. Mit Rechnungen konnte gezeigt werden, dass diese Variationen nicht durch eine signifikante Beimischung von j = 7/2-Charakter zum Grundzustand erklärt werden können, was in der Literatur häufig angeführt wird. Zwei Alternativen wurden als mögliche Erklärungen für die Beobachtungen entwickelt: Die Linienformänderungen können entweder durch einen zusätzlichen Beitrag zum Spektrum oder durch asymmetrische Linienprofile erzeugt werden. Das Modell für die inverse paramagnetische Suszeptibilität beinhaltet das hexagonale Kristallfeld, magnetische Kopplung auf dem Strörstellengitter in Molekularfeldnäherung und Kondoabschirmung. Letztere ist phänomenologisch durch Abschirmfaktoren für das effektive Moment berücksichtigt. Eine zufriedenstellende Widergabe der experimentellen Daten konnte durch die Einführung von Dublett-spezifischen Abschirmfaktoren erreicht werden, was darauf hindeutet, dass das Ausmaß der Kondowechselwirkung vom mj-Charakter der 4f Unterniveaus abhängt. KW - Magnetischer Röntgenzirkulardichroismus KW - Schwere-Fermionen-System KW - Kondo-Effekt KW - CePt5 KW - Röntgenabsorptionsspektroskopie KW - LEED Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132504 ER - TY - THES A1 - Topczak, Anna Katharina T1 - Mechanismen des exzitonischen Transports und deren Dynamik in molekularen Dünnschichten für die organische Photovoltaik T1 - Mechanisms of the exciton transport and its dynamics in molecular thin films for organic photovoltaic applications N2 - Der Fokus dieser Arbeit liegt in der Untersuchung des exzitonischen Transports, sowie der Dynamik exzitonischer Zustände in organischen Halbleitern. Als fundamentale Fragestellung werden die inhärenten, materialspezifischen Parameter untersucht, welche Einfluss auf die Exzitonen-Diffusionslänge besitzen. Sowohl der Einfluss der strukturellen Ordnung als auch die fundamentalen exzitonischen Transporteigenschaften in molekularen Schichten werden anhand der archetypischen, morphologisch unterschiedlichen organischen Halbleiter Diindenoperylen (DIP), sowie dessen Derivaten, α-6T und C60 studiert. Die resultierende Filmbeschaffenheit wird mittels Röntgendiffraktometrie (XRD) und Rasterkraftmikroskopie (AFM) analysiert, welche Informationen über die Morphologie, die strukturelle Ordnung und die Mikrostruktur der jeweiligen molekularen Schichten auf verschiedenen Längenskalen liefern. Um Informationen über die Exzitonen-Diffusion und die damit einhergehende Exzitonen- Diffusionslänge LD zu erhalten, wurde die Methode des Photolumineszenz (PL)-Quenchings gewählt. Um umfassende Informationen zur Exzitonen-Bewegung in molekularen Dünnschichten zu erhalten, wurde mit Hilfe der Femtosekunden-Transienten-Absorptionsspektroskopie (TAS) und der zeitkorrelierten Einzelphotonenzählung (TCSPC) die Dynamik angeregter Energiezustände und deren jeweiliger Lebensdauer untersucht. Beide Messverfahren gewähren Einblicke in den zeitabhängigen Exzitonen-Transport und ermöglichen eine Bestimmung des Ursprungs möglicher Zerfallskanäle. Die zentralen Ergebnisse dieser Arbeit zeigen zum einen eine Korrelation zwischen LD und der strukturellen Ordnung der Schichtmorphologie, zum anderen weist die temperaturunabhängige Exzitonen-Bewegung in hochgeordneten polykristallinen DIP-Filmen auf die Möglichkeit der Existenz eines kohärenten Exzitonen-Transports bei tiefen Temperaturen unterhalb von 80 K hin. Zeitaufgelöste spektroskopische Untersuchungen lassen zudem auf ein breites Absorptionsband höherer angeregter Zustände schließen und weisen eine höhere Exzitonen- Zustandsdichte in polykristallinen DIP-Schichten im Vergleich zu ungeordneten Filmen auf. N2 - The objective of this work is the examination of the excitonic transport and its dynamics in organic semiconductors. A fundamental question dealt with in this thesis was related to inherent transport mechanisms, which govern the exciton diffusion length LD. To pursue this question, the excitonic transport in organic semiconductor thin films was examined in particular with regard to the influence of the structural coherence on LD as well as to the fundamental excitonic transport mechanisms. The resulting film structure of the samples is analyzed by means of X-ray diffraction (XRD) and atomic force microscopy (AFM), which yield to information on the morphology, the structural order and the microstructure of the molecular films on various length scales. PL-quenching investigations were performed to determine the exciton transport properties in different archetypical organic semiconductors represented by thin films of Diindenoperylene (DIP) and its derivatives, C60 and α-6T. To receive a comprehensive picture of exciton motion in molecular thin films, the exciton dynamics were investigated by femtosecond transient absorption spectroscopy (TAS) and time correlated single photon spectroscopy (TCSPC). Both measurement techniques gain insights into the time dependent exciton transport as well as help to assign the origin of the occurring decay-channels. The main results of this work reveal a correlation of LD with the structural order of the film morphology. In addition, a temperature independent excitonic motion in polycrystalline films of DIP at low temperatures < 80 K hints at the existence of a coherent exciton transport. Furthermore, time dependent spectroscopic investigations indicate a broad absorption band formed by higher excited states which exhibits a higher excitonic density of states in crystalline DIP-layers compared to films with a lower degree of structural order or amorphous texture. KW - Organische Solarzelle KW - Exzitonen Transport KW - Exzitonenbeweglichkeit KW - Exzitonen Diffusionslänge KW - Exzitonen Dynamik KW - Photolumineszenz Quenching KW - Diindenoperylen KW - C60 KW - Transiente Absorptionsspektroskopie KW - Exziton KW - Organische Halbleiter KW - Photolumineszenz Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132280 ER - TY - THES A1 - Weber, Christian T1 - Electrochemical Energy Storage: Carbon Xerogel-Manganese Oxide Composites as Supercapacitor Electrode Materials T1 - Elektrochemische Energiespeicher: Kohlenstoff Xerogel-Manganoxid Komposite als Elektrodenmaterial für Superkondensatoren N2 - Electrochemical double layer capacitors (EDLC), most commonly referred to as “supercapacitors”, have gained increasing scientific and commercial interest in recent years. Purely electrostatic charge storage processes allow charge- and discharge cycles in the second-time scale, exhibiting a theoretical capacitance in the order of 100 F per gram of electrode material, thereby providing efficient recuperation devices for electromechanical processes, for example. Introducing electrochemically active materials such as manganese oxides into the supercapacitor electrode, allows to combine the double-layer storage with a battery-like storage process, leading to capacitance that can be up to two orders of magnitude larger than those in EDLC. In the present work, an electroless deposition approach of manganese oxide on a carbon scaffold is adapted and further investigated. The carbon material is derived from an organic xerogel, which in turn is prepared via a sol-gel process, allowing tailoring of the structural properties of the carbon, making it an ideal model system to study the relation between morphology and electrochemical performance in the carbon-manganese oxide hybrid electrode. In the first part of this thesis, a variation of manganese oxide deposition time at a low concentration of precursor solution is analyzed. Mass uptakes reach up to 58 wt.%, leading to an increase of volumetric capacitance by a factor 5, however reducing the dynamic performance of the electrode. The structural characterization gives hints on the deposition location of the active material either in the intra-particular pores of the carbon backbone or on the enveloping surface area of the particles forming the backbone. In order to comprehensively answer the question of the location of the active material within the hybrid electrode, the particle size of the carbon backbone and therefore the enveloping surface area of the carbon particles was varied. For samples with high mass uptakes, scanning electron microscopy (SEM) images show a layer thickness of 27 nm of active material around the carbon particles. In order to quantitatively investigate this layer morphology, even for low mass uptakes where no layer is visible in SEM images, a model interpreting data from anomalous small angle X-ray scattering (ASAXS) measurements was developed. The results confirm the presence of a layer around the carbon particles, exhibiting a layer thickness ranging from 3 to 26 nm. From an electrochemical point of view, carbon backbones with a large enveloping surface area will lead to high mass uptakes in the electroless deposition process and therefore lead to high capacitance of the electrode. However, for future application, electrodeposition approaches should be investigated in detail, since no deposits will form on the interface between carbon backbone and current collector, leading to a better dynamic performance of the hybrid electrode. Furthermore, the ASAXS-method should be promoted and applied on other material systems, since this technique allows to draw important conclusions and allows to deduce integral and quantitative information towards a rational design of high performance electrodes. N2 - In den letzten Jahren haben elektrochemische Doppelschichtkondensatoren, meist als “Supercaps” bezeichnet, wachsendes wissenschaftliches und kommerzielles Interesse erfahren. Rein elektrostatische Ladungsspeicherungsprozesse erlauben Lade- und Entladezyklen im Sekundenregime, bei einer theoretischen Kapazität in der Größenordnung von 100 Farad pro Gramm Elektrodenmaterial. Damit steht beispielsweise ein ideales Bauteil zur Energierekuperation in elektromechanischen Prozessen zur Verfügung. Die Verbindung der Doppelschichtelektrode mit elektrochemisch aktiven Materialien, wie zum Beispiel Manganoxiden, erlaubt eine Kombination der elektrostatischen Ladungsspeicherung mit batterieähnlichen Ladungsspeicherungsprozessen. Dies führt zu Kapazitätswerten, die bis zu zwei Größenordnungen über den Kapazitätswerten im Doppelschichtkondensator liegen können. In der vorliegenden Arbeit wurde ein nasschemischer Abscheidungsprozess für die Deposition von Manganoxid auf einem Kohlenstoffgerüst angewendet und weitergehend untersucht. Das Kohlenstoffmaterial wurde aus einem organischem Xerogel hergestellt, welches wiederum durch einen Sol-Gel Prozess dargestellt wurde. Diese Vorgehensweise erlaubt eine gezielte Beeinflussung der strukturellen Eigenschaften des Kohlenstoffes. Dadurch wird das Material zum idealen Modellsystem, um den Einfluss der Morphologie auf die elektrochemischen Eigenschaften der Kohlenstoff-Manganoxid Hybridelektrode zu untersuchen. Im ersten Teil der Arbeit wurde die Abscheidungsdauer des Manganoxids bei einer niedrigen Ausgangskonzentration in der Vorstufe systematisch variiert und die resultierenden Elektroden analysiert. Die MnO2 Massenaufnahme erreichte bis zu 58 wt.%, was zu einer Steigerung der volumetrischen Kapazität um einen Faktor 5 führte. Der Preis für diese Steigerung liegt jedoch in einer Reduktion der Lade- bzw. Entladegeschwindigkeit. Die strukturelle Charakterisierung der Hybridelektroden deutet auf eine Abscheidung des MnO2 in den intrapartikulären Poren der Kohlenstoffpartikel oder auf deren einhüllenden Oberfläche hin. Um den Abscheidungsort des aktiven Materials innerhalb der Hybridelektrode eindeutig zu bestimmen, wurde die Größe der Kohlenstoffpartikel und damit die externe Oberfläche des Kohlenstoffgerüstes systematisch variiert. Aufnahmen mittels Rasterelektronenmikroskopie (REM) zeigen eine Schicht von MnO2 um die Kohlenstoffpartikel mit einer Dicke von bis zu 27 nm für Proben mit Massenzuwächsen von bis zu 130 %. Um die Schichtdicke auch für geringe Massenaufnahmen, bei denen im REM keine Schicht erkennbar ist, quantitativ untersuchen zu können, wurde ein Modell zur Analyse von anomaler Röntgenkleinwinkelstreuung (ASAXS) entwickelt. Die Ergebnisse bestätigen die Existenz einer Schicht um die Kohlenstoffpartikel, deren Dicke zwischen 3 und 26 nm liegt. Aus elektrochemischer Sicht wird ein Kohlenstoffgerüst mit großer einhüllender Oberfläche zu einer großen Massenaufnahme im nasschemischen Abscheidungsprozess und damit zu hohen Kapazitätswerten führen. Für eine zukünftige Anwendung sollten jedoch auch elektrochemische Abscheidungsprozesse genau untersucht werden, da bei dieser Methode kein Material auf der Kontaktfläche zwischen Stromabnehmer und Elektrode abgeschieden wird. Dadurch ist eine Verbesserung der elektrochemischen Performance der Hybridelektrode zu erwarten. Weiterhin sollte die ASAXS-Methode weiterentwickelt und auf andere Materialsysteme angewendet werden, da diese Technik wichtige Schlüsse erlaubt, sowie die Bestimmung integraler und quantitativer Information, die zu gezieltem Design von hocheffizienten Elektroden führen wird. KW - Superkondensator KW - Electrochemical energy storage KW - ASAXS KW - Supercapacitor KW - Energiespeicher KW - Experimental physics Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130748 ER - TY - THES A1 - Stichel, Thomas Günther T1 - Die Herstellung von Scaffolds aus funktionellen Hybridpolymeren für die regenerative Medizin mittels Zwei-Photonen-Polymerisation T1 - Fabrication of scaffolds of hybrid polymers for regenerative medicine using two photon polymerization N2 - In der vorliegenden Arbeit wurde das Verfahren der Zwei-Photonen-Polymerisation von anorganisch-organischen Hybridpolymeren (ORMOCER®e) untersucht. Untersuchungsschwerpunkte bildeten dabei die theoretischen Betrachtungen der Wechselwirkung zwischen Laser und Hybridpolymer, die experimentelle Charakterisierung unterschiedlicher ORMOCER®e sowie die Aufskalierung der Technologie im Hinblick auf die Herstellung von Scaffold-Strukturen für die regenerative Medizin. Hierbei wurde u. a. ein innovativer Belichtungsaufbau entworfen und aufgebaut, der es erlaubt makroskopische, poröse Scaffold-Strukturen mit minimalen Strukturgrößen im Bereich von wenigen Mikrometern herzustellen. ORMOCER®e sind typischerweise für optische Anwendungen konzipiert, weisen allerdings z. T. biokompatible Eigenschaften auf. Das Material ORMOCER® MB-47 wurde von M. Beyer eigens für biologische Anwendungen synthetisiert. Es zeichnet sich durch Biokompatibilität, teilweiser Biodegradierbarkeit und hervorragende Strukturierbarkeit durch die Zwei-Photonen-Polymerisation aus. Das in dieser Arbeit verwendete Mikrostrukturierungssystem beinhaltet im Wesentlichen einen Ultrakurzpulslaser, der 325 fs Pulse bei 1030 nm emittiert (verwendet wird die zweite Harmonische bei 515 nm), ein hochpräzises Positionierungssystem, bestehend aus drei luftgelagerten Lineartischen mit einer Reichweite von 10 cm (y-, z-Richtung) bzw. 15 cm (x-Richtung) sowie diversen Objektiven zur Fokussierung. Mit diesen Komponenten lassen sich komplexe dreidimensionale Strukturen mit minimalen Strukturgrößen von bis unter 100 nm erzeugen. In Kapitel 5.1 wurden theoretische Untersuchungen im Hinblick auf das Wechselwirkungsverhalten zwischen der fokalen Intensitätsverteilung und dem Materialsystem zur Bildung eines Voxels durchgeführt, wobei das technische Wechselwirkungsvolumen und das chemische Wechselwirkungsvolumen samt den reaktionskinetischen Abläufen separat betrachtet wurde. Das technische Wechselwirkungsvolumen beschreibt die Wechselwirkung zwischen der fokalen Intensitätsverteilung und dem Materialsystem im Rahmen eines Schwellwertprozesses, der es erlaubt Strukturdimensionen unterhalb des Beugungslimits zu realisieren. Die theoretischen Untersuchungen diesbezüglich ergaben, dass sphärische Aberrationen die fokale Intensitätsverteilung (Intensity-Point Spread Function (IPSF)) in Abhängigkeit der Belichtungskonfiguration z. T. sehr stark beeinflussen. Darüber hinaus wurde durch Betrachtung des Schwellwertverhaltens ein mathematischer Zusammenhang zwischen der IPSF und der Leistungsabhängigkeit der Charakteristik des technischen Wechselwirkungsvolumens geschaffen. Das chemische Wechselwirkungsvolumen beschreibt das tatsächliche Volumen der stattfindenden Polymerisationsreaktion. Dieses geht über das des technischen hinaus, was eine Folge von raumeinnehmendem Kettenwachstum im Rahmen von reaktionskinetischen Teilprozessen ist. Durch die Simulationen dieser reaktionskinetischen Abläufe wurde das leistungsabhängige, zeitliche Verhalten der Reaktionsteilnehmer (Radikale, Monomer, Photoinitiator) und des Vernetzungsgrades ermittelt. Die Simulation wurden für sehr kurze Belichtungszeiten (< 10 ms) auf der Basis von gekoppelten Differentialgleichungen nach Uppal & Shiakolas durchgeführt. Dabei wurde der Einfluss der Teilchendiffusion sowie der Temperaturentwicklung als gering erachtet und in den Berechnungen vernachlässigt. Die Simulationsergebnisse zeigen, dass eine geringe Belichtungszeit nicht unbedingt durch größere Laserleistungen ausgeglichen werden kann, um einen bestimmten Vernetzungsgrad zu erzielen. Vielmehr führt eine höhere Leistung zu einem raschen Verbrauch des Photoinitiators im Reaktionsvolumen und damit einem schnelleren Erliegen der Polymerisationsreaktion. Um dennoch hohe Vernetzungsgrade erzielen zu können, sind die Reaktionsgeschwindigkeitskoeffizienten der Propagation und der Terminierung k_P und k_T sowie eine ausreichende Photoinitiatorkonzentration von entscheidender Bedeutung. Je größer das Verhältnis k_P/k_T, desto höhere Vernetzungsgrade können auch bei kurzen Belichtungszeiten realisiert werden, wobei ein wesentlicher Teil der Polymerisation als Dunkelreaktion stattfindet. Diese Erkenntnis ist für die Aufskalierung der Technologie der Zwei-Photonen-Polymerisation von großer Bedeutung, welche mit einer Verkürzung der Belichtungszeiten einhergehen muss. Des Weiteren zeigen die Simulationen, dass das spatiale Konversionsprofil eines Voxels ein lokales Minimum im Zentrum aufweisen kann. Dieses Phänomen tritt dann auf, wenn aufgrund der applizierten Leistung, welche gemäß des Profils der IPSF im Zentrum am höchsten ist, der Photoinitiator im Zentrum rasch verbraucht wird. In Kapitel 5.2 wurde die Voxelbildung, das Vernetzungsverhalten sowie die mechanischen Eigenschaften belichteter ORMOCER®e bei unterschiedlichen Parametern und Materialsystemen experimentell untersucht. An Hand von Voxelfeldern wurden die Voxelgröße, das Aspektverhältnis und das Voxelvolumen bei unterschiedlichen Laserleistungen ermittelt. Die Ergebnisse wurden mit den berechneten technischen Wechselwirkungsvolumina verglichen, wobei die Differenz von tatsächlicher Voxelgröße und technischem Wechselwirkungsvolumen als eine weitere charakteristische Größe eingeführt wurde. Dabei zeigte sich, dass besonders die Voxellänge von der Länge des technischen Wechselwirkungsvolumens derart abweicht, dass dies nicht durch raumeinnehmendes Kettenwachstum im Rahmen der Reaktionskinetik erklärt werden kann. Mögliche Erklärungsansätze basieren hierbei auf Wechselwirkungseffekte zwischen Lichtfeld und Material. Beispielsweise könnten durch den nichtlinearen optischen Kerr-Effekt oder die Polymerisation selbst Brechzahlinhomogenitäten induziert werden, welche die Voxelbildung durch Selbstfokussierung beeinflussen. Der Unterschied der Voxelbreite, also das laterale chemische Voxelwachstum, zur Breite des technischen Wechselwirkungsvolumens wurde hingegen mit Hilfe der Reaktionskinetik erklärt. Dabei zeigte sich, dass dieser Unterschied sowohl vom Material selbst als auch von der Fokussieroptik abhängt. Des Weiteren wurde die Polymerisationsrate der unterschiedlichen Materialien aus der Auftragung des Voxelvolumens gegenüber der Laserleistung durch lineare Approximation bestimmt. Hierbei wurde festgestellt, dass die Materialsysteme z. T. erhebliche Unterschiede aufweisen. Als das Materialsystem mit der höchsten Polymerisationsrate hat sich das auf Acrylaten als vernetzbare Gruppen basierende OC-V in Kombination mit dem Irgacure® Oxe02 Photoinitiator herausgestellt. Aus diesem Grund wurde es für die Herstellung von makroskopischen Strukturen durch die Zwei-Photonen-Polymerisation bevorzugt verwendet. Die unterschiedlichen Materialien wurden ferner mit Hilfe der µ-Raman-Spektroskopie auf ihr Vernetzungsverhalten untersucht. Konkret wurden hierbei Linienfelder unter Variation der Scan-Geschwindigkeit und der Laserleistung mit Hilfe der 2PP hergestellt und vermessen. Die Vernetzungsgrade wurden semi-quantitativ aus den Spektren ermittelt. Insgesamt wurden Vernetzungsgrade im Bereich zwischen 40 % und 60 % gemessen, wobei mit OC-V und 2 Gew.-% Irgacure® Ox02 die höchsten Vernetzungsgrade erzielt wurden. Des Weiteren hat sich gezeigt, dass die Konversionsgrade für die jeweiligen Materialsysteme bei allen Scan-Geschwindigkeiten sich auf einem im Rahmen der Fehlergrenzen gleichem Niveau befinden. Damit kann der durch Simulationen theoretisch prognostizierte Abfall des Sättigungskonversionsgrades mit zunehmender Scan-Geschwindigkeit mit entsprechend variierenden Belichtungszeiten nicht als verifiziert angesehen werden. Die verschiedenen Materialsysteme wurden außerdem bezüglich ihrer mechanischen Eigenschaften charakterisiert. Zu diesem Zweck wurden zylindrische Formkörper unter verschiedenen Bedingungen (1PP, 2PP, verschiedene Photoinitiatorkonzentrationen) hergestellt und Druckfestigkeitsmessungen durchgeführt, sowie die Dichten und die Vernetzungsgrade aus den Formkörpern bestimmt. Insgesamt wurden Elastizitätsmodule im Bereich zwischen 0,40 und 1,37 GPa und Bruchfestigkeitswerte zwischen 117 bis 310 MPa ermittelt. Es konnte festgestellt werden, dass die Konzentration des Photoiniators das Vernetzungsverhalten und damit die mechanischen Eigenschaften der Formkörper stark beeinflusst. Während geringe Konzentrationen zu geringeren Vernetzungsgraden und niedrigen Elastizitätsmodulen führten, zeigten die Formkörper höherer Konzentration ein deutlich spröderes Verhalten mit höheren Vernetzungsgraden und Elastizitätsmodulen. Das höchste Elastizitätsmodul wurde an Hand von Formkörpern vermessen, welche aus OC-V mit 2 Gew.-% Irgacure® Ox02 hergestellt wurden. Darüber hinaus wurde festgestellt, dass sich die mechanischen Eigenschaften von durch 2PP hergestellten Formkörpern durch die applizierte Laserleistung beeinflussen lassen. Die Ursache hierfür ist, dass durch die Laserleistung die Voxelgröße und damit der Überlapp zwischen den Voxeln eingestellt werden kann. Im Bereich des Überlapps findet dann eine Doppelbelichtung des Materials statt, was zu höheren Vernetzungsgraden führen kann. Außerdem wurden durch die 2PP bei hinreichend großen Belichtungsleistungen auch Formkörper realisiert, welche höhere Elastizitätsmodule und Bruchfestigkeitswerte aufwiesen als Körper, welche durch UV-Belichtung hergestellt wurden. Die Aufskalierung der Zwei-Photonen-Technologie wurde in Kapitel 5.3 behandelt. Neben einer ausführlichen Diskussion zu den Herausforderungen diesbezüglich, wurden zwei Belichtungsstrategien zur Herstellung von makroskopischen Scaffold-Strukturen eingesetzt und optimiert. Hierbei ist insbesondere der Badaufbau hervorzuheben, der es erlaubte Strukturen von prinzipiell unbegrenzter Höhe mit Hilfe der Zwei-Photonen-Polymerisation herzustellen. Eine wesentliche Herausforderung der Aufskalierung der 2PP ist die Beschleunigung des Prozesses. Aus den Betrachtungen geht hervor, dass für eine gravierende Beschleunigung der 2PP-Strukturierung neben der Scan-Geschwindigkeit auch das Beschleunigungsvermögen des Positionierungssystems entscheidend ist. Des Weiteren sind auch Parallelisierungsmethoden mit z. B. diffraktiven optischen Elementen nötig, um ausreichende Prozessgeschwindigkeiten zu erzielen. Der Standardaufbau mit Luftobjektiven wurde dazu verwendet millimetergroße Strukturen mit hoher Qualität aus ORMOCER®en herzustellen. Auch wenn die maximale Strukturhöhe durch den Arbeitsabstand des Objektivs beschränkt ist, hat sich gezeigt, dass dieser Aufbau sich für die einfache Herstellung von millimetergroßen Test-Scaffold-Strukturen eignet, welche z. B. für Zellwachstumsversuche oder mechanische Belastungstest eingesetzt werden können. Das biodegradierbare MB-47 wurde hierbei ebenfalls erfolgreich eingesetzt und u. a. für die Herstellung von Drug-Delivery-Strukturen verwendet. Der Badaufbau, basierend auf einem Materialbad mit durchsichtigem Boden, einem darin befindlichen und in der Vertikalen (z-Richtung) beweglichen Substrathalter sowie einer Belichtung von unten durch eine sich in der Ebene bewegende Fokussieroptik, wurde verwendet um eine Freiheitsstatue mit 2 cm Höhe sowie millimetergroße Scaffold-Strukturen mit Porengrößen im Bereich von 40 bis 500 µm in ORMOCER-V zu realisieren. Weitere Strukturierungsresultate mit z. T. anwendungsbezogenem Hintergrund sind die Gehörknöchelchen des menschlichen Ohrs in Lebensgröße, ein Scaffold in Form eines Steigbügels des menschlichen Ohrs, Test-Scaffold-Strukturen für mechanische oder biologische Untersuchungen sowie Drug-Delivery Strukturen. Es wurden Bauraten von bis zu 10 mm^3/h erzielt. Bezüglich der Prozessgeschwindigkeit und Strukturhöhe wurde bei Weitem noch nicht das Potential des luftgelagerten Positioniersystems ausgeschöpft. Dafür bedarf es einer Gewichtsoptimierung des bestehenden Belichtungsaufbau, um höhere Beschleunigungswerte und Scan-Geschwindigkeiten realisieren zu können. Unter Annahme einer effektiven Gewichtsoptimierung und der damit verbundenen Erhöhung der Beschleunigung auf 10 m/s^2 könnte eine Baurate bei einer Scan-Geschwindigkeit von 225 mm/s und einem Slice- und Hatch-Abstand von 15 und 10 µm von etwa 60 mm^3/h erzielt werden. Im Rahmen der Aufskalierung wurde ebenfalls der experimentelle Einsatz von diffraktiven optischen Elementen zur Fokus-Multiplikation untersucht. Die Experimente wurden mit Hilfe eines Elements durchgeführt, welches eine 2 x 2 Punkte-Matrix neben der ungebeugten 0. Ordnung bereitstellt und Bestandteil eines experimentellen Setups war, welches aus Linsen, Blenden und einem Objektiv zur Fokussierung bestand. Mit Hilfe der erzeugten Spot-Matrix wurden zum einen simultan vier Drug-Delivery-Strukturen hergestellt und zum anderen einzelne Scaffold-Strukturen realisiert. In jedem Fall wurde eine Beschleunigung des Prozess bzw. eine Erhöhung der Polymerisationsrate um den Faktor 4 für die verwendeten Parameter erreicht. Bei der Herstellung der Scaffolds wurden zwei unterschiedliche Strategien verfolgt. Während zum einen die Periodizität der inneren Scaffold-Struktur auf die Fokusabstände angepasst und damit simultan vier aneinandergereihte Einheitszellen hergestellt wurden, konnte zum anderen auch demonstriert werden, dass durch die geschickte Bewegung der Fokusse eine ineinander verschobene Struktur möglich ist. Der Vorteil der letzteren Strategie ist, dass auf diese Weise eine komplette Schicht gescannt werden kann und damit hohe Scan-Geschwindigkeiten realisiert werden können. Die erzielten Bauraten waren dennoch nicht größer als die Bauraten, die mit einem einzelnen Spot im Rahmen des Standardaufbaus oder des Badaufbaus erreicht wurden. Hierfür bedarf es weiterer Optimierung der Parameter und des Setups. Transmittiert fokussiertes Licht eine Grenzfläche zweier Medien mit unterschiedlichen Brechungsindizes, dann tritt sphärische Aberration auf, welche sich durch die Verbreiterung des Fokus besonders in axiale Richtung bemerkbar macht. Da diese im Rahmen der verwendeten Belichtungsstrategien die Strukturierungsergebnisse nachweislich beeinträchtigen, wurden experimentelle Untersuchungen sowie Optimierungsroutinen diesbezüglich durchgeführt. Im Zusammenhang mit dem Standardaufbau wurde eine Leistungsanpassung während der Strukturierung vorgenommen. Auf diese Weise wurde erreicht, dass bei variabler Fokustiefe im Material die maximale Intensität trotz sphärischer Aberration konstant gehalten wurde, wodurch sich die strukturelle Homogenität der Scaffolds entlang der axialen Richtung (optische Achse) deutlich verbesserte. Des Weiteren wurde der Badaufbau dazu verwendet, die axiale Intensitätsverteilung in-situ für diskrete Fokustiefen unter der Verwendung eines Objektivs mit der NA von 0,60 abzubilden. Zu diesem Zweck wurde aus hergestellten Voxelfeldern eine Voxelfeldfunktion ermittelt und mit der axialen IPSF korreliert. Dabei wurde angenommen, dass sich das chemische Wechselwirkungsvolumen vernachlässigbar gering vom technischen Wechselwirkungsvolumen unterscheidet. Die experimentellen Ergebnisse zeigten deutlich die für sphärische Aberrationen typischen Nebenmaxima auf. Die Lage bzw. Abstände dieser entsprachen in guter Übereinstimmung den jeweiligen Simulationen. Schließlich wurde noch die sphärische Aberration durch den Korrekturring der Objektive für verschiedene Deckglasdicken korrigiert. Die resultierende IPSF wurde ebenfalls mit Hilfe des Badaufbaus abgebildet, wobei keinerlei Nebenmaxima gefunden werden konnten. Die Breite des Hauptmaximums konnte deutlich verringert werden. Zusammengefasst lässt sich sagen, dass im Rahmen dieser Arbeit erhebliche Fortschritte bei der Aufskalierung der 2PP zur Erzeugung von Scaffold-Strukturen für die regenerative Medizin erzielt wurden. Die erreichten Strukturdimensionen und die Bauraten übertreffen alle bis dato bekannten Ergebnisse. Dabei wurden auch durch theoretische Betrachtungen und experimentellen Methoden grundlegende Erkenntnisse über die Reaktionsdynamik der durch die Zwei-Photonen-Absorption initiierten Polymerisationsreaktion gewonnen. Nichtsdestotrotz sind einige Fragestellungen offen sowie Problematiken des Prozesses vorhanden, die für eine Realisierung von makroskopischen Scaffold-Strukturen gelöst werden müssen. So sind die realisierten Bauraten noch zu gering, um in angemessener Zeit makroskopische Scaffolds-Strukturen herzustellen, welche deutlich größer als 1 cm^3 sind. Aus diesem Grund müssen weitere Verbesserungen bezüglich der Scan-Geschwindigkeit sowie des Einsatzes von diffraktiven optischen Elementen zur Erhöhung der Polymerisationsrate erzielt werden. Da bei der Verwendung von Multi-Spot-Arrays, welche mit Hilfe gewöhnlicher diffraktiver optischer Elemente erzeugt wurden, die Realisierung von beliebigen und detaillierten äußeren Scaffold-Formen eingeschränkt ist, empfiehlt es sich den Einsatz von Spatial Light-Modulatoren zu verfolgen. Diese fungieren als dynamisch modulierbares DOE, mit dem einzelne Spots gezielt ein- und ausgeblendet und Spotabstände dynamisch variiert werden können. Schließlich ist es vorstellbar, den Spatial Light-Modulator mit dem Badaufbau zu kombinieren, um uneingeschränkte, große Strukturen in annehmbarer Zeit mit hochaufgelösten Details herstellen zu können. Dieses Vorgehen bedarf allerdings noch der tiefgreifenden Untersuchung der Potentiale des Spatial Light-Modulators. Darüber hinaus weisen die theoretischen und experimentellen Untersuchungen zur Reaktionskinetik darauf hin, dass die Voxelentstehung ein komplexer Prozess ist, der möglicherweise auch durch nichtlineare optische Wechselwirkungseffekte abseits der Zwei-Photonen-Absorption beeinflusst wird. Daher sind hier weitere Untersuchungen und Berechnungen zu empfehlen, um z. B. den Einfluss einer intensitätsabhängigen Brechzahl auf die Voxelbildung quantifizieren zu können. Entsprechende Ergebnisse könnten schließlich dazu dienen, dass im Rahmen dieser Arbeit entwickelte Modell zur Voxelbildung, welches auf der getrennten Betrachtung von technischen und chemischen Wechselwirkungsvolumen basiert, zu verbessern. Ein leistungsfähiges Modell, welches die Voxelbildung in Abhängigkeit des Materials und der Fokussieroptik präzise vorhersagen kann, wäre für das Erzielen optimaler Strukturierungsergebnissen ein Gewinn. N2 - In this thesis, the two photon polymerization technique using ORMOCER®s was investigated thoroughly. The main aspects of matter were the theoretical investigations of the interaction between laser and polymer, the experimental characterization of the different ORMOCER®s, and the scale-up of the photon polymerization technique in order to fabricate scaffolds for the regenerative medicine. The latter was achieved by designing and building up an innovative exposure device[38] which enables the fabrication of scaffold structures with minimal structure sizes of a view microns. The experiments were done using UV sensitive anorganic-organic hybrid polymers, also known as ORMOCER®s. These are typically synthesized for optical applications, but some are also biocompatible. The ORMOCER® MB-47 was invented by M. Beyer for biological application and possesses biocompatibility, partial biodegradability, and advanced 2PP structuring behavior. The micro-structuring system used contains an ultra-short pulse laser which emits 325 fs pulses at 1030 nm (applied was 515 nm using second harmonic generation), a highly precise positioning system which consists of three air-bearing stages with a travel range of 10 cm (y, z direction) and 15 cm (x direction), respectively, and some objectives for focusing. With these components, complex three-dimensional structures with minimal structure size below 1 µm can be produced. In Capital 5.1, theoretical studies of the interaction between the focal intensity distribution and the material, which defines voxel growth, were performed. Therefore, the technical interaction volume and the chemical interaction volume were separately investigated. The technical interaction volume describes the threshold driven interaction between the focal intensity distribution and the material system, which allows the realization of structure sizes below the resolution limit (diffraction) of the wavelength used. The theoretical investigations showed that spherical aberration influences the focal intensity distributions (Intensity-Point Spread Function (IPSF)) which were calculated for different experimental exposure configuration. The results propose a severe influence with increasing focus depth into the material. Moreover, a formal relation between the IPSF and the technical interaction volume was derived by using the threshold assumption. By using the Gaussian beam assumption as IPSF, the analogy of the derived formula to the voxel growth model of Serbin et al. was recognized. The chemical interaction volume represents the actual volume of the polymerization reaction. Its amount exceeds the technical interaction volume due to the space-consuming chain growth during the polymerization. By the simulation of the reaction kinetics of the polymerization, the time- and power-depending behavior of the different reactants (radicals, monomer, photo initiator) as well as the degree of conversion was calculated. The simulations were done for very short exposure times (< 10 ms) by using a system of coupled differential equations which are based on a model invented by Uppal & Shiakolas. Therefore, the influence of diffusion and temperature was estimated to be small on short time scales and thus neglected. The results of the simulations show that a short exposure time cannot be necessarily compensated by high laser powers to achieve a certain degree of conversion. Higher laser power leads rather to a swift consumption of the photo initiator and thus to a disruption of the polymerization. In order to achieve high degrees of conversions, the reactive rate coefficients of the propagation and termination k_P and k_T as well as a sufficient amount of photo initiator concentration is essential. The larger the ratio k_P/k_T the higher degree of conversion can be realized even with short exposure times whereas a significant part of the reaction takes place during the dark period. This finding is important for the scale-up of the photon polymerization technique which has to involve shorter exposure times. Moreover, the simulations show that the spatial profile of the degree of conversion can feature a central minimum. This phenomenon occurs when the central maximum intensity of the IPSF consumes the entire photo initiators in short times which leads to a disruption of the polymerization. In Capital 5.2, the voxel growth, the behavior of conversion as well as the mechanical properties of hardened ORMOCER®s were experimentally investigated with different parameters and material systems. By means of voxel fields, voxel sizes, aspect ratios and voxel volumes at different laser powers were determined. The results were compared with the calculated technical interaction volume, whereas the difference was invented as a new characteristic value. It has been shown that the voxel length deviates clearly from the length of the technical interaction volume which cannot be explained by space-consuming chain growth during the polymerization. Instead, it was assumed that this observation is reasoned by interaction effects between light and material (optical Kerr effect, polymerization) leading to an inhomogeneous refractive index distribution and thus to self-focusing and self-trapping. In contrast to that, the difference between the voxel diameter and the diameter of the technical interaction volume was correlated with reaction kinetic influences. Additionally, the dependency of the voxel volume on the laser power was linear approximated in order to determine the polymerization rate of different material systems. Here, strong differences between the materials were identified. The material with the highest polymerization rate was OC-V with the Irgacure® Oxe02 photo initiator which consists of acrylates as cross-linkable group. Because of this, this material system was preferred for 2PP structuring of large scale structures. The different materials were investigated concerning their conversion behavior by means of µ-Raman spectroscopy. Therefore, fields of lines were produced by 2PP with varying scan speed and laser power and measured. The degree of conversion was then semi-quantitative extracted from the spectra. All in all, the degrees of conversion were determined to be in the range of 40 to 60 % for all materials. The material with the highest degree of conversion was the OC-V with 2 wt.-% Irgacure® Ox02. Moreover, the measurements showed that the degree of conversion for each material system does not vary with the scan speed (exposure time) within the limits of measurement error. Thus, the simulations from Capital 5.1.3, which predicted that shorter exposure times cannot be necessarily compensated by higher laser powers, could not be confirmed. Furthermore, the mechanical properties of the different materials were characterized. Therefore, cylindrical samples were produced with different processes and parameters and tested with a compressive load. Also the densities and degrees of conversion were determined. All in all, elastic moduli between 0,40 and 1,37 GPa and load failures between 117 and 310 MPa were measured. It was detected that the photo initiator concentration influences the conversion behavior and thus the mechanical properties of the samples. While low concentrations led to lower degrees of conversion and lower elastic moduli, the samples produced with higher concentrations were more brittle with higher degrees of conversion and elastic moduli. The highest elastic modulus was measured for samples which were produced in OC-V with 2 wt.-% Irgacure® Ox02. Moreover, the mechanical properties of samples produced with 2PP can be influenced by the utilized laser power. This is reasoned by the voxel sizes which can be adjusted by the laser power and which determine the overlap of vicinal voxels at distinct hatch and slice distances. In the overlap area double exposure takes place which can lead to higher degrees of conversion. It was found that with sufficient laser powers the 2PP leads to higher elastic moduli and load failures than the 1PP. Capital 5.3 deals with the scale-up of the photon polymerization technique. After the discussion of the challenges, two exposure strategies were used to produce macroscopic scaffold structures. Especially, the vat setup has to be emphasized which can be used to build structures with basically unlimited structure heights by means of the 2PP technique. One of the major challenges concerning the scale-up of the 2PP is the speed-up of the process. Therefore, the scan speeds as well as the acceleration of the positioning system play important roles. Moreover it was detected that further parallelizing techniques as the utilization of diffraction optical elements are needed in order to achieve a sufficient speed-up of the 2PP technology. The standard exposure setup with air objectives was used to fabricate millimeter-sized structures in ORMOCER®s which high quality. Though the maximal achievable structure height is limited by the working distance of the objective used, the setup is suitable for the fabrication of macroscopic scaffolds which can be utilized for biological or mechanical testing. Moreover, the biodegradable MB-47 was successfully used for the fabrication of Drug Delivery structures. The vat setup bases on a vat/bath as material reservoir with transparent bottom, a sample holder moveable in the vertical (z) direction, and an upside down x-y-scanning objective. The sample can be moved upwards which enables one to build structures whose heights are not limited by the working distance of the employed objective anymore. This setup was used to fabricate a model of the statue of liberty with a height of 2 cm and millimeter-sized scaffolds with pore sizes in the area between 40 and 500 µm in ORMOCER®-V. Moreover, the human ossicles in life size, a scaffold in the shape of the human stapes, different test scaffold structures for mechanical and biological investigations and drug delivery structures were build. The achieved maximum building rate was 10 mm^3/h. So far, the speed-up and scale-up potentials of the air-bearing positioning system haven’t been exhausted when using the vat setup. Therefore, the setup has to be optimized regarding weight and stability in order to realize higher accelerations of up to 10 m/s^2. This would enable build rates of up to 60 mm3/h with a scan speed of 224 mm/s and slice and hatch distances of 15 and 10 µm. Moreover, the speed-up by means of diffractive optical elements was experimentally investigated. Therefore, an optical setup was constructed which includes the diffractive optical element, some lenses, an objective, and a blind to blank the zero order. By this a 2 x 2 spot matrix was generated which was used for the simultaneous fabrication of four drug delivery structures and the production of single scaffold structures. In both cases an increase of the polymerization rate was achieved regarding to structuring without diffractive optical elements. For the fabrication of the scaffold structures two different scan strategies were performed. Using the first one, a scaffold was built up by the simultaneous structuring of four scaffolds’ gyroid unit cells. After finishing these cells, more cells were stitched to them until a millimeter-sized scaffold was achieved. For this strategy, it’s important that the size of the unit cell design is adjusted to the focal matrix distances. With the second strategy a scanning of the whole spot matrix along the whole scaffold flank is performed. By this it was possible to produce a pile of interleaved beams which represents a woodpile-like scaffold. The fact that the produce lines of each layer are as long as scaffold flank leads to the advantage that higher scan speeds and thus build rates can be achieved than with the first strategy. Nevertheless, the realized maximum build rates weren’t exceeding the build rates which were reached by using the standard setup or the vat setup. Thus, more optimization of parameters and setup is needed. If focused laser lights transmits through an interface of two materials with different refractive indices, spherical aberration occurs which leads to blurring of the focal intensity distribution especially in the axial direction. When using air objectives this blurring affects the structuring results. Hence theoretical and experimental investigations were done in order to optimize exposure routines. When using the standard exposure setup, power adoption was performed during the structuring process which allows holding the maximum focal intensity constant at varying focal depths in the presence of spherical aberration influences. By this, a clear improvement of the scaffolds’ quality and homogeneity along the axial direction was achieved. Furthermore, the vat setup with the NA 0.60 objective was used to perform an experimental in situ mapping of the focal axial intensity distribution for different focal depths. A voxel field function was extracted from produced voxel fields and correlated with the axial intensity distribution. Therefore, it was assumed that the chemical interaction volume is equal to the technical interaction volume. The experimental results showed clearly the presence of side maxima which are typical for spherical aberration influences. The distances between them were predicted quite exactly by theoretical simulations. Finally, the spherical aberrations were reduced by the correction collar of the objective. The resulting intensity distribution was also mapped with the vat setup and no side maxima were found for the experimental intensity distribution. Moreover the contrast of the main maximum was clearly improved. Overall, it can be concluded that within this work a noticeable progress in the scale-up of the two-photon polymerization technique was achieved which is important for the fabrication of scaffold structures for the regenerative medicine. The realized structure dimensions and build rates exceed all, so far, known specifications of structures fabricated by two-photon polymerization. Moreover, basic knowledge of the most important aspects of the scale-up was discovered by thoroughly theoretical and experimental investigations. Nevertheless, there is still much improvement necessary to establish the two photon polymerization technique as a competitive tool for the production of scaffold structures which are larger than 1 cm^3. Higher scan speeds and advanced setups with diffractive optical elements must be applied to achieve build rates in the range over 1 cm^3/h. Due to the lack in flexibility of usual diffractive optical elements, it is recommended to use spatial light modulators which are dynamic adjustable diffractive optical elements. With them it is possible to vary the spot intensity distribution, spot number as well as the spot distances during the process. Finally, it is imaginable that in future the vat setup combined with a spatial light modulator can be used for the fabrication of large macro structures with finest details in adequate time. But therefore, it is necessary to perform thoroughly investigations concerning the potentials of spatial light modulators. Moreover, the theoretical and experimental investigations on the reaction kinetics show that voxel growth is a complex process which is possibly affected by nonlinear optical interactions aside from the two-photon absorption phenomenon. Thus, intensive study should be done in order to, for example, quantify the influence of an intensity-dependent refractive index on the voxel growth. Maybe, results could be used to improve the voxel growth model of this work which bases on the separate consideration of the technical and chemical interaction volumes. A powerful tool enabling the prices prediction of voxel growth characteristics depending on material and focusing optics would help to improve the detail quality of fabricated scaffolds. KW - Tissue Engineering KW - Polymere KW - Mikrofertigung KW - Two-photon polymerization KW - Two-photon absorption KW - Scaffold fabrication KW - Zwei-Photonen-Polymerisation KW - Zweiphotonenabsorption KW - Reaktionskinetik KW - Raman-Spektroskopie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-130161 ER - TY - THES A1 - Lermer, Matthias T1 - Wachstum und Charakterisierung von Quantenpunkt-Mikrotürmchen mit adiabatischer Modenanpassung T1 - Growth and characterisation of quantum dot - micropillars with adiabatic mode transission N2 - Verschiedene Konzepte zur Realisierung einer geeigneten Umgebung für Licht- Materie-Wechselwirkung konkurrieren um Anerkennung und eine ständige Optimierung der Systemparameter findet statt. Das Konzept von Mikrotürmchen scheint prädestiniert, da es viele anwendungsfreundliche Eigenschaften in sich vereint. Allerdings stellt die drastische Abnahme des Q Faktors für kleiner werdende Durchmesser d einen wesentlichen Limitierungsfaktor dieser Strukturen dar. Für viele Anwendungen resultiert daraus ein Kompromiss aus hohem Q Faktor und kleinem Modenvolumen der Strukturen, wodurch das volle Potential des Resonatorsystems nicht ausgeschöpft werden kann. Ziel dieser Arbeit war es, die drastische Abnahme des Q Faktors von Mikrotürmchen mit Durchmessern um 1μm aufzuheben und dadurch Resonatoren mit d < 1μm für ausgeprägte Licht-Materie-Wechselwirkung herzustellen. Dazu wurde erstmalig beabsichtigt eine Modenanpassung in Mikrotürmchen vorgenommen. Mittels Molekularstrahlepitaxie konnte eine Übergangsregion, bestehend aus drei Segmenten, in diese Strukturen implementiert und so ein adiabatischer Modenübergang zwischen der aktiven Mittelschicht und den Spiegelbereichen vorgenommen werden. Der positive Einfluss dadurch ergab sich in einer signifikanten Verbesserung des gemessenen Q Faktors für Durchmesser unter 1μm. Für d = 0.85μm konnte ein Q Faktor von 14 400 bestimmt werden. Dies stellt damit den höchsten je gemessenen Wert für Mikrotürmchen im Submikrometerbereich dar. Dadurch wird ein Bereich mit Modenvolumina < 3 kubischen Wellenlängen erschlossen und ausgeprägte Wechselwirkungseffekte im Mikrotürmchensystem sind zu erwarten. Starke Quantenpunkt-Licht-Kopplung konnte in diesen Strukturen nachgewiesen werden. Die höchste Vakuum-Rabiaufspaltung betrug 85μeV und die Visibilität wurde zu 0.41 bestimmt. Im Zuge der weiteren Optimierung der Systemparameter für die starke Kopplung wurde ein ex-situ Ausheilschritt auf die verwendete Quantenpunktsorte angewendet. In magnetooptischen Untersuchungen konnte damit eine Verdopplung der mittleren Oszillatorstärke auf einen Wert von 12 abgeschätzt werden. Weiter konnte in adiabatischen Mikrotürmchen über einen großen Durchmesserbereich von 2.25 bis 0.95μm eindeutiger Laserbetrieb des Quantenpunktensembles nachgewiesen werden. Dabei konnte eine kontinuierliche Reduzierung der Laserschwelle von über zwei Größenordnungen für kleiner werdende Durchmesser beobachtet werden. Für Durchmesser � < 1.6μm betrug der Beta-Faktor der Mikrolaser in etwa 0.5. Sie zeigten damit beinahe schwellenloses Verhalten. Zuletzt wurde der elektrische Betrieb von adiabatischen Mikrotürmchen gezeigt. Dafür wurde eine dotierte Struktur mit adiabatischem Design hergestellt. Im Vergleich zur undotierten Struktur fielen die gemessenen Q Faktoren in etwa um 5 000 geringer aus. Die spektralen Eigenschaften sowohl des Resonators als auch einzelner Quantenpunktlinien zeigten vernachlässigbare Abhängigkeit der Anregungsart (optisch oder elektrisch) und zeugen von einem erfolgreichen Konzept zum elektrischen Betrieb der Bauteile. Zeitaufgelöste Messungen erlaubten die Beobachtung von interessanten Dynamiken der Rekombination von Ladungsträgern in den Proben. Als Ursache dafür wurde ein hohes intrinsisches Feld, welches auf Grund des Designs der Schichtstruktur entsteht, identifiziert. Weiter zeigte sich, dass sich das interne Feld durch Anregungsart und extern angelegte Spannungen manipulieren lässt. N2 - Various concepts for the realization of a proper environment for interaction of light and matter compete for recognition and a continous optimizing process takes place. The concept of micropillars seems to be predestinated as it unifies many helpful properties for daily use applications. To this day the drastic decrease of the Q factor for smaller diameters d has been a fundamental reason for the limitation of these structures. For many applications a trade-off between high Q factor and small mode volume has been neccessary, so that the full potential of the resonator system has not been exploited totally. The objective of this work was to compensate for the drastic decrease of the Q factor of micropillars with diameters around 1μm and to fabricate resonators with d < 1μm for pronounced interaction of light and matter. For this purpose for the first time an intended mode engineering has been exploited in micropillars. By means of molecular beam epitaxy an intersection region, consisting of three segments, has been implemented in these structures and so an adiabatic transition of the mode between the active midsection and the mirrorparts has been achieved. The positive influence has been proven by a significant improvement of the measured Q factor for diameters below 1μm. For d = 0.85μm a Q factor of 14 400 has been detected. This is the highest Q factor ever measured for microilllars in the submicron regime. By that a regime with mode volumes < 3 cubic wavelengths gets accessible and pronounced effects of interaction in the system of micropillars are expected. In these structures strong quantum dot - light coupling has been shown. The largest vacuum- Rabisplitting has been 85μeV and the visibility has been determined to 0.41. In the course of further optimization of the system parameters for the regime of strong coupling an ex-situ annealing step has been adopted to the used type of quantum dots. Magnetooptical analysis has shown a doubling of the oscillator strength and allowed an estimation for the value to 12. Furthermore in adiabatic micropillars, over a vast diameter range from 2.25 to 0.95μm, clear evidence for lasing of the quantum dot ensemble has been shown. Simultanously a continous decrease of the lasing threshold by more than two orders of magnitude for small diameters has been observed. For Diameters < 1.6μm the Beta-factor of the microlasers has been determined to be around 0.5. Therefore they showed almost thresholdless behavior. Finally electrical operation of adiabatic micropillars has been shown. For that a doped structure with the adiabatic design has been fabricated. In comparison with the undoped structure the measured Q factors drop to values around 5 000. The spectral properties of both the resonator and single quantum dot lines have shown negligible dependence on the form of excitation (optical or electrical), indicating that a successful concept for the electrical excitation of the devices has been established. Time resolved measurments have allowed to observe interesting dynamics of the recombination of charge carriers. We have identified the large intrinsic field, which arises because of the design of the layer structure, being the origin for this. Furthermore we have shown, that the internal field can be manipulated by the excitation scheme and the external applied voltage. KW - Molekularstrahlepitaxie KW - Quantenpunkt KW - Adiabatische Modenanpassung KW - adiabatic modetransission KW - Licht Materie Wechselwirkung KW - light matter coupling KW - Optoelektronik KW - Lithografie KW - Spektroskopie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-127438 ER - TY - THES A1 - Hauschild, Dirk T1 - Electron and soft x-ray spectroscopy of indium sulfide buffer layers and the interfaces in Cu(In,Ga)(S,Se)2-based thin-film solar cells T1 - Elektronen- und Weichröntgenemissionsspektroskopie von Indiumsulfid-Pufferschichten und Grenzflächen in Cu(In,Ga)(S,Se)2-basierten Dünnschichtsolarzellen N2 - In this thesis, thin-film solar cells on the basis of Cu(In,Ga)(S,Se)2 (CIGSSe) were investigated. Until today, most high efficient CIGSSe-based solar cells use a toxic and wetchemical deposited CdS buffer layer, which doesn’t allow a dry inline production. However, a promising and well-performing alternative buffer layer, namely indium sulfide, has been found which doesn’t comprise these disadvantages. In order to shed light on these well-performing devices, the surfaces and in particular the interfaces which play a major role for the charge carrier transport are investigated in the framework of this thesis. Both, the chemical and electronic properties of the solar cells’ interfaces were characterized. In case of the physical vapor deposition of an InxSy-based buffer layer, the cleaning step of the CdS chemical-bath deposition is not present and thus changes of the absorber surface have to be taken into account. Therefore, adsorbate formation, oxidation, and segregation of absorber elements in dependence of the storing temperature and the humidity are investigated in the first part of this thesis. The efficiencies of CIGSSe-based solar cells with an InxSy buffer layer depend on the nominal indium concentration x and display a maximum for x = 42 %. In this thesis, InxSy samples with a nominal indium concentration of 40.2% ≤ x ≤ 43.2% were investigated by surface-sensitive and surface-near bulk-sensitive techniques, namely with photoemission spectroscopy (PES) and x-ray emission spectroscopy (XES). The surfaces of the films were found to be sulfur-poor and indium-rich in comparison with stoichiometric In2S3. Moreover, a direct determination of the band alignment at the InxSy/CISSe interface in dependence of the nominal indium concentration x was conducted with the help of PES and inverse PES (IPES) and a flat band alignment was found for x = 42 %. In order to study the impact of a heat treatment as it occurs during subsequent cell process steps, the indium sulfide-buffered absorbers were annealed for 30 minutes under UHV conditions at 200 °C after the initial data set was taken. Besides a reported enhanced solar cell performance, a significant copper diffusion from the absorber into the buffer layer takes place due to the thermal treatment. Accordingly, the impact of the copper diffusion on the hidden InxSy/CISSe interface was discussed and for x = 40.2% a significant cliff (downwards step in the conduction band) is observed. For increasing x, the alignment in the conduction band turns into a small upwards step (spike) for the region 41% ≤ x ≤ 43.2%. This explains the optimal solar cell performance for this indium contents. In a further step, the sodium-doped indium sulfide buffer which leads to significantly higher efficient solar cells was investigated. It was demonstrated by PES/IPES that the enhanced performance can be ascribed to a significant larger surface band gap in comparison with undoped InxSy. The occurring spike in the Na:InxSy/CISSe band alignment gets reduced due to a Se diffusion induced by the thermal treatment. Furthermore, after the thermal treatment the sodium doped indium sulfide layer experiences a copper diffusion which is reduced by more than a factor of two compared to pure InxSy. Next, the interface between the Na:InxSy buffer layer and the i-ZnO (i = intrinsic, non-deliberately doped), as a part of the transparent front contact was analyzed. The i-ZnO/Na:InxSy interface shows significant interdiffusion, leading to the formation of, e.g., ZnS and hence to a reduction of the nominal cliff in the conduction band alignment. In the last part of this thesis, the well-established surface-sensitive reflective electron energy loss spectroscopy (REELS) was utilized to study the CIGSSe absorber, the InxSy buffer, and annealed InxSy buffer surfaces. By fitting the characteristic inelastic scattering cross sections λK(E) with Drude-Lindhard oscillators the dielectric function was identified. The determined dielectric functions are in good agreement with values from bulk-sensitive optical measurements on indium sulfide layers. In contrast, for the chalcopyrite-based absorber significant differences appear. In particular, a substantial larger surface band gap of the CIGSSe surface of E^Ex_Gap = (1.4±0.2) eV in comparison with bulk values is determined. This provides for the first time an independent verification of earlier PES/IPES results. Finally, the electrons’ inelastic mean free paths l for the three investigated surfaces are compared for different primary energies with theoretical values and the universal curve. N2 - Die vorliegende Arbeit untersucht Dünnschichtsolarzellen auf Basis von Cu(In,Ga)(S,Se)2 (CIGSSe). Um hohe Effizienzen bei CIGSSe-basierten Solarzellen zu erreichen, wurde bisher meist eine toxische und schlecht in einen Vakuumprozess integrierbare nasschemische CdS Pufferschicht verwendet. Mit Indiumsulfid konnte stattdessen eine vielversprechende alternative Pufferschicht gefunden werden, die diese nachteiligen Eigenschaften von CdS nicht aufweist und Solarzellen mit diesem Puffermaterial zeigen gute bis sehr gute Wirkungsgrade. Um die Ursachen der guten Leistungen herauszufinden, wurden die in der Solarzelle vorkommenden Oberflächen und Grenzflächen, die für den Ladungstransport eine zentrale Rolle spielen, Schritt für Schritt als Modellsysteme charakterisiert. Für einen InxSy-basierten Puffer, der durch die physikalische Gasphasenabscheidung aufgebracht wird, fehlt der Reinigungsprozess der Absorberoberflächen durch die nasschemische CdS Abscheidetechnik. Deshalb müssen Adsorbatbildung, Oxidation und Segregation von Absorberelementen die innerhalb der ersten Tage nach der Herstellung auftreten (je nach Feuchtigkeitsgehalt und Temperatur der Umgebung) berücksichtigt werden. Im ersten Teil der Arbeit werden solche Einflüsse auf die Oberfläche des Absorbers untersucht. Zellen mit einem Indiumsulfidpuffer zeigen Wirkungsgrade, die von der nominellen Indiumkonzentration x abhängen und bei x = 42% ein Optimum aufweisen. Eine stöchiometrische Analyse der InxSy Oberflächen ergab für 40.2% ≤ x ≤ 43.2% eine schwefelarme bzw. indiumreiche Oberfläche im Vergleich zu stöchiometrischem In2S3 (40% In und 60% S). Allerdings zeigen die untersuchten Proben für verschiedene Indiumkonzentrationen im Rahmen der oberflächensensitiven Photoemission (PES) und volumensensitiven Röntgenemission (XES) keine quantitativen Unterschiede. Mit Hilfe der PES und inversen PES (IPES) wurde der Bandverlauf an der InxSy/CISSe Grenzfläche in Abhängigkeit von der Indiumkonzentration untersucht und für x = 42% konnte ein flacher Bandverlauf ermittelt werden. Um den Einfluss des im Herstellungsprozess vorkommenden Temperaturschritts zu untersuchen, wurden die Proben für 30 Minuten auf 200 °C geheizt. Dabei konnte eine signifikante Diffusion von Kupfer aus dem Absorber in den Puffer beobachtet werden. Der Temperaturschritt führt neben der bereits bekannten Effizienzerhöhung vor allem zu einer Verringerung der Bandlücke des Puffers. Der Einfluss der Kupferdiffusion auf die verborgene InxSy/CISSe Grenzfläche wurde analysiert und für x = 40:2% wurde ein deutlicher "Cliff" (Stufe im Leitungsband nach unten) gefunden. Für Indiumkonzentrationen 41% ≤ x ≤ 43.2% wurde ein kleiner "Spike" (Stufe im Leitungsband nach oben) identifiziert, was dabei im Einklang mit den optimalen Wirkungsgraden ist. In einem weiteren Schritt wurde ein mit Natrium dotierter Indiumsulfidpuffer Na:InxSy, der verbesserte Wirkungsgrade zeigt, untersucht. Diese konnte zum einen auf eine deutlich vergrößerte Oberflächenbandlücke des Puffers zurückgeführt werden. Zum anderen wurde nach dem Temperaturschritt im Vergleich zu dem InxSy Puffer eine um den Faktor zwei verringerte Kupferdiffusion an der Oberfläche festgestellt. Des Weiteren konnte bei dem Temperaturschritt eine Diffusion von Selen festgestellt werden, die den vor dem Temperaturschritt vorhandenen "Spike" im Leitungsbandverlauf verringert. Nach dem Aufbringen der i-ZnO Schicht (i = intrinsisch, nicht absichtlich dotiert) als Teil des Frontkontakts auf den Na:InxSy Puffer, wurden Durchmischungseffekte an der i-ZnO/Na:InxSy Grenzfläche gefunden. Im weiteren Verlauf zeigte sich, dass der nominell auftretende "Cliff" zwischen i-ZnO und Na:InxSy durch die Bildung von ZnS reduziert bzw. vernachlässigt werden kann. Im letzten Teil der Arbeit wurde die etablierte oberflächensensitive reflektive Elektronenenergieverlustspektroskopie auf die Absorber- sowie Indiumsulfidoberflächen angewandt. Die ermittelten inelastisch gestreuten Verlustspektren λK(E) wurden mit dem Drude-Lindhard Modell simuliert und somit die dielektrische Funktion der jeweiligen Oberflächen bestimmt. Ein Vergleich mit volumensensitiven optischen Werten zeigt für die InxSy Schichten eine gute Übereinstimmung. Bei der CIGSSe Oberfläche konnten hingegen signifikante Unterschiede festgestellt werden. Dabei wurde erstmals die Oberflächenbandlücke eines Cu(In,Ga)(S,Se)2 Absorbers unabhängig von PES/IPES zu E^Ex_Gap = (1.4 ±0.2) eV verifiziert. Abschließend wurden die mittleren freien Weglängen der Elektronen l für die drei untersuchten Oberflächen für unterschiedliche Energien mit theoretischen Werten und der universellen Kurve verglichen. KW - Photoelektronenspektroskopie KW - Dünnschichtsolarzelle KW - Elektronische Eigenschaften KW - semiconductor interfaces KW - inverse photoemission KW - photoelectron spectroscopy KW - x-ray emission KW - Halbleitergrenzflächen KW - Photoelektronenspektroskopie KW - Röntgenemission KW - Solarzellen KW - Grenzfläche KW - Oberfläche Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126766 ER - TY - THES A1 - Gensler, Daniel T1 - Entwicklung klinischer Methoden zur Quantifizierung der longitudinalen Relaxationszeit T1 in der MRT T1 - Development of clinical methods for quantifying the longitudinal relaxation time T1 in MRI N2 - Die Aufgabenstellung in der vorliegenden Arbeit bestand in der Entwicklung und Umsetzung neuer T1-Quantifizierungsverfahren, die zuverlässig in der klinischen Routine angewendet werden können. Die ausgearbeiteten Techniken umfassten dabei zwei Hauptarbeitsschwerpunkte. Zum einen die Implementierung einer neuartigen dynamischen T1- Thermometriemethode für MR-Sicherheitsuntersuchungen medizinischer Geräte und Implantate, wie beispielsweise Kathetern oder Herzschrittmachern, und zum anderen die Entwicklung eines robusten kardialen T1-Mapping-Verfahrens, welches auch bei stärker erkrankten Patienten mit eingeschränkter Atemanhaltefähigkeit stabil anwendbar ist. Mit der entwickelten kombinierten Heiz- und T1-Thermometriesequenz konnte ein neues Verfahren präsentiert werden, mit dem ein zu untersuchendes medizinisches Gerät oder Implantat kontrolliert erwärmt und die Temperaturänderung zeitgleich präzise erfasst werden kann. Dabei war es möglich, die HF-induzierte Erwärmung der metallischen Beispielimplantate sowohl in homogenem Gel als auch in inhomogenem Muskelgewebe exakt und ortsaufgelöst zu quantifizieren. Die MR-technisch errechneten Temperaturwerte zeigten dabei eine sehr gute Übereinstimmung zu den ermittelten Referenzwerten mit einer Temperaturabweichung von meist weniger als 1K. Die Ergebnisse zeigen, dass es mit der präsentierten Methode möglich ist, die räumliche Temperaturverteilung in einem großen Bereich mit einer einzigen Messung quantitativ zu erfassen. Dies ist neben der Nichtinvasivität der Methode der größte Vorteil im Vergleich zu der Einzelpunktmessung mittels eines bei solchen Messungen sonst zumeist verwendeten fluoroptischen Temperatursensors. Bei gestreckten Implantaten kann demnach idealerweise das gesamte Objekt während einer einzigen Messung auf potentielle Temperaturänderungen oder sogenannte Hotspots untersucht werden, was bei der Verwendung von Temperatursensoren lediglich mit großem Zeitaufwand möglich ist, da hier die Temperatur jeweils nur punktuell erfasst werden kann. Im Vergleich zu anderen publizierten MR-Thermometrieverfahren, welche auf der PRF-Technik basieren, bietet die hier präsentierte Methode vor allem den Vorteil, dass hiermit auch eine präzise Temperaturquantifizierung in inhomogenem biologischem Gewebe mit starken Suszeptibilitätsunterschieden wie beispielsweise zwischen Herz und Lunge möglich ist. Somit stellt die Methode ein leistungsstarkes Hilfsmittel für nicht-invasive MR-Sicherheitsuntersuchungen nicht nur an medizinischen Implantaten sondern beispielsweise auch für MR-geführte Interventionen dar. Mit der entwickelten kardialen T1-Mapping-Sequenz TRASSI wurde eine leistungsstarke Methode zur exakten und hoch aufgelösten Generierung kardialer T1-Karten in äußerst kurzer Messzeit (< 6 s) vorgestellt. Durch ihre außerordentliche Robustheit sowohl gegenüber Bildartefakten als auch Herzrhythmusstörungen während der Datenakquisition bietet die Sequenz deutlich verbesserte Möglichkeiten für die Diagnostik verschiedener Herzerkrankungen. Aufgrund der sehr kurzen Akquisitionszeit wird insbesondere auch die Generierung von T1-Karten bei schwer erkrankten Patienten mit kurzer Atemanhaltefähigkeit ermöglicht. Im Vergleich zu derzeit üblicherweise verwendeten alternativen Verfahren wie etwa MOLLI, konnten die T1-Karten mit vergleichbarer Bildauflösung in bis zu 70% kürzerer Messzeit akquiriert werden. Die Ergebnisse der durchgeführten Phantommessungen belegen außerdem, dass die Methode exaktere T1-Werte liefert als dies beispielsweise mit MOLLI möglich ist. Des Weiteren weist TRASSI im Gegensatz zu MOLLI keine T1-Abhängigkeit von der Herzrate auf, wodurch die vorgestellte Technik besonders für diagnostische Studien geeignet ist, welche eine sehr hohe Genauigkeit und Reproduzierbarkeit im Zeitverlauf oder zwischen verschiedenen Patienten erfordern. Mit TRASSI konnten die Strukturen des Herzens bei den durchgeführten in vivo Untersuchungen durchweg mit scharfen Kanten und ohne Bewegungsartefakte dargestellt werden. Dabei wurde unabhängig von der Herzrate und der Bildebene stets eine sehr gute Bildqualität erreicht. Der Hauptgrund hierfür ist vermutlich in der sehr kurzen Akquisitionszeit und der radialen Datenaufnahme zu sehen. Beide Verfahren reduzieren Artefakte aufgrund von Bewegungen wie beispielsweise Herzschlag und Atmung erheblich. Die aufgenommenen T1-Karten zeigen bei allen Probanden und Patienten eine gute diagnostische Bildqualität. So konnten auch die infarzierten Bereiche bei Patienten mit Myokardinfarkt deutlich visualisiert und quantitativ erfasst werden. Nochmals hervorzuheben ist die beobachtete besondere Robustheit der TRASSI Methode gegenüber Artefakten beziehungsweise T1-Quantifizierungsfehlern bei Patienten mit Herzrhythmusstörungen. Auch bei untersuchten Patienten mit starken Arrhythmien während der Bildgebung konnte eine sehr gute Bildqualität und Genauigkeit der errechneten T1-Karten erreicht werden. Die Ergebnisse der Extrazellularvolumen-Quantifizierung zeigen zudem, dass mittels TRASSI auch weiterführende diagnostische Methoden entwickelt und angewandt werden können. Dabei konnten durch Rückrechnung hochaufgelöster und präziser Extrazellularvolumen-Karten beispielsweise Infarktbereiche deutlich visualisiert und signifikante Unterschiede zwischen akut und chronisch infarziertem Herzmuskelgewebe nicht nur identifiziert sondern auch quantitativ charakterisiert werden. Somit ist diese Methode insbesondere für eine potentielle Differenzierung zwischen reversibel und irreversibel geschädigten Herzarealen interessant. Für die Zukunft ist es wünschenswert, weitergehende Untersuchungen an verschiedenen spezifischen Herzerkrankungen vorzunehmen. Zu solchen Erkrankungen gehören beispielsweise die Herzmuskelentzündung (Myokarditis) oder Herzklappenerkrankungen. Diese Krankheitsbilder sind hinsichtlich einer möglichen transienten oder permanenten Schädigung des Herzmuskels mit den bisher verfügbaren Verfahren nur sehr schwer oder lediglich im weit fortgeschrittenen Stadium exakt diagnostizierbar. Die vorgestellte TRASSI-Sequenz bietet hier eine gute Möglichkeit für eine frühzeitige Erkennung der Auswirkungen solcher Erkrankungen auf den Herzmuskel. Weiterführende Untersuchungen der TRASSI-Methode zu deren Robustheit gegenüber spezifischen Herzrhythmusstörungen und ein umfassender Vergleich zum bereits etablierten MOLLI-Verfahren könnten darüber hinaus die Alltagstauglichkeit von TRASSI weiter spezifizieren und den Weg in die klinische Routine ebnen. Die bereits dargelegten positiven Ergebnisse des Verfahrens lassen vermuten, dass TRASSI potentiell ein sehr gutes nicht-invasives Diagnoseverfahren für verschiedenste Herzerkrankungen darstellt. Im Vergleich zu bereits bestehenden Techniken liegen die Vorteile der TRASSI-Methode nach den bisher vorliegenden Ergebnissen zusammenfassend vor allem in der Generierung diagnostisch verlässlicherer T1-Werte bei gleichzeitig verringerter Messzeit, wodurch das Verfahren insbesondere auch für schwer erkrankte Patienten mit starken Arrhythmien und eingeschränkter Atemanhaltefähigkeit geeignet ist. TRASSI ist darüber hinaus aber auch für MR-Untersuchungen im Hochfeld besser geeignet als entsprechende bSSFP-basierende Verfahren wie beispielsweise MOLLI. Dies liegt vor allem daran, dass TRASSI eine Gradientenecho-basierte Bildgebungsmethode ist und somit eine niedrige spezifische Absorptionsrate aufweist. Zudem sind Gradientenecho-Sequenzen allgemein weniger empfindlich gegenüber Suszeptibilitätsartefakten, so dass beispielsweise metallische Implantate bei Patienten sich weniger störend auf die erreichbare Bildqualität auswirken. In der vorliegenden Arbeit wurde sowohl eine exakte T1-Thermometriesequenz als auch eine sehr schnelle und präzise kardiale T1-Mapping-Methode vorgestellt. Für zukünftige Arbeiten ist es wünschenswert, beide Sequenzen bzw. deren Mechanismen zu vereinen und eine Temperaturquantifizierung am Herzen praktisch durchzuführen. Dies wäre zum einen für MR-Sicherheitsuntersuchungen von Schrittmacherelektroden in vivo vorteilhaft, und zum anderen wäre hiermit eine direkte Erfolgskontrolle während einer Katheterablation realisierbar. Eine solche Ablationsbehandlung könnte durch eine genaue Lokalisierung des behandelten - also erhitzten - Herzareals sehr viel präziser durchgeführt werden, wodurch auch bei komplexeren Ablationen die Behandlungserfolge erhöht werden könnten. In einer ersten Veröffentlichung hierzu konnte bereits gezeigt werden, dass eine MR-gestützte Katheterablation die Heilungs- und Erfolgsaussichten des Eingriffes steigern kann. Dieses Verfahren könnte potentiell mit Hilfe einer Echtzeittemperaturüberwachung basierend auf dem TRASSI-Verfahren noch weiter verbessert werden. In Zusammenfassung wurden in dieser Arbeit zwei neue T1-Quantifizierungsverfahren entwickelt und vorgestellt, die voraussichtlich zuverlässig im klinischen Alltag angewendet werden können und neue nicht-invasive diagnostische Möglichkeiten eröffnen. Die implementierten Sequenzen ermöglichen dabei zum einen eine exakte Temperaturquantifizierung und zum anderen ein präzises kardiales T1-Mapping. Beide Verfahren versprechen dabei robuste und reproduzierbare Ergebnisse und könnten in Zukunft den Weg in die klinische Routine finden und so bei einer fundierten Diagnostik verschiedenster Herzerkrankungen behilflich sein. N2 - The goal of the present study was to develop and implement new T1-quantification methods that can be reliably applied in clinical practice. The elaborated techniques focused on two main objectives: first, the implementation of a novel dynamic T1-thermometry technique for MR-safety investigations of medical devices and implants, such as catheters or pacemakers; and second, the development of a robust cardiac T1-mapping method, which is applicable even in severely ill patients with limited breath-hold capabilities. With the newly developed combined heating and T1-thermometry sequence, a new MR method was presented, which allowed a controlled heating of a medical device or implant under investigation, while simultaneously detecting temperature changes near these devices with high accuracy. With this MR sequence it was possible to quantify and spatially accurately resolve the radio frequency-induced heating of exemplary metallic implants both in a homogeneous gel phantom and in inhomogeneous porcine muscle. The MR-calculated temperature values showed good agreement with the determined reference values, with a temperature deviation of usually less than 1K. The results show that with the presented method it is possible to quantify the spatial temperature distribution in a large area. This is - in addition to the non-invasiveness of the method - the main advantage compared to the single-point measurement of commonly used fluoroptic temperature sensors: Ideally, elongated implants can be characterized regarding potential temperature changes or hot spots along the whole device during a single MR measurement. Compared to other published MR-thermometry methods based on the PRF technique the presented T1-based technique particularly provides the advantage of a precise temperature quantification even in inhomogeneous biological tissue with strong susceptibility differences such as between the heart and the lungs. Thus, the method represents a powerful tool for non-invasive MR-safety investigations not only for implanted medical devices, but also for MR-guided interventions. With the developed cardiac T1-mapping sequence TRASSI, a powerful technique for the generation of exact, high-resolution cardiac T1-maps acquired in very short measurement time (< 6 s) was presented. Through the extraordinary robustness both to image artifacts and heart rhythm disturbances during data acquisition, this sequence provides significantly improved possibilities for various diagnostic purposes in clinical cardiology. Due to the very short acquisition time, TRASSI particularly offers the possibility for the generation of T1-maps in severely ill patients with short breath-hold capabilities. Compared to currently commonly used alternative MR techniques, such as MOLLI, T1-maps with similar resolution could be acquired in up to 70 % shorter measurement time. Furthermore, the results of the phantom measurements show that TRASSI provides more accurate T1 values than MOLLI. In addition, TRASSI shows - in contrast to MOLLI - no heart rate T1-dependency. Thus, the presented technique is particularly suited for diagnostic studies, which require a very high accuracy and reproducibility over time or between different patients. With TRASSI, the heart morphology could consistently be identified with sharp edges and without any motion artifacts in the performed in vivo studies. The good image quality could be achieved in all measurements regardless of the heart rate and the image plane. The main reason for these findings can be anticipated in the very short acquisition time and the radial data acquisition. Both significantly reduce artifacts due to motion such as heartbeat and breathing. Diagnostic image quality of the T1 maps in patients with myocardial infarction allowed for visualization and spatial T1-quantification in all subjects. Of note is the observed extraordinary robustness of the TRASSI method against artifacts and T1-errors in patients with cardiac arrhythmias. Even in patients with severe arrhythmias during the imaging procedure a very good image quality and accuracy of the calculated T1-maps could be achieved. Moreover, the results of the extracellular volume quantification show that with TRASSI additional diagnostic methods can be developed and applied. The calculation of accurate high-resolution extracellular volume maps was suitable for visualization of infarcted areas in the myocardium. Furthermore, significant differences between acute and chronically infarcted myocardial tissue could not only be visually identified, but also quantitatively characterized. Thus, this method is particularly interesting for a differentiation between reversible and irreversible myocardial injury. For the future, it is desirable to carry out further clinical studies on various specific heart diseases. Such diseases include, for example, inflammation of the heart muscle (myocarditis) or valvular heart diseases. The diagnosis of these diseases regarding a possible damage of the myocardium is currently problematic and only possible in advanced stages using the methods available today. Here, the presented TRASSI sequence provides a favorable opportunity for the early detection of transient or permanent myocardial damage. Further studies of TRASSI for its robustness against specific cardiac arrhythmias and a comprehensive comparison with the already established MOLLI method could further confirm the everyday practicality of TRASSI and pave the way into clinical routine. The already available positive results of TRASSI suggest this method to be well suited as a non-invasive diagnostic technique for various heart diseases. From the experiments available, it can be concluded that, compared to existing techniques like MOLLI, TRASSI provides more accurate T1-values in a simultaneously reduced measurement time. This positions TRASSI particularly suitable for severely ill patients with distinctive arrhythmias and/or reduced breath-hold capabilities. In addition, TRASSI is better suited for high field MR examinations than corresponding bSSFPbased methods such as MOLLI. This is because TRASSI is a gradient echo-based imaging method and thus it has a lower specific absorption rate. Gradient echo-based sequences are also generally less sensitive to susceptibility artifacts and thus interferences caused by metallic implants of correspondent patients show less negative effects on image quality. In the current work an exact T1-thermometry sequence as well as a very fast and accurate cardiac T1-mapping method was presented. For future work, it is desirable to combine these two sequences and their mechanisms to be able to perform accurate temperature quantification in the beating heart. This would be on the one hand beneficial for MR-safety examinations of pacemaker electrodes in vivo, and on the other hand allow for a direct control of success during catheter ablation. Hence, a catheter ablation procedure could be performed with greatly increased spatial accuracy due to precise localization of heat development in the myocardium. Consequently, the safety and outcomes especially in complex ablations could be increased. In a first publication it could be already shown that MR-guided catheter ablation has the potential to increase procedural success in the future. This interventional technique could potentially be further improved by implementation of a real-time temperature visualization using TRASSI. In summary, two new T1-quantification methods have been developed and presented in this work, which can be reliably applied in clinical practice and which are expected to allow for new non-invasive diagnostic possibilities. The implemented sequences allow on the one hand exact temperature quantification in the myocardium and on the other hand accurate cardiac T1-mapping. Both methods promise robust and reproducible results, so that they are expected to find the way into clinical routine, helping in diagnosis and treatment of various heart diseases in the near future. KW - Kernspintomographie KW - Thermometrie KW - kardiale MRT KW - Gewebecharakterisierung KW - T1-Quantifizierung KW - cardiac MRI KW - tissue characterization KW - T1 quantification KW - Relaxationszeit Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126582 ER - TY - THES A1 - Schömig, Herbert Richard T1 - Nanooptik an breitbandlückigen Halbleiter-Nanostrukturen für die Spintronik und Optoelektronik T1 - Nanooptics on wide-bandgap semiconductor nanostructures for spintronics and optoelectronics N2 - Die vorliegende Arbeit behandelt drei Themen aus der Forschung an nanostrukturierten Halbleitern im Umfeld der Spintronik und Optoelektronik. 1) Einzelne semimagnetische Quantenpunkte Mn-dotierte, und damit semimagnetische Halbleiter zeichnen sich durch eine sp-d-Austauschkopplung zwischen den freien Ladungsträgerspins und den Mn-Spins aus. Für ein optisch injiziertes Exziton bedeutet dies eine Austauschenergie, die sich proportional zur Mn-Magnetisierung im Exzitonvolumen verhält. Lokalisiert man das Exziton in einem Quantenpunkt, so kann man es als Sonde für die Magnetisierung in der Nanoumgebung gebrauchen. Bedingung hierfür ist die spektroskopische Selektion einzelner Quantenpunkte. Die Selektion einzelner CdSe/ZnMnSe-Quantenpunkte konnte realisiert werden durch die lithographische Präparation einer lichtundurchlässigen Metallmaske auf der Probenoberfläche, versehen mit nanoskaligen Aperturen. Die Photolumineszenz(PL)-Emission an diesen Aperturen zeigt individuelle PL-Linien entsprechend einzelner Quantenpunkte. Mittels Magneto-PL-Spektroskopie gelingt es das magnetische Moment einzelner Quantenpunkte von wenigen 10 Bohrmagneton sowie die thermische Fluktuation dieses Moments aufzuklären. Sowohl die Temperatur- als auch die Magnetfeldabhängigkeit der Exziton-Mn-Kopplung werden im Rahmen eines modifizierten Brillouinmodells konsistent beschrieben. 2) Ferromagnet-DMS-Hybride Eine lokale Beeinflussung von Spins im Halbleiter wird möglich durch die Präparation von ferromagnetischen Strukturen auf der Halbleiteroberfläche. Die magnetischen Streufelder, welche von nanostrukturierten Ferromagneten (FM) erzeugt werden, können auf mesoskopischer Längenskala eine Verbiegung der Spinbänder in einem Quantenfilm bewirken. Dies gilt insbesondere für einen semimagnetischen (DMS-)Quantenfilm vom Typ ZnCdMnSe/ZnSe, wie er im vorliegenden Fall Verwendung fand. Aufgrund der Verstärkerfunktion der Mn-Spins liegen hier nämlich riesige effektive g-Faktoren vor, welche im Magnetfeld große Spinaufspaltungen produzieren. Wie magnetostatische Rechnungen für Drahtstrukturen aus ferromagnetischem Dysprosium (Dy) offenlegen, sind bei senkrechter Magnetisierung Streufelder in der Größenordung von 0.1 bis 1 T in der Quantenfilmebene darstellbar. Magneto-PL-Messungen mit hoher Ortsauflösung demonstrieren tatsächlich einen Einfluß der nanostrukturierten Ferromagnete auf die exzitonischen Spinzustände im Quantenfilm und erlauben zudem einen Rückschluß auf die magnetische Charakteristik der FM-Nanostrukturen. 3) Einzelne Lokalisationszentren in InGaN/GaN-Quantenfilmen Die Lokalisation der Ladungsträger in nm-skaligen Materieinseln hat einen erheblichen Einfluss auf die optischen Eigenschaften eines InGaN-Quantenfilmes. Eine detaillierte Aufklärung dieses Effektes erfordert den reproduzierbaren, spektroskopischen Zugang zu einzelnen dieser Lokalisationszentren. Diese Bedingung wurde hier mit der Aufbringung einer Nanoaperturmaske auf der Halbleiteroberfläche erfüllt. PL-Spektren, gemessen an solchen Nanoaperturen bei einer Temperatur von 4 K, weisen tatsächlich einzelne, spektral scharfe Emissionlinien mit Halbwertsbreiten bis hinab zu 0.8 meV auf. Eine solche Einzellinie entspricht dabei der PL-Emission aus in einem einzelnen Lokalisationszentrum, welche an dieser Stelle erstmalig nachgewiesen werden konnte. In den folgenden Experimenten zeigte sich interessanterweise, dass diese Einzellinien gänzlich andere Abhängigkeiten an den Tag legen als das inhomogene PL-Signal eines großen Ensembles von Zentren. Dies ermöglichte eine fundierte Beurteilung bislang kontrovers diskutierter Mechanismen, welche für die PL-Charakteristik von InGaN-Quantenfilmen relevant sind. Als bestimmende Faktoren erwiesen sich das interne Piezofeld, der Bandfülleffekt und die Bildung von Multiexzitonen. N2 - This work treats three topics from the research on nanostructured semiconductors in the field of spintronics and optoelectronics. 1) Single semimagnetic quantum dots Semiconductors doped with Mn, so-called diluted magnetic semiconductors, exhibit an intense sp-d exchange interaction between free carrier spins and localized Mn spins. Due to this coupling an exciton, optically injected into the DMS semiconductor, acquires an exchange energy proportional to the Mn magnetization within the exciton volume. If the exciton localizes in a quantum dot it can be employed as a probe monitoring the magnetization in the nanoenvironment. However, this requires the spectroscopic selection of single quantum dots. In this work single CdSe/ZnMnSe quantum dots could be addressed with the help of an opaque metal mask on top of the semiconductor with nanoapertures prepared by electron lithography. The PL emission from such nanoapertures shows individual PL lines corresponding to single quantum dots. By means of magneto-PL-spectroscopy the magnetic moment of single quantum dots of only some tens of Bohrmagnetons is addressed, including its thermal fluctuations. The temperature as well as magnetic field dependence of the exciton-Mn coupling is consistently described in the frame of a modified Brillouin model. 2) Ferromagnet-DMS-Hybrids A local manipulation of spins in a semiconductor can be realized by a preparation of ferromagnetic structures on the surface of a semiconductor. Magnetic fringe fields, emerging from nanostructured ferromagnets (FM) are capable of bending the spin bands of a buried quantum well on a mesoscopic length scale. This is especially valid for a semimagnetic quantum well like the ZnCdMnSe/ZnSe heterostructure used in the following experiments. Due to the drastic enhancement of the exciton g factor by the coupling to the Mn spins, huge spin splittings become possible. Magnetostatic calculations performed for ferromagnetic dysprosium (Dy) wire structures show, that fringe fields in the range of 0.1 to 1 T can be achieved in a perpendicular magnetization configuration. Magneto-PL measurements with a high spatial resolution actually demonstrate an influence of nanostructured ferromagnets on the excitonic spin bands in the quantum well and even provide some information about the magnetic characteristics of the FM nanoelements. 3) Single localization centers in a InGaN/GaN quantum well The localization of charge carriers in nm-sized islands has a strong influence on the optical properties of InGaN/GaN quantum wells. A detailed analysis of these effects require a reproduceable, spectroscopic access to single localization centers. This prerequisite has been fulfilled by depositing a mask with nanoapertures on the semiconductor surface. PL spectra measured on these nanoapertures at a temperature of 4 K reveal individual, spectrally narrow emission lines with a halfwidth down to 0.8 meV. Such a single PL line can be attributed to the emission from a single localization center. The optical access to single centers has been demonstrated here for the first time. As the following experiments showed, there is a profound difference between the behavior of such single PL lines and the inhomogenous PL signal from a large ensemble of centers. This gives a clear picture of the impact of some mechanisms relevant for the PL characteristics of InGaN quantum films, that have been the subject of a controversial debate. The most influential factors are the internal piezo electric field, the bandfilling effect and the formation of multiexcitons. KW - Cadmiumselenid KW - Zinkselenid KW - Manganselenide KW - Semimagnetischer Halbleiter KW - Quantenpunkt KW - Halbleiteroberfläche KW - Ferromagnetische Schicht KW - Nanostruktur KW - Spin KW - Indiumnitrid KW - Galliumnitrid KW - Ferromagnete KW - Photolumineszenz KW - Quantum dots KW - semimagnetic semiconductors Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126558 N1 - Dieses Dokument wurde aus Datenschutzgründen - ohne inhaltliche Änderungen - erneut veröffentlicht. Die ursprüngliche Veröffentlichung war am: 22.10.2005 ER - TY - THES A1 - Kartäusch, Ralf T1 - Spektroskopische Flussmessung an Pflanzen mittels mobilem Magnetresonanztomographen T1 - Spectroscopic flow measurements in plants using a mobile magnetic resonance system N2 - The main objective of this dissertation was the development of a flow sensor which is specialized on flow measurements of plants. Hence, an accessible mobile magnet and the receiver/transfer hardware have been developed. Additionally, software to control the MR-console has been written. The AC-method was advanced to acquire slow flow profiles. This enables acquiring flow in plants. Additionally, in cooperation with the working group “Lipid Motobolism” of the IPK-Gatersleben studies have been carried out to measure the influence of the ear of wheat on the water transport mechanism. Furthermore, a new technique based on the Bloch-Siegert-effect has been developed which reduces the influence of eddy currents. This simplifies flow measurements that suffer heavily from eddy currents. Hardware development An accessible mobile magnet with a field strength of 0.42 T has been build. The field homogeneity is 0.5 ppm in 1 cm³. In comparison to the existing closed magnet system at the chair EP5 this is an improvement of a factor 40. Those enhancements have been achieved by an adjusted design of the magnet which has been optimized by computer simulations. The implementation of ferrite pole shoes reduced the eddy currents by a factor 7 in comparison to the usually used iron pole shoes. Therefore, phase sensitive flow measurements using fast switching magnet field gradients could be carried out. A foldable coil has been refined to achieve an accessible receiver system. This coil has been used as a transmit/receiver unit. Furthermore, the SNR of measurements in thin plant stalks was enhanced by a constructed system that could be directly wrapped around the stalk. Additionally, two systems to reduce noise in plant measurements have been developed. Those systems can reduce the noise by a factor 92. This was necessary because the longish plant stems guides electric noise from outside of the case into the receiver coil. Both noise reduction systems, the electromagnetic shielding and the common mode rejection, removed the noise to the same level. Flow measurement In the present work a refinement of the AC-method [36] enabled for the first time acquiring quantitative flow profiles. Hence, it was possible to measure slow velocity in the range of 200 µm/s. The precondition was the replacement of the sinusoidal gradient profile by a trapezoid gradient shape. Those allowed increasing the slew rate of the gradients and therefore shorten the total duration of the ramp which finally allows higher encoding strengths. Additionally, due to intervals without applied gradients, more efficient RF-pulses can be used and more data points can be acquired in an echo. The measured flow profiles correlated to the simulation results. The accurate flow profiles have been achieved by a new evaluation technique and a phase correction mechanism. The newly developed extension to imaging enabled spatially encoded spectral flow measurements. Therefore, the location of xylem and phloem can be spatially separated. In the measurement of the black alder this becomes apparent. Here the shape of dicotyledonous plants, which is described in chapter 5.1, is visible. Additionally, due to the spatial separation of the flow directions (up/down) qualitative flow measurements are possible. In pixels where opposite flow directions can spatially be resolved the difference between the left and the right side of the flow spectra yields the total flow without static water. Due to the phase corrections technique in combination with the automatically frequency calibration, long term flow measurements were possible. Therefore, the response of plants on influences like changes in the illumination have been observed in measurements over a duration of nine days. Here flow changes below 200 µm/s can be detected. Bloch-Siegert phase encoding In this work a new spatial phase encoding technique (BS-SET) using a B1-gradient in combination with far off-resonant radio frequency pulses has been demonstrated. Based on the Bloch-Siegert Shift an eddy current free B1-gradient was used to encode images and apply flow encoding. The BS-gradient induces a phase shift which depends on B1² using a constant gradient. Therefore, adapted reconstructions have been developed that provide undistorted images using this nonlinear encoding. Alternatively, a B1-gradient has been developed where the profile of the B1-field follows a square root shape. This supplies a linear phase encoding removing the need for an adapted reconstruction and enables using this technique for flow encoding. N2 - Das Ziel der Promotion war die Entwicklung eines Flusssensors mit dem Fokus auf Flussmessungen an Pflanzen. Dazu musste zunächst die Hardware in Form eines räumlich zugänglichen Magneten und einer Sende- und Empfangseinheit entworfen werden. Um die MR-Konsole ansteuern zu können, musste eine Software entwickelt werden. Die AC-Methode wurde für Flussmessungen mit niedrigen Geschwindigkeiten angepasst und die entsprechende Theorie dazu erweitert. Mit dieser weiterentwickelten AC-Methode wurde die Flussmessung an Pflanzen demonstriert. Dafür wurden im Rahmen einer Kooperation mit der Arbeitsgruppe „Lipid Motobolism“ der IPK-Gatersleben Flussstudien an Weizenpflanzen durchgeführt. Darüber hinaus wurde in dieser Arbeit eine neue Technik zur Wirbelstromvermeidung bei Permanentmagneten entwickelt, um Problemen mit diesen bei Flussmessungen entgegenzuwirken. Sensorbau Es wurde ein zugänglicher, mobiler Magnet mit einer Feldstärke von 0,42 T gebaut. Die Feldhomogenität beträgt 0,5 ppm in 1 cm³. Im Vergleich zu dem am Lehrstuhl der EP5 bestehenden, geschlossenen, mobilen Magnetsystem erreicht das in dieser Arbeit gebaute System ein 40fach homogeneres Magnetfeld. Erzielt wurden diese Verbesserungen durch ein spezielles Design, welches durch Computersimulationen sukzessiv optimiert wurde. Durch angepasste Polschuhe konnte darüber hinaus die Induktion von Wirbelströmen im Mittel um einen Faktor 7 reduziert werden, wodurch phasensensitive Flussmessungen ermöglicht wurden. Um die Zugänglichkeit zu dem Innenraum der HF-Spulen zu gewährleisten, wurde eine Klappspule weiterentwickelt und als Sende- und Empfangseinheit für den Tomographen gebaut. Ferner wurde ein System gebaut, dass direkt um die Pflanze gewickelt werden kann und sich somit für besonders dünne Pflanzenstängel eignet. Weiterhin wurden zwei Systeme zur Rauschunterdrückung für die Messungen an Pflanzen entwickelt. Dadurch konnte das Rauschen um einen Faktor 92 gesenkt werden. Dies war notwendig, weil die länglichen Pflanzen durch ihre Ausdehnung über das Gehäuse hinweg ein Rauschen in die Empfangsspule induziert haben. Die beiden Rauschunterdrückungssysteme, die elektrische Schirmung und die Gleichtaktunterdrückung, entfernten das Rauschen dabei gleichermaßen. Flussmessung Die im Rahmen der Arbeit erfolgte Weiterentwicklung der AC-Methode [102] erlaubte es erstmals mit der Methode quantitative Flussprofile aufzunehmen. In Folge dessen war es außerdem möglich Geschwindigkeiten unter 200 µm/s zu messen. Die Vorrausetzung dafür war die Implementierung von trapezförmigen Gradienten, welche kürzere Rampzeiten und eine stärkere Kodierung zulassen. Dadurch sind außerdem Intervalle ohne Gradienten realisierbar, die effizientere Refokussierungspulse und die Aufnahme mehrerer Datenpunkte ermöglichen. Die zu erwartenden und simulierten Flussprofile entsprachen den gemessenen Profilen durch die Verwendung einer neuen Auswertungstechnik. Die neu entwickelte Erweiterung zur Bildgebung ermöglicht die ortsaufgelöste, spektroskopische Flussmessung und so können die Bereiche von Xylem und Phloem voneinander getrennt werden. Dies wurde durch Messungen einer Schwarzerle gezeigt, bei der die im Abschnitt 5.1 beschriebene Struktur dikotyler Pflanzen aufgelöst werden konnte. Zusätzlich können qualitativ genauere Aussagen über die Flussgeschwindigkeit getroffen werden. Bei Messungen an Pflanzen konnte mit der optimierten AC-Methode die Flussänderungen aufgrund äußerer Einflüsse, wie der Beleuchtung, beobachtet werden. Langzeitmessungen über 9 Tage zeigten einen der Beleuchtung folgenden Flussverlauf - auch bei sehr geringen mittleren Flussänderungen von unter 200 µm/s. Bloch-Siegert Phasenkodierung Um eine Phasenkodierung ohne die Induktion von Wirbelströmen zu erhalten, wurde im Rahmen der Arbeit die ortsabhängige Phasenkodierung mittels B1-Gradienten entwickelt. Diese Technik basiert auf HF-Wechselfeldern und benutzt den sogenannten BS-Shift um einen B1-feldabhängigen Frequenzshift zu induzieren. Zwei Rekonstruktionstechniken wurden entwickelt, um die Rekonstruktion von entzerrten Bildern zu ermöglichen. Dies war notwendig, da die Kodierung mittels BS-Shift von B1² abhängt. Infolgedessen wird bei der Verwendung von konstanten HF-Gradienten eine vom Quadrat des Ortes abhängige Phasenkodierung induziert. Als Alternative zu diesem Verfahren wurde ein Gradient entwickelt, der einen wurzelförmigen Feldverlauf hat und somit die lineare Kodierung ohne angepasste Rekonstruktionstechniken ermöglicht. KW - Kernspintomografie KW - Wassertransport KW - Spektroskopische Flussmessung KW - AC Gradients KW - Pflanzen Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125820 ER - TY - THES A1 - Tran-Gia, Johannes T1 - Model-Based Reconstruction Methods for MR Relaxometry T1 - Modellbasierte Rekonstruktionsmethoden für die MR-Relaxometrie N2 - In this work, a model-based acceleration of parameter mapping (MAP) for the determination of the tissue parameter T1 using magnetic resonance imaging (MRI) is introduced. The iterative reconstruction uses prior knowledge about the relaxation behavior of the longitudinal magnetization after a suitable magnetization preparation to generate a series of fully sampled k-spaces from a strongly undersampled acquisition. A Fourier transform results in a spatially resolved time course of the longitudinal relaxation process, or equivalently, a spatially resolved map of the longitudinal relaxation time T1. In its fastest implementation, the MAP algorithm enables the reconstruction of a T1 map from a radial gradient echo dataset acquired within only a few seconds after magnetization preparation, while the acquisition time of conventional T1 mapping techniques typically lies in the range of a few minutes. After validation of the MAP algorithm for two different types of magnetization preparation (saturation recovery & inversion recovery), the developed algorithm was applied in different areas of preclinical and clinical MRI and possible advantages and disadvantages were evaluated. N2 - Im Rahmen dieser Arbeit wurde ein modellbasiertes Verfahren namens MAP (engl. Model-based Acceleration of Parameter mapping) für die Bestimmung des T1-Gewebeparameters mittels Magnetresonanztomographie (MRT) entwickelt. Dieser iterative Algorithmus verwendet das Vorwissen über den nach einer Magnetisierungspräparation zu erwartenden Signalverlauf, um aus einer im Anschluss an eine initiale Präparation aufgenommene zeitliche Serie stark unterabgetasteter k-Räume eine Serie voll abgetasteter k-Räume zu generieren.Eine Fourier-Transformation dieser Serie in den Bildraum zeigt den örtlich aufgelösten zeitlichen Verlauf der longitudinalen Relaxation, was eine Kartierung des Gewebeparameters T1 ermöglicht. In seiner schnellsten Form ermöglicht dieses Verfahren die Rekonstruktion einer T1-Karte aus einem innerhalb weniger Sekunden nach einer passenden Magnetisierungspräparation aufgenommenen radialen Gradienten-Echo-Datensatz, während die Messdauer herkömmlich verwendeter T1-Bestimmungstechniken üblicherweise im Bereich von einigen Minuten liegt. Nach der Validierung des MAP-Algorithmus für zwei unterschiedliche Arten der Magnetisierungspräparation (Sättigungspräparation, Inversion) wurde die entwickelte Technik im Rahmen dieser Arbeit in verschiedenen Bereichen der präklinischen und klinischen MRT angewendet und mögliche Vor- und Nachteile untersucht. KW - Kernspintomographie KW - Radiologische Diagnostik KW - Bildgebendes Verfahren KW - Magnetic Resonance Relaxometry KW - Magnetresonanz-Relaxometrie KW - Model Based Reconstruction Algorithms in Magnetic Resonance Imaging KW - Modellbasierte-Rekonstruktionsalgorithmen in der Magnetresonanztomografie KW - Relaxation Parameter Mapping in Magnetic Resonance Imaging KW - Bestimmung des Relaxations-Parameters in der Magnetresonanztomografie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-109774 ER - TY - THES A1 - Weigold, Lena T1 - Ermittlung des Zusammenhangs zwischen mechanischer Steifigkeit und Wärmetransport über das Festkörpergerüst bei hochporösen Materialien T1 - Correlation between elasticity and heat transport along the solid framework in the case of highly porous materials N2 - Ziel dieser Arbeit ist es, ein verbessertes Verständnis für den Zusammenhang zwischen mechanischer Steifigkeit und Wärmetransport über das Festkörpergerüst bei hochporösen Materialien zu erlangen. Im Fokus dieser Arbeit steht die Fragestellung, wie mechanische Steifigkeit und Wärmeleitfähigkeit bei hochporösen Materialien miteinander zusammenhängen und ob es möglich ist, diese beiden Eigenschaften durch geometrische Modifikationen der Mikrostruktur unabhängig voneinander zu verändern. Die durchgeführten Untersuchungen haben gezeigt, dass ein Großteil der mikrostrukturellen Modifikationen beide Materialeigenschaften beeinflussen und die mechanische Steifigkeit in der Regel eng mit dem Wärmetransport über das Festkörpergerüst verknüpft ist. Es konnte jedoch auch nachgewiesen werden, dass die mechanische Steifigkeit bei hochporösen Materialien nicht eindeutig mit dem Wärmetransport über das Festkörpergerüst zusammenhängt und spezifische mikrostrukturelle Modifikationen einen stärkeren Einfluss auf die mechanische Steifigkeit besitzen, als auf den Wärmetransport über das Festkörpergerüst. Umgekehrt ist diese Aussage nicht ganz so eindeutig. Die theoretische Betrachtung des Zusammenhangs zeigt, dass in die Berechnung der mechanischen Steifigkeit teils andere geometrische Strukturgrößen einfließen, als in die Berechnung des Wärmetransports über das Festkörpergerüst, so dass die mechanische Steifigkeit unabhängig von der Wärmeleitfähigkeit verändert werden kann. Es zeigt sich jedoch auch, dass die meisten strukturellen Veränderungen beide Eigenschaften beeinflussen und die mechanische Steifigkeit aufgrund der Biegedeformation der Netzwerkelemente systematisch stärker auf strukturelle Veränderungen reagiert als die Wärmeleitfähigkeit der Struktur, so dass die mechanische Steifigkeit in der Regel quadratisch mit der Wärmeleitfähigkeit des Festkörpergerüstes skaliert. Mit den Methoden der effective-media-theory lassen sich Grenzen ermitteln, innerhalb derer sich mechanische Steifigkeit und Wärmeleitfähigkeit unabhängig voneinander variieren lassen. Im experimentellen Teil der Arbeit wurden Probenserien von Polyurethan-Schäumen, Polyurea Aerogelen und organisch / anorganischen Hybrid Aerogelen herangezogen, so dass poröse Materialien mit geordneten, voll vernetzten Mikrostrukturen, mit statistisch isotropen, teilvernetzen Mikrostrukturen, sowie Mikrostrukturen mit anisotropen Charakter in die Untersuchung einbezogen werden konnten. Als Struktureigenschaften, die die mechanische Steifigkeit ungewöhnlich stark beeinflussen, konnten die Regelmäßigkeit der Struktur und der Krümmungsradius der Netzwerkelemente sicher identifiziert werden. Alle weiteren strukturellen Veränderungen führen zu dem annähernd quadratischen Zusammenhang. In einem dritten Abschnitt dieser Arbeit wird das vereinfachte Phononendiffusionsmodell herangezogen, um den Zusammenhang zwischen mechanischer Steifigkeit und Wärmetransport über das Festkörpergerüst bei Aerogelen grundlagenphysikalisch zu modellieren. Zur Diskussion werden die experimentell ermittelten Eigenschaften der isotropen Polyurea Aerogele herangezogen und eine qualitative Modellierung ihrer Schwingungszustandsdichten durchgeführt. Es konnte gezeigt werden, dass die Kombination aus Probendichte und Schallgeschwindigkeit, mit der sich die mechanische Steifigkeit berechnen lässt, unter bestimmten Randbedingungen auch die Energie und Transporteigenschaften der Phononen beschreibt, die den Wärmetransport über das Festkörpergerüst bei Aerogelen bestimmen. Die Ergebnisse dieser Arbeit lassen sich zum Beispiel heranziehen, um die Eigenschaften hochporöser Materialien für eine gegebene Anwendung durch mikrostrukturelle Modifikationen optimal zu gestalten. N2 - The objective of this thesis is to gain a fundamental understanding for the correlation between mechanical stiffness and heat transport along the solid framework in highly porous materials. This study focuses on the question, whether the elastic modulus of the structure or the solid phase thermal conductivity can be changed without affecting the other property. The performed investigation has shown that micro-structural modifications usually have an effect on both, the elastic modulus and the solid phase thermal conductivity, respectively and that these properties are strongly correlated in highly porous materials. However, at the physical level, the elastic modulus is not explicitly correlated to the heat transport along the solid framework. It was possible to identify some individual geometrical aspects that have a superior impact on the elastic modulus but only influence the thermal conductivity in a certain degree. Vice versa, geometrical aspects that only affect the heat transport along the solid phase could not be clearly identified. Structural modeling of highly ordered and of statistically isotropic porous materials is considered for a theoretical correlation between mechanical stiffness and heat transport along the solid framework in highly porous materials. Correlation is furthermore derived without taking into account any structural information. Structural modeling shows that different structural parameters are required to calculate the mechanical stiffness and the heat transport along the solid framework of a porous material, which allows for a structural decoupling of these two properties. However, most of the time, a quadratic correlation between elastic modulus and solid phase thermal conductivity is found within the models, because mechanical stiffness systematically reacts more sensitive to structural changes as the network elements are bended under mechanical load. With the help of the effective-media-theory a lower and upper bound can be derived for possible pair-combinations between material stiffness and solid phase thermal conductivity. For the experimental study of this topic polyurethane foams, polyurea aerogels and organic-anorganic hybrid aerogels are chosen as sample systems. Herewith, the study includes materials of regular, fully connected microstructures, isotropic, partly connected microstructures and anisotropic microstructures. Despite substantial structural changes, elastic modulus scales approximately quadratic with the solid phase thermal conductivity in most of the samples series investigated. Merely the overall modification of the structural regularity and the bending of the network elements up to high curvatures verifiably cause a deviation from the quadratic dependency. In a third section it is discussed, if a simplified model of phonon diffusion process can be used to derive a correlation between mechanical stiffness and heat transport in aerogels. For this study, experimentally derived results of polyurea aerogels and the qualitatively derived vibrational density of states of these materials are taken into account. Results show that the sound velocity and the density of the aerogel can be used to calculate both, mechanical stiffness and, meeting certain boundary conditions, also the energy and transport properties of the phonons that are responsible for the heat transport along the solid framework. Results may be used to design a porous material with optimal properties which are required for specific technical applications. KW - Poröser Stoff KW - Wärmeleitfähigkeit KW - Phonon KW - mechanische Steifigkeit KW - Mikrostruktur KW - porös KW - thermal conductivity KW - mechanical stiffness KW - microstructure KW - porous KW - Mikroporosität KW - Steifigkeit KW - Wärmeübertragung KW - Festkörperphysik Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124806 ER - TY - THES A1 - Meyer, Frank T1 - Soft X-ray Spectroscopic Study of Amino Acid and Salt Solutions T1 - Weichröntgenspektroskopische Untersuchungen von Aminosäuren und Salzen in wässriger Lösung N2 - This thesis focuses on the investigation of the electronic structure of amino acids and salts in aqueous solution using X-ray spectroscopic methods. Both material groups are of fundamental importance with regards to many physiological reactions, especially for the Hofmeister effect which describes the solubility of proteins in salt solutions. Hence, the investigation of the electronic structure of amino acids and the influence of ions on the hydrogen bonding network of liquid water are important milestones to a deeper understanding of the Hofmeister series. Besides investigating the electronic structure of amino acids in aqueous solution, the spectra were used to develop a building block model of the spectral fingerprints of the functional groups and were compared to spectral signatures of suitable reference molecules. In the framework of this thesis, it is shown that the building block approach is a useful tool with allows the interpretation of spectral signatures of considerably more complex molecules In this work, the focus lies on the investigation of the occupied and unoccupied electronic states of molecules in solid state, as well as in aqueous solution. Hereby, different X-ray spectroscopic methods were applied. X-ray emission spectroscopy (XES) was used to probe the occupied electronic structure of the solution, while the unoccupied electronic structure was addressed by using X-ray absorption spectroscopy (XAS). Finally, resonant inelastic X-ray scattering (RIXS) as a combination of XAS and XES measurements provides the combined information about the unoccupied and occupied molecular levels. The element specific character of the three measurement methods is a feature which allows the investigation of the local electronic structure of a single functional group. With RIXS, also non-equivalent atoms of the same element can be addressed separately. Within this thesis firstly, a library of the XE spectra of all 20 proteinogenic amino acids in zwitterionic form is presented. From this sample-set XES fingerprints of the protonated alpha-amino group NH3+ and the deprotonated carboxylic group COO- were evaluated and used to identify the XES fingerprints of the nitrogen and oxygen containing functional groups of the side chains of the amino acids. The data is discussed based on a building block approach. Furthermore, the XE spectra of the functional groups of lysine and histidine, namely the NH2 group and the C3N2H4 ring structure, are both compared to XE spectra of suitable reference molecules (imidazole, ammonia and methylamine). It is found that the XE and RIXS spectra of the side chains of lysine and histidine show large similarities to the XE spectra of the reference molecules. This agreement in the XE and RIXS spectra allows a qualitative investigation of XE and RIXS spectra of more complex amino acids using the XE and RIXS spectra of suitable reference molecules. The chemical structure of histidine and proline is quite different from the structures of the other proteinogenic amino acids. Due to the unique chemical structure of the side chain which in both cases consists of a heterocyclic ring structure, these two amino acids were investigated in more detail. Zubavichus et al. [1] have shown that amino acids are decomposing while exposed to X-ray radiation of the experiment. The damage is irreversible and molecular fragments can adsorb on the membrane of the experimental setup. This contamination can also create a spectral signature which then overlaps with the signal of the solution and which complicates the interpretation of the data. To record spectra which are free from contributions of adsorbed molecular fragments on the membrane, the adsorption behavior was investigated. In contrast to the solid phase in which the amino acids are present as salts in one electronic conformation, the charge state of the amino acids can be manipulated in aqueous solution by tuning the pH-value. By doing this, all possible charge states are accessible (cation, anion, zwitterion). In this work it is shown that also the spectra of the different charge states can be modeled by the spectra of suitable reference molecules using the building block approach. The spectral changes occurring upon protonation and deprotonation of the functional groups are explored and verified by comparing them to theoretical calculations. The comparison with measurements of pyrrolidine show that the electronic structure which surrounds the nitrogen atom of proline is strongly influenced by the ring structure of the side chain. Furthermore, the proline, pyrrolidine, and histidine molecules are also degrading during the liquid sample measurements. This can be observed by the detection of a new spectral component which increases with the measurement time originating from the window membrane. In all cases, the speed of the agglomeration of molecular fragments at the membrane was observed to be highly sensitive to the pH value of the solution. To understand the Hofmeister series, also the impact of the salt ions have to be investigated. In this study the influence of potassium chloride (KCl) on the hydrogen bond network of water was studied by using non-resonantly excited XES as well as RIXS. A decreased dissociation of hydrogen molecules and changes in the molecular vibrations could be detected. These changes were interpreted with a molecular reorganization of the water molecules and a decreased number of hydrogen bonds. N2 - Im Rahmen dieser Arbeit werden Untersuchungen zur elektronischen Struktur von verschiedenen Aminosäuren sowohl in wässriger Lösung als auch als Festkörper präsentiert. Das Hauptaugenmerk liegt hierbei auf dem Erlangen eines fundamentalen Verständnisses über die elektronische Struktur der Aminosäuren in wässriger Lösung und der Entwicklung eines Baukastenprinzips für die qualitative Analyse der Röntgenemissions- und resonanten inelastischen Röntgenstreuungsspektren. In dieser Arbeit wird neben Aminosäuren auch der Einfluss von Salzionen auf das dynamische Wasserstoffbrückenbindungsnetzwerk des flüssigen Wassers untersucht. Beide Aspekte stellen wichtige Zwischenschritte auf dem Weg zu einem detaillierten Verständnis des Hofmeister-Effekts dar. In dieser Arbeit wurden röntgenspektroskopische Methoden verwendet, um die besetzten und unbesetzten Zustände der Moleküle sowohl im Festkörper als auch in wässriger Lösung zu untersuchen. Angewandt wurde dabei die Röntgenabsorptionsspektroskopie (XAS), welche die Untersuchung der unbesetzten Zustände erlaubt. Im Gegensatz dazu liefert die Röntgenemissionsspektroskopie (XES) Informationen über die besetzten Zustände. Die resonante inelastische Röntgenstreuung (RIXS) vereint diese beiden Techniken und enthält Informationen über die gesamte elektronische Struktur eines Systems. Der elementspezifische Charakter dieser Messmethoden muss dabei gesondert hervorgehoben werden, denn dadurch ist es möglich die lokale elektronische Struktur unterschiedlicher funktioneller Gruppen getrennt voneinander zu untersuchen. Im Rahmen dieser Arbeit wurde zunächst eine Bibliothek der XES-Spektren der zwanzig proteinogenen Aminosäuren angelegt. Daraus konnten spektrale Fingerabdrücke der einzelnen funktionellen Gruppen und der Stickstoff und Sauerstoff enthaltenden Seitenketten der Aminosäuren erstellt werden. Die Spektren der einzelnen funktionellen Gruppen von Lysin und Histidin wurden in einem zweiten Schritt mit den Spektren von kleineren Molekülen, welche die pure funktionelle Gruppe repräsentieren, verglichen. Durch die sehr gute Übereinstimmung konnte gezeigt werden, dass die Röntgenemissionsspektren der untersuchten Aminosäuren nach einem Baukastenprinzip durch die Spektren der kleineren und dadurch einfacheren Referenzmoleküle beschrieben werden können. Mit Hilfe dieses Baukastenprinzips wurde im weiteren Verlauf dieser Arbeit die detaillierte Untersuchung der elektronischen Struktur der Aminosäuren Prolin und Histidin möglich. Die Aminosäuren Histidin und Prolin wurden dabei wegen ihrer speziellen chemischen Struktur, welche sich durch eine Ringstruktur an der Seitenkette von der chemischen Struktur der restlichen Aminosäuren unterscheidet, für eine genauere Untersuchung ausgewählt. Sowohl Prolin als auch Histidin werden durch die starke Röntgenstrahlung während des Experiments irreparabel beschädigt, wodurch sich die spektrale Signatur der Moleküle sehr stark ändert. Um diese Beschädigungen zu erkennen und zu vermeiden wurden die Veränderungen der Spektren in Abhängigkeit der Belichtungszeit dokumentiert. Neben Festkörpermessungen, bei welchen die Aminosäuren nur in einer einzigen Konfiguration vorhanden sind (zwitterionisch), wurden die Aminosäuren auch in ihrer natürlichen Umgebung, der wässrigen Lösung, untersucht. Durch die Variation des pH-Wertes der Lösung kann die Konfiguration und damit die elektronische Struktur geändert werden (Kation, Anion, Zwitterion). Eine starke Veränderung in den Spektren in Abhängigkeit des pH-Wertes konnte festgestellt werden. Dabei fällt auf, dass die elektronische Struktur des Stickstoffs in der Aminosäure Prolin sehr stark durch die Ringstruktur der Seitenkette beeinflusst wird, was durch den Vergleich des Spektrums mit dem Spektrum des Pyrrolidin Moleküls gezeigt wurde. Des Weiteren konnte sowohl bei den Flüssigexperimenten mit Prolin als auch mit Histidin eine Kontamination der Membran festgestellt werden, welche durch Molekülfragmente entsteht. Dieser Kontaminierungsprozess konnte für Prolin und Histidin vor allem bei neutralem und hohem pH-Wert beobachtet werden. Dennoch konnten durch das Baukastenprinzip und die Untersuchungen der Referenzmoleküle Imidazol und Pyrrolidin Erkenntnisse über die elektronische Struktur von Histidin und Prolin gewonnen werden. Mit Hilfe der resonanten inelastischen Röntgenstreuung konnten die spektralen Fingerabdrücke der beiden nicht äquivalenten Stickstoffatome des Imidazols experimentell voneinander getrennt werden. Des Weiteren wurden innerhalb der RIXS-Spektren starke resonante Einflüsse beobachtet. Mit Hilfe von berechneten Spektren von isolierten Imidazol und Imidazolium Molekülen konnten die spektralen Signaturen sowohl im nicht resonanten Spektrum als auch im resonanten Spektrum erklärt werden und im Einzelnen auf die Struktur der Valenzorbitale zurückgeführt werden. Auf dem Weg zum Verständnis des Hofmeister-Effekts ist neben den Aminosäuren natürlich auch der Einfluss von Salzen auf die Lösung zu berücksichtigen. Im letzten Teil dieser Arbeit stehen daher die Auswirkungen der Ionen des Kaliumchlorids auf das Röntgenemissionsspektrum des Wassers im Fokus. Dazu wurden KCl Lösungen verschiedener Konzentrationen untersucht. Durch die Zugabe von Salz konnte eine Umorientierung der Wassermoleküle und des damit verbundenen Netzwerks von Wasserstoffbrückenbindungen beobachtet werden. KW - Aminosäuren KW - Elektronenstruktur KW - Röntgenspektroskopie KW - RIXS KW - resonant inelastic x-ray scattering KW - amino acids KW - aqueous solution KW - electronic structure KW - salt solutions KW - Elektronenstruktur KW - Röntgenspektroskopie KW - Salzlösung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124295 ER - TY - THES A1 - Steindamm, Andreas T1 - Exzitonische Verlustmechanismen in organischen Bilagen-Solarzellen T1 - Excitonic loss mechanisms in organic bilayer solar cells N2 - Um die Wirkungsgrade organischer Solarzellen weiter zu steigern, ist ein Verständnis der auftretenden Verlustmechanismen entscheidend. Im Vergleich zu anorganischen photovoltaischen Zellen sind in den organischen Halbleitern die durch Absorption erzeugten Elektron-Loch-Paare, die als Exzitonen bezeichnet werden, sehr viel stärker gebunden. Daher müssen sie an einer Heterogrenzfläche, gebildet durch ein Donator- und ein Akzeptormaterial, in freie Ladungsträger getrennt werden. Mit dem erforderlichen Transportweg an die Heterogrenzschicht sind Rekombinationsverluste der exzitonischen Anregungen verbunden, die aus einer Vielzahl unterschiedlicher Prozesse resultieren und einen der Hauptverlustkanäle in organischen Solarzellen darstellen. Aus diesem Grund wird der Fokus dieser Arbeit auf die Charakterisierung und mögliche Reduzierung solcher exzitonischen Verlustmechanismen gelegt. Als Modellsystem wird dazu eine planare Bilagen-Struktur auf Basis des Donatormaterials Diindenoperylen (DIP) und des Akzeptors Fulleren C60 verwendet. Durch die Kombination von elektrischen und spektroskopischen Messmethoden werden unterschiedliche exzitonische Verlustmechanismen in den aktiven Schichten charakterisiert und die zugrunde liegenden mikroskopischen Ursachen diskutiert. Dazu wird zuerst auf die strukturellen, optischen und elektrischen Eigenschaften von DIP/C60-Solarzellen eingegangen. In einem zweiten Abschnitt werden die mikroskopischen Einflüsse einer Exzitonen blockierenden Lage (EBL, exciton blocking layer) aus Bathophenanthrolin (BPhen) durch eine komplementäre Charakterisierung von Photolumineszenz und elektrischen Parametern der Solarzellen untersucht, wobei auch die Notwendigkeit der EBL zur Unterbindung von Metalleinlagerungen in den aktiven organischen Schichten analysiert wird. Die anschließende Studie der Intensitäts- und Temperaturabhängigkeit der j(U)-Kennlinien gibt Aufschluss über die intrinsischen Zellparameter sowie die Rekombinationsmechanismen von Ladungsträgern in den aktiven Schichten. Ferner werden durch temperaturabhängige spektroskopische Untersuchungen der Photo- und Elektrolumineszenz der Solarzellen Informationen über die elektronischen Zustände der DIP-Schicht erlangt, die für Rekombinationsverluste der generierten Exzitonen verantwortlich sind. Zusätzlich werden Raman-Messungen an den Solarzellen und Einzelschichten diskutiert. In einer abschließenden Studie werden exzitonische Verluste unter Arbeitsbedingungen der Solarzelle durch Ladungsträgerwechselwirkungen in der Donator-Schicht quantifiziert. In dieser Arbeit konnten verschiedene relevante Verlustprozesse in organischen Solarzellen reduziert werden. Durch die Identifizierung der mikroskopischen Ursachen dieser Verluste wurde eine wichtige Voraussetzung für eine weitere Steigerung der Leistungseffizienz geschaffen. N2 - To increase the efficiencies of organic solar cells, understanding of the occurring loss mechanisms is crucial. In comparison to inorganic photovoltaic cells the electron hole pairs, referred to as excitons, are bound much stronger in organic semiconductors. Therefore dissociation into free charge carriers takes place at a hetero interface of a donor and an acceptor material. The necessary diffusion path to this interface entails recombination loss mechanisms resulting from diverse processes which represent one of the main loss channels in organic solar cells. Thus the focus of this work is set on the characterization and potential reduction of such excitonic loss mechanisms. As a model system planar heterojunction solar cells consisting of diindenoperylene (DIP) as donor and fullerene C60 as acceptor material were used. By combining electrical with spectroscopic measurement techniques diverse excitonic loss mechanisms in the active layers are characterized and the underlying microscopic processes are discussed. Firstly the structural, optical and electrical properties of the DIP/C60 solar cells are observed. In a second section the microscopic effects of an exciton blocking layer (EBL) consisting of bathophenanthroline (BPhen) are investigated by a complementary analysis of photoluminescence and electrical parameters of the solar cells. In doing so also metal penetration into the active organic layers is analyzed and effectively suppressed. The following study of intensity and temperature dependent j(V) characteristics reveals intrinsic cell parameters as well as recombination mechanisms of charge carriers in the active layers. Moreover information about the electronic states of the DIP layer responsible for recombination losses is obtained by temperature dependent spectroscopic analyses of photo- and electroluminescence of the solar cells. Additionally Raman spectra of solar cells and the individual organic thin films are discussed. Finally excitonic losses in solar cells at working conditions due to charge carrier interaction are quantified for the donor layer. During this work diverse relevant loss mechanisms in organic solar cells could be reduced. By identifying the microscopic origins of such losses an important prerequisite was set for further power efficiency enhancement of organic photovoltaic cells. KW - Organische Solarzelle KW - Exziton KW - Diindenoperylen KW - diindenoperylene KW - C60 KW - Bathophenanthrolin KW - bathophenanthroline KW - Bilagen-Solarzelle KW - exciton blocking layer KW - Rekombination KW - Photolumineszenz KW - Elektrolumineszenz KW - Raman-Spektroskopie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124002 ER - TY - THES A1 - Fuchs, Franziska T1 - Optical spectroscopy on silicon vacancy defects in silicon carbide T1 - Optische Spektroskopie an Silizium-Fehlstellen in Siliziumkarbid N2 - This work sheds light on different aspects of the silicon vacancy in SiC: (1) Defect creation via irradiation is shown both with electrons and neutrons. Optical properties have been determined: the excitation of the vacancy is most efficient at excitation wavelengths between 720nm and 800nm. The PL decay yields a characteristic excited state lifetime of (6.3±0.6)ns. (2) Defect engineering, meaning the controlled creation of vacancies in SiC with varying neutron fluence. The defect density could be engineered over eight orders of magnitude. On the one hand, in the sample with highest emitter density, the huge PL signal could even be enhanced by factor of five via annealing mechanisms. On the other hand, in the low defect density samples, single defects with photostable room temperature NIR emission were doubtlessly proven. Their lifetime of around 7ns confirmed the value of the transient measurement. (3) Also electrical excitation of the defects has been demonstrated in a SiC LED structure. (4) The investigations revealed for the first time that silicon vacancies can even exist SiC nanocrystals down to sizes of about 60 nm. The defects in the nanocrystals show stable PL emission in the NIR and even magnetic resonance in the 600nm fraction. In conclusion, this work ascertains on the one hand basic properties of the silicon vacancy in silicon carbide. On the other hand, proof-of-principle measurements test the potential for various defect-based applications of the vacancy in SiC, and confirm the feasibility of e.g. electrically driven single photon sources or nanosensing applications in the near future. N2 - In dieser Arbeit werden verschiedene Aspekte der Silizium-Fehlstelle in SiC beleuchtet: (1) Die Erzeugung der Defekte durch Bestrahlung, sowohl mit Elektronen als auch Neutronen. Einige optische Eigenschaften wurden ermittelt: die Anregung der Fehlstelle ist im Bereich von 720nm bis 800nm am effizientesten. Das Abklingen der PL zeigt eine charakteristische Lebensdauer des angeregten Zustands von (6.3±0.6)ns. (2) Maßschneidern der Defektdichte meint die kontrollierte Erzeugung von Defekten durch variablen Neutronenfluss. Hier konnte die Defektdichte gezielt über acht Größenordnungen verändert werden. Auf der einen Seite, in der Probe mit der höchsten Defektdichte, konnte das ohnehin schon große PL Signal noch um den Faktor fünf durch Temperprozesse erhöht werden. Auf der anderen Seite konnten in den Proben mit geringer Defektdichte einzelne Defekte mit stabiler nahinfrarot Emission bei Raumtemperatur zweifelsfrei nachgewiesen werden. Ihre Lebensdauer von etwa 7ns bestätigt den Wert aus den transienten Messungen. (3) Auch die elektrische Anregung der Defekte in einer SiC LED Struktur konnte gezeigt werden. (4) Die Untersuchung zeigte zum ersten Mal, dass Silizium-Fehlstellen in SiC Nanokristallen bis hinunter zu einer Größe von ca. 60 nm existieren können. Die Defekte zeigen stabile PL Emission im Nahinfraroten und sogar Magnetresonanz in der 600 nm Fraktion. Zusammenfassend werden in dieser Arbeit zum Einen grundlegende Eigenschaften der Silizium-Fehlstelle in Siliziumkarbid herausgefunden. Zum Anderen können Messungen zur Machbarkeit von verschiedenen Anwendungen sowohl das Potenzial der Fehlstelle in SiC für defektbasierte Anwendungen aufzeigen, als auch die Umsetzbarkeit von z.B. elektrisch betriebenen Einzelphotonenquellen oder Nanosensoren in naher Zukunft bestätigen. KW - Siliciumcarbid KW - Gitterbaufehler KW - Optische Spektroskopie KW - Silicon carbide KW - Silicon vacancy KW - Optical spectroscopy KW - Magnetic resonance KW - Spin defect KW - physics KW - vacancy KW - spin KW - semiconductor Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124071 ER - TY - THES A1 - Weick, Stefan T1 - Retrospektive Bewegungskorrektur zur hochaufgelösten Darstellung der menschlichen Lunge mittels Magnetresonanztomographie T1 - Retrospective Motion Correction for High Resolution Magnetic Resonance Imaging of the Human Lung N2 - Ziel dieser Arbeit war es, das gesamte Lungenvolumen in hoher dreidimensionaler Auflösung mittels der MRT darzustellen. Um trotz der niedrigen Protonendichte der Lunge und der geforderten hohen Auflösung ausreichend Signal für eine verlässliche Diagnostik zu erhalten, sind Aufnahmezeiten von einigen Minuten nötig. Um die Untersuchung für den Patienten angenehmer zu gestalten oder auf Grund der eingeschränkten Fähigkeit eines Atemstopps überhaupt erst zu ermöglichen, war eine Anforderung, die Aufnahmen in freier Atmung durchzuführen. Dadurch entstehen allerdings Bewegungsartefakte, die die Diagnostik stark beeinträchtigen und daher möglichst vermieden werden müssen. Für eine Bewegungskompensation der Daten muss die auftretende Atembewegung detektiert werden. Die Bewegungsdetektion kann durch externe Messgeräte (Atemgurt oder Spirometer) oder durch eine zusätzliche Anregungen erfolgen (konventionelle Navigatoren) erfolgen. Nachteile dieser Methoden bestehen darin, dass die Bewegung während der Atmung nicht direkt verfolgt wird, dass elektronische Messgeräte in die Nähe des Tomographen gebracht werden und das die Patienten zusätzlich vorbereitet und eingeschränkt werden. Des Weiteren erfordert eine zusätzliche Anregung extra Messzeit und kann unter Umständen die Magnetisierung auf unterwünschte Weise beeinflussen. Um die angesprochenen Schwierigkeiten der Bewegungsdetektion zu umgehen, wurden in dieser Arbeit innerhalb einer Anregung einer 3d FLASH-Sequenz sowohl Bilddaten- als auch Navigatordaten aufgenommen. Als Navigator diente dabei das nach der Rephasierung aller bildgebenden Gradienten entstehende Signal (DC Signal). Das DC Signal entspricht dabei der Summe aller Signale, die mit einem bestimmten Spulenelement detektiert werden können. Bewegt sich beispielsweise die Leber bedingt durch die Atmung in den Sensitivitätsbereich eines Spulenelementes, wird ein stärkeres DC Signal detektiert werden. Je nach Positionierung auf dem Körper kann so die Atembewegung mit einzelnen räumlich lokalisierten Spulenelementen nachverfolgt werden. Am DC Signalverlauf des für die Bewegungskorrektur ausgewählten Spulenelementes sind dann periodische Signalschwankungen zu erkennen. Zusätzlich können aus dem Verlauf Expirations- von Inspirationszuständen unterschieden werden, da sich Endexpirationszustände im Regelfall durch eine längere Verweildauer auszeichnen. Grundsätzlich kann das DC Signal vor oder nach der eigentlichen Datenaufnahme innerhalb einer Anregung aufgenommen werden. Auf Grund der kurzen Relaxationszeit T∗2 des Lungengewebes fällt das Signal nach der RF Anregung sehr schnell ab. Um möglichst viel Signal zu erhalten sollten, wie in dieser Arbeit gezeigt wurde, innerhalb einer Anregung zuerst die Bilddaten und danach die Navigatordaten aufgenommen werden. Dieser Ansatz führt zu einer Verkürzung der Echozeit TE um 0.3 ms und damit zu einem SNR Gewinn von etwa 20 %. Gleichzeitig ist das verbleibende Signal nach der Datenakquisition und Rephasierung der bildgebenden Gradienten noch ausreichend um die Atembewegung zu erfassen und somit eine Bewegungskorrektur der Daten (Navigation) zu ermöglichen. Um eine retrospektive Bewegungskorrektur durchführen zu können, müssen Akzeptanzbedingungen (Schwellenwerte) für die Datenauswahl festgelegt werden. Bei der Wahl des Schwellenwertes ist darauf zu achten, dass weder zu wenige noch zu viele Daten akzeptiert werden. Akzeptiert man sehr wenige Daten, zeichnen sich die Rekonstruktionen durch einen scharfen Übergang zwischen Lunge und Diaphragma aus, da man sehr wenig Bewegung in den Rekonstruktionen erlaubt. Gleichzeitig erhöht sich allerdings das Risiko, dass nach der Navigation Linien fehlen. Dies führt zu Einfaltungsartefakten, die in Form von gestörten Bildintensitäten in den Rekonstruktionen zu sehen sind und die diagnostische Aussagekraft einschränken. Um Einfaltungsartefakte zu vermeiden sollte der Schwellenwert so gewählt werden, dass nach der Datenauswahl keine Linien fehlen. Aus dieser Anforderung lässt sich ein maximaler Schwellenwert ableiten. Akzeptiert man dagegen sehr viele Daten, zeichnen sich die Rekonstruktionen durch erhöhtes Signal und das vermehrte Auftreten von Bewegungsartefakten aus. In diesem Fall müsste der Arzt entscheiden, ob Bewegungsartefakte die Diagnostik zu stark beeinflussen. Wählt man den Schwellenwert so, dass weder Linien fehlen noch zu viel Bewegung erlaubt wird, erhält man Rekonstruktionen die sich durch einen scharfen Diaphragmaübergang auszeichnen und in denen noch kleinste Gefäße auch in der Nähe des Diaphragmas deutlich zu erkennen sind. Hierfür haben sich Schwellenwerte, die zu einer Datenakzeptanz von ca. 40 % führen als günstig erwiesen. Um Einfaltungsartefakte auf Grund der retrospektiven Datenauswahl zu verhindern, muss das Bildgebungsvolumen mehrfach abgetastet werden. Dadurch wird gewährleistet, dass für die letztendliche Rekonstruktion ausreichend Daten zur Verfügung stehen, wobei mehrfach akzeptierte Daten gemittelt werden. Dies spielt auf Grund der niedrigen Protonendichte der Lunge eine wesentliche Rolle in der Rekonstruktion hochaufgelöster Lungendatensätze. Weiterhin führt das Mitteln von mehrfach akzeptierten Daten zu einer Unterdrückung der sogenannten Ghost Artefakte, was am Beispiel der Herzbewegung in der Arbeit gezeigt wird. Da die Messungen unter freier Atmung durchgeführt werden und keine zusätzlichen externen Messgeräte angeschlossen werden müssen, stellte die Untersuchung für die Patienten in dieser Arbeit kein Problem dar. Im ersten Teil dieser wurde Arbeit gezeigt, dass sich mit Hilfe des DC Signales als Navigator und einer retrospektiven Datenauswahl das gesamte Lungenvolumen in hoher dreidimensionaler Auflösung von beispielsweise 1.6 x 1.6 x 4 mm3 innerhalb von 13 min. darstellen lässt. Die Anwendbarkeit der vorgestellten Methode zur Bewegungskorrektur wurde neben Probanden auch an Patienten demonstriert. Da wie bereits beschrieben das Bildgebungsvolumen mehrfach abgetastet werden muss, wiederholt sich auch die Abfolge der für die Bildgebung verantwortlichen Gradienten periodisch. Da sich der Atemzyklus aber auch periodisch wiederholt, kann es zu Korrelationen zwischen der Atmung und den wiederholten Messungen kommen. Dies führt dazu, dass auch nach vielen wiederholten Messungen immer noch größere Bereiche fehlender Linien im k-Raum bleiben, was zu Artefakten in den Rekonstruktionen führt. Dies konnte im Falle der konventionellen Bewegungskorrektur in den Gatingmasken, die die Verteilung und Häufigkeit der einzelnen akzeptierten Phasenkodierschritte im k-Raum zeigen, beobachtet werden. Da eine vorsätzliche Unterbrechung der Atemperiodizität (der Patient wird dazu angehalten, seine Atemfrequenz während der Messung absichtlich zu variieren) zur Vermeidung der angesprochenen Korrelationen nicht in Frage kommt, musste die Periodizität in der Datenaufnahme unterbrochen werden. In dieser Arbeit wurde dies durch eine quasizufällige Auswahl von Phasen- und Partitionskodiergradienten erreicht, da Quasizufallszahlen so generiert werden, dass sie unabhängig von ihrer Anzahl einen Raum möglichst gleichförmig ausfüllen. Die quasizufällige Datenaufnahme führt deshalb dazu, das sowohl akzeptierte als auch fehlende Linien nach der Bewegungskorrektur homogen im k-Raum verteilt auftreten. Vergleicht man das auftreten von Ghosting zeichnen sich die quasizufälligen Rekonstruktionen im Vergleich zur konventionellen Datenaufnahme durch eine verbesserte Reduktion von Ghost Artefakten aus. Dies ist auf die homogene Verteilung mehrfach akzeptierter Linien im k-Raum zurückzuführen. Die homogenere Verteilung von fehlenden Linien im k-Raum führt weiterhin zu einer wesentlich stabileren Rekonstruktion fehlender Linien mit parallelen MRT-Verfahren (z.B. iterativem Grappa). Dies wird umso deutlicher je höher der Anteil fehlender Linien im k-Raum wird. Im Falle der konventionellen Datenaufnahme werden die zusammenhängenden Bereiche fehlender Linien immer größer, was eine erfolgreiche Rekonstruktion mit iterativem Grappa unmöglich macht. Im Falle der quasizufälligen Datenaufnahme dagegen können auch Datensätze in denen 40% der Linien fehlen einfaltungsartefaktfrei rekonstruiert werden. Im weiteren Verlauf der Arbeit wurde gezeigt, wie die Stabilität der iterativen Grappa Rekonstruktion im Falle der quasizufälligen Datenaufnahme für eine erhebliche Reduktion der gesamten Messzeit genutzt werden kann. So ist in einer Messzeit von nur 74s die Rekonstruktion eines artefaktfreien und bewegungskorrigierten dreidimensionalen Datensatzes der menschlichen Lunge mit einer Auflösung von 2 x 2 x 5 mm3 möglich. Des Weiteren erlaubt die quasizufällige Datenaufnahme in Kombination mit iterativem Grappa die Rekonstruktion von Datensätzen unterschiedlicher Atemphasen von Inspiration bis Expiration (4D Bildgebung). Nach einer Messzeit von 15min. wurden 19 unterschiedliche Atemzustände rekonstruiert, wobei sich der Anteil der fehlenden Linien zwischen 0 und 20 % lag. Im Falle der konventionellen Datenaufnahme wäre eine wesentlich längere Messzeit nötig gewesen, um ähnliche Ergebnisse zu erhalten. Zum Schluss soll noch ein Ausblick über mögliche Weiterentwicklungen und Anwendungsmöglichkeiten, die sich aus den Erkenntnissen dieser Arbeit ergeben haben, gegeben werden. So könnte das quasizufällige Aufnahmeschema um eine Dichtegewichtung erweitert werden. Hierbei würde der zentrale k-Raum Bereich etwas häufiger als die peripheren Bereiche akquiriert werden. Dadurch sollte die iterative Grappa Rekonstruktion noch stabiler funktionieren und Ghost Artefakte besser reduziert werden. Die Verteilung der Linien sollte allerdings nicht zu inhomogen werden, um größere Lücken im k-Raum zu vermeiden. Darüber hinaus könnte die vorgestellte Methode der Bewegungskompensation auch für die Untersuchung anderer Organe oder Körperteile verwendet werden. Voraussetzung wäre lediglich das Vorhandensein dezidierter Spulenanordnungen, mit denen die Bewegung nachverfolgt werden kann. So ist beispielsweise eine dynamische Bildgebung des frei und aktiv bewegten Knies möglich, wobei zwischen Beugung und Streckung durch die erste Ableitung des zentralen k-Raum Signales unterschieden werden kann. Dies kann zusätzliche Diagnoseinformationen liefern oder für Verlaufskontrollen nach Operationen benutzt werden [15]. Eine Weiterentwicklung mit hohem klinischen Potential könnte die Kombination der in dieser Arbeit vorgestellten retrospektiven Bewegungskorrektur mit einer Multi- Gradienten-Echo Sequenz darstellen. Hierzu musste die bestehende Sequenz lediglich um eine mehrfache Abfolge von Auslesegradienten innerhalb einer Anregung erweitert werden. Dies ermöglicht eine bewegungskorrigierte voxelweise Bestimmung der transversalen Relaxationszeit T∗2 in hoher räumlicher Auflösung. Unter zusätzlicher Sauerstoffgabe kann es zu einer Veränderung von T∗2 kommen, die auf den sogenannten BOLD Effekt (Blood Oxygen Level Dependent) zurückzuführen ist. Aus dieser Änderung könnten Rückschlüsse auf hypoxische Tumorareale gezogen werden. Da diese eine erhöhte Strahlenresistenz aufweisen, könnte auf diese Bereiche innerhalb des Tumors eine erhöhte Strahlendosis appliziert und so möglicherweise Behandlungsmisserfolge reduziert werden. Gleichzeitig kann durch die 4D Bildgebung eine mögliche Tumorbewegung durch die Atmung erfasst und diese Information ebenfalls in der Bestrahlungsplanung benutzt werden. Die Lungen MRT könnte somit um eine hochaufgelöste dreidimensionale funktionelle Bildgebung erweitert werden. N2 - The goal of this work was to depict the whole lung volume by MRI in high spatial resolution. To obtain sufficient signal for a reliable diagnosis despite the inherently low proton density of the lung and the requested high spatial resolution, total acquisition times of a few minutes are mandatory. Simultaneously, the measurements should be performed under free breathing conditions making patient examinations more comfortable or possible for patients with limited breath holding capabilities. However, free breathing leads to motion artifacts which can severely influence the diagnostic value of the images and hence have to be avoided. To compensate for motion the prevalent breathing pattern has to be detected. This can be achieved by external measurement devices such as a respiration belt or a spirometer or by conventional navigator echoes using an additional excitation pulse. Drawbacks of these methods are that the respiratory motion is detected only indirectly, that electronic devices have to be used near the MRI machine and the patients have to be prepared and are strongly restricted. Furthermore, additional excitation pulses will prolong the total acquisition time and may affect the magnetization adversely. To overcome these limitations of motion detection in the present work, the image as well as the navigator data was acquired within one excitation of a FLASH sequence. The resulting central k-space signal (DC signal) after rephasing of all imaging gradients was used as a navigator signal. The DC signal represents the sum of all signals that can be detected with a single receiver coil element. If the liver is for example moving in the sensitivity area of one coil element due to breathing, an increased DC signal will be detected. Depending on their local position on the body the locally confined coil elements are able to track respiratory motion. The time course of the DC signal of the selected coil element for respiratory motion compensation will depict periodic signal variations accordingly. Additionally, respiratory phases of expiration can be distinguished from inspiratory phases because the resting times in end-expiratory phases are usually longer compared to end-inspiratory phases. The DC signal can be acquired either before or after the actual image data acquisition within one excitation. The short T2* of the human lung tissue leads to a rapid signal decay after the excitation. As shown in this thesis, the DC signal should be acquired after the image data within one excitation. This approach allows for echo time (TE) reduction of 0.3 ms leading to a signal benefit of approximately 20 %. Simultaneously, the remaining signal after image data acquisition and rephasing of all imaging gradients is still sufficient to track respiratory motion and can therefore be used for motion compensation of the acquired data. In order to compensate for motion retrospectively, threshold values for data acceptance have to be defined. Setting the threshold value, neither too less nor too much data should be accepted. Accepting very few data leads to sharp transition between the lung and the diaphragm because not much motion is allowed in the reconstruction process. On the other hand, disturbed signal intensity can be observed because of under-sampling artifacts due to missing lines after gating. These artifacts can restrict the diagnostic value of the reconstructions. Therefore, the selected threshold value should lead to a fully sampled k-space after gating. This requirement can be used to define the maximum threshold value for data acceptance. On the contrary, accepting very much data leads to higher signal intensity but also to more distinctive motion artifacts. In this case, the physician has to decide whether the motion artifacts affect his diagnosis too much. A moderate threshold value leads to a fully sampled k-space as well as good motion artifact compensation. This results in reconstructions that are characterized by a sharp depiction of small vessels even near the diaphragm. For this, threshold values leading to a data acceptance of about 40 % turned out to be beneficial. To avoid under-sampling artifacts because of retrospective gating, the imaging volume has to be acquired several times. This ensures that enough data is available for the final reconstruction whereas multiple accepted data is averaged. Averaging is essential for the reconstruction of high resolution data sets because of the inherently low proton density of the lung. Furthermore it leads to the reduction of ghost artifacts as is shown using the example of heart motion in this work. As no external measurement devices were used and the data was acquired under free breathing conditions the examinations posed no problem for the patients within this work. It was shown so far that the DC signal in combination with retrospective gating can be used to reconstruct high resolution 3d lung data sets with a resolution of 1.6 x 1.6 x 4 mm3 within 13 min., for instance. The applicability of the presented method for motion compensation was shown for volunteers as well as patients. Since as already described the imaging volume must be acquired several times, the series of gradients for spatial encoding are repeated periodically. As the respiratory cycle is periodically as well, correlations between the repeated measurements and the breathing cycle can occur. Therefore, even after many repeated measurements large areas of missing k-space lines can remain, leading to artifacts in the reconstructions. This can be observed in the gating masks, showing the distribution of accepted and missing lines in k-space, in case of conventional motion compensation used in this work so far. To avoid the aforementioned correlations, the periodicity in the repeated acquisitions has to be interrupted because of suspending the periodic breathing pattern of patients deliberately would be a serious intervention and is therefore ineligible. This was accomplished by a quasi-random selection of the phase and partition encoding gradients as quasi-random numbers are generated to fill the space as uniformly as possible regardless of their number. Therefore, accepted lines as well as missing lines are uniformly distributed in k-space after retrospective gating. A more uniform distribution of multiple accepted k-space lines in case of quasirandom sampling leads to an improved reduction of Ghost-Artifacts compared to conventional sampling. Furthermore, the more uniform distribution of missing kspace lines leads a considerably more stable reconstruction of missing lines using parallel imaging techniques (as iterative Grappa for example). This is getting more distinct the higher the proportion of missing k-space lines is. The contiguous areas of missing k-space lines are becoming increasingly large in case of conventional sampling, making a successful reconstruction using iterative Grappa impossible. In contrast, quasi-random sampling enables for the successful reconstruction of artifact free images even when 40 % of the acquired lines were missing after retrospective gating. In addition, the stability of the iterative GRAPPA reconstructions in case of quasirandom sampling allows for a substantial reduction of the total acquisition time. Thus, an artifact free motion compensated data set of 2 x 2 x 5 mm3 resolution could be reconstructed for a measurement time of only 74s. Furthermore, quasi-random sampling in combination with iterative Grappa enables for the reconstruction of data sets of different respiratory phases from inspiration to expiration (4d imaging). Accordingly, 19 different respiratory phases could be reconstructed after 15min of data acquisition. The percentage of missing lines was between 0 and 20 %. Hence, in case of conventional sampling a considerably longer measurement time would have been required to achieve similar results. KW - Kernspintomografie KW - Retrospektive Bewegungskorrektur KW - Magnetresonanztomographie KW - Lungenbildbgebung KW - freie Atmung KW - Retrospective Motion Compensation KW - DC-Gating KW - Lung Imaging KW - free breathing KW - Lunge Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-124084 ER - TY - THES A1 - Proppert, Sven Martin T1 - Design, implementation and characterization of a microscope capable of three-dimensional two color super-resolution fluorescence imaging T1 - Design, Implementierung und Charakterisierung eines Mikroskops für dreidimensionale zwei Farben superhochauflösende Fluoreszenz-Bildgebung N2 - This thesis reviews the fundamentals of three-dimensional super-resolution localization imaging. In order to infer the axial coordinate of the emission of single fluorophores, the point spread function is engineered following a technique usually referred to as astigmatic imaging by the introduction of a cylindrical lens to the detection path of a microscope. After giving a short introduction to optics and localization microscopy, I outline sources of aberrations as frequently encountered in 3D-localization microscopy and will discuss their respective impact on the precision and accuracy of the localization process. With the knowledge from these considerations, experiments were designed and conducted to verify the validity of the conclusions and to demonstrate the abilities of the proposed microscope to resolve biological structures in the three spatial dimensions. Additionally, it is demonstrated that measurements of huge volumes with virtually no aberrations is in principle feasible. During the course of this thesis, a new method was introduced for inferring axial coordinates. This interpolation method based on cubic B-splines shows superior performance in the calibration of a microscope and the evaluation of subsequent measurement and will therefore be used and explained in this work. Finally, this work is also meant to give future students some guidance for entering the field of 3D localization microscopy and therefore, detailed protocols are provided covering the specific aspects of two color 3D localization imaging. N2 - In dieser Arbeit werden die Grundlagen der dreidimensionalen hochauflösenden Lokalisationsmikroskopie erarbeitet und daraus Spezifikationen für ein geeignetes Mikroskop abgeleitet. Zur Gewinnung der axialen Koordinate der Emission einzelner Farbstoffe wird die Punktspreizfunktion in der Detektion astigmatisch mithilfe einer zylindrischen Linse verändert. Nach einer kurzen Einleitung in die Grundzüge der Optik und der Lokalisationsmikroskopie werden die Ursachen für typische Aberrationen besprochen, wie sie in der 3D-Lokalisationsmikroskopie häufig auftreten. Weiterhin wird der Einfluss dieser Aberrationen auf die erreichbare Präzision und Exaktheit des Lokalisationsprozesses behandelt. Mit dem Wissen aus diesen Überlegungen wurden Experimente entworfen und durchgeführt um die getroffenen Schlussfolgerungen zu validieren und zu demonstrieren, dass das vorgeschlagene Mikroskop dazu in der Lage ist, biologische Strukturen in den drei räumlichen Dimensionen aufzulösen. Weiterhin wird gezeigt, dass beinahe aberrationsfreie Mikroskopie großer Volumina prinzipiell möglich ist. Während der Arbeit an dieser Promotion wurde eine neue Methode zur Gewinnung der axialen Koordinaten eingeführt. Diese auf kubischen B-splines basierende Interpolationsmethode stellte sich als anderen Routinen überlegen in der Kalibration eines Mikroskops und der anschließenden Auswertung von Messungen heraus. Deshalb wird dieses Verfahren in der vorliegenden Arbeit verwendet und erklärt. Da diese Doktorarbeit auch den Anspruch hat, zukünftigen Studenten den Einstieg in die hochauflösende 3D Mikroskopie zu erleichtern, werden abschließend detaillierte Protokolle für spezifische Aspekte der zwei Farben 3D Lokalisationsmikroskopie zur Verfügung gestellt. KW - Dimension 3 KW - aberration KW - Einzelmolekülmikroskopie KW - single molecule microscopy KW - 3D KW - super-resolution KW - Mikroskopie KW - Hochauflösendes Verfahren KW - Aberration Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107905 ER - TY - THES A1 - Sturm, Volker Jörg Friedrich T1 - \(^{19}F\) Magnetresonanztomographie zur Bildgebung von Infektionen im Zeitverlauf T1 - \(^{19}F\) magnetic resonance imaging to monitor the timecourse of bacterial infections in vivo N2 - Im Rahmen dieser Arbeit sollten die Möglichkeiten der MR Tomographie erkundet werden bakterielle Infektionen im Zeitverlauf darzustellen. Genauer gesagt sollte das Potential der MR Tomographie anhand eines durch eine Infektion induzierten lokalisierten Abszesses unter Verwendung dreier unterschiedlicher MRT Methoden untersucht werden: Mittels nativem \(T_2\) Kontrast; der Verwendung von superparamagnetischen Eisenoxid Partieln (USPIO) als \(T_2^*\) Kontrastmittel; und dem Einsatz von Perfluorkarbonen (PFC) als \(^{19}F\) MRT Marker (siehe Kapitel 3). Wie erwartet führte die durch die Infektion hervorgerufene Entzündung zu veränderten \(T_2\)-Zeiten, welche auf \(T_2\)-gewichteten MR Bildern eine Lokalisierung des Abszessbereiches erlauben. Jedoch eigneten sich diese Daten aufgrund der graduellen Änderung der \(T_2\)-Zeiten nicht, um eine klare Grenze zwischen Abszess und umliegendem Gewebe zu ziehen. Superparamagnetische Eisenoxidpartikel andererseit haben als MRT Kontrastmittel bereits in den letzten Jahren ihre Fähigkeit unter Beweis gestellt Entzündungen [53, 58, 64] darzustellen. Die Anreicherung dieser Partikel am Rande des Abszesses [53], wie sie auch in unseren MR Daten zu beobachten war, erlaubte eine relativ scharfe Abgrenzung gegenüber dem umgebenden Gewebe in der chronischen Phase der Infektion (Tag 9 p.i.). Hingegen genügte die nur sehr spärlichen Anreicherung von USPIO Partikeln in der akuten Phase der Infektion (Tag 3 p.i.) nicht für eine entsprechende Abgrenzung [58]. Aufgrund der sehr geringen biologischen Häufigkeit und den sehr kurzen Relaxationszeiten von endogenem Fluor eignen sich Perfluorkarbone als Markersubstanz in der MR Tomographie von biologischen Systemen. Insbesondere da PFC Emulsionen durch phagozytierende Zellen aufgenommen werden und im Bereich von Entzündungen akkumulieren [30, 59]. In dieser Arbeit konnte anhand der erhaltenen MRT Daten eine Akkumulation von Perfluorkarbonen nicht nur in der chronischen Phase, sondern auch in der akuten Phase nachgewiesen werden. Diese Daten erlauben somit zu allen untersuchten Zeitpunkten eine Abgrenzung zwischen Infektion und umliegenden Gewebe. Aufgrund der besagten Vorteile wurden die Perfluorkarbone gewählt, um die Möglichkeiten der MR Tomographie zu testen, quantitative Informationen über die schwere der Infektion zu liefern. Als Referenz für die Bakterienbelastung wurden die Biolumineszenzbildgebung (BLI) [49, 50] und die Standardmethode zur Bestimmung der Bakterienbelastung cfu (koloniebildenden Einheiten) herangezogen. Eine Gegenüberstellung der zeitlichen Verläufe der durch die Biolumineszenzbildgebung und durch die cfu erhaltenen Daten liefert eine qualitative Übereinstimmung mit den durch die 19F MR Tomographie erhaltenen Daten. Dies trifft hierbei sowohl auf die über den gesamten Infektionsbereich hinweg summierten Signalamplituden, als auch auf das Volumen zu, in dem Fluor am Ort der Infektion akkumuliert wurde. Im Gegensatz zur Methode der cfu Bestimmung sind die MR Tomographie und die Biolumineszenzbildgebung nicht invasiv und erlauben die Verfolgung des Infektionsverlaufes an einem einzelnen Individuum. Hierzu benötigt, im Gegensatz zur MR Tomographie, die Methode der Biolumineszenzbildgebung jedoch einen speziellen Pathogenstamm. Darüber hinaus ist hervorzuheben, dass die MR Tomographie zudem die Möglichkeit bietet auch morphologische Informationen über den Infektionsbereich und seine Umgebung zu akquirieren. Gerade weil jede dieser Methoden die mit der Infektion einhergehenden Prozesse aus einer leicht anderen Blickrichtung betrachtet, erscheint es sinnvoll diese etablierte Untersuchungsplattform bestehend aus MRT, BLI und cfu über die in dieser Arbeit bearbeitete Fragestellung hinaus näher zu untersuchen. Insbesondere der Aspekt inwieweit die drei Methoden sich gegenseitig ergänzen, könnte einen tieferen Einblick in die Wechselwirkung zwischen Pathogen und Wirt erlauben. Auch wenn für die betrachtete Fragestellung bereits der hierdurchgeführte semiquanitative Ansatz zur Bestimmung der relativen Fluormengen am Ort der Infektion ausreichte, so ist doch im Allgemeinen wünschenswert probenbezogen die Sensitivität der Spule und damit die Güte der Spulenabstimmung zu bestimmen. Hierzu ist jedoch die Aufnahme von \(B_1\)-Karten unabdingbar und wird entsprechend im Kapitel 4 \(Bloch-Siegert B_1^+-Mapping\) näher addressiert. Der Schwerpunkt liegt hierbei, wie der Kapitelname bereits andeutet, auf der Bloch-Siegert Methode, die insbesondere in der präsentierten Implementierung in einer Turbo/ Multi Spin Echo Sequenz eine effiziente Nutzung der relativ langen \(T_\)2-Zeiten der Perfluorkarbone erlaubt. Da zudem die Bloch-Siegert-Methode eine rein phasenbasierte Methode ist, kann neben der aus den Daten erzeugten \(B_1\)-Karte zugleich ein unverfälschtes Magnitudenbild generiert werden, wodurch eine sehr effiziente Nutzung der vorhandenen Messzeit ermöglicht wird. Diese Eigenschaft ist insbesondere für \(^{19}F\) Bildgebung von besonderem Interesse, da hier für jede Messung, aufgrund der üblicherweise relativ geringen Konzentration an Fluoratomen, lange Messzeiten benötigt werden. Zusammenfassend konnte anhand des untersuchten Tiermodells sowohl die Fähigkeit der MR Tomographie nachgewiesen werden Infektionen im Zeitverlauf darzustellen, als auch die Fähigkeit der MR Tomographie quantitative Informationen über den Verlauf der Infektion zu liefern. Desweiteren konnte eine Möglichkeit aufgezeigt werden, welche das Potential hat in vertretbarem Zeitrahmen auch in vivo B1+-Karten auf dem Fluorkanal zu erstellen und so einen zentralen Unsicherheitsfaktor, für Relaxometry und absolute Quantifizierung von \(^{19}F\) Daten in vivo, zu beseitigen. N2 - The main focus of this work is to investigate the potential of magnetic resonance imaging (MRI) to monitor the timecourse of bacterial infections in vivo. More specifically, it focuses on the ability to localize and assess an infection-induced localized bulky abscess using three different MRI methods: the utilization of native \(T_2\) contrast; the usage of super paramagnetic iron oxide nanoparticles (USPIO) as MRI \(T_2^*\) contrast agents; and the application of perfluorcarbons (PFC) as \(^{19}F\) MRI marker (see chapter 3). Study results demonstrated that, as expected the altered \(T_2\) values present in the abscess area permit localization of the infection when using \(T_2\) weighted data. The precise boundary of the abscess, however, could not be determined due to the gradual change of the \(T_2\) values in the area of the infection. Conforming to other studies [53, 58], the MR-detected accumulation of USPIO particles along the abscess rim allowed definition of a fairly exact demarcation line between the abscess and surrounding tissue during the chronic phase of the infection (day 9 p.i.). During the acute phase of the infection (day 3 p.i.), however, the particle accumulation at the abscess rim was too sparse for precise boundary definition [58]. Because of their extremely low biological abundance and the very short relaxation times of endogenous fluorine, PFCs can be imaged background-free in a biological system. Moreover, as emulsified PFCs were taken up by phagocytosing cells and accumulated at the site of inflammation [30, 59], the acquired MRI data showed PFC accumulation during both the chronic and acute phases of infection. It was thus possible to differentiate between the abscess and surrounding tissue at each examined time point. Due to the described advantages, PFCs were chosen to evaluate with MRI the infection severity. As a bacterial burden reference, colony forming units (cfu) and bioluminescence imaging (BLI) [49, 50] were selected. Observation of BLI, cfu and \(^{19}F\) MRI data showed qualitative correlation during the investigated time course. This was true for the accumulated \(^{19}F\) MR signal in the area of infection and for the \(^{19}F\) MR signal volume. Additionally, unlike the cfu method MRI and BLI are non-invasive and thus data can be gathered at multiple time points. However, contrary to BLI, MRI does not require a special pathogen strain. Moreover, it can provide morphological data from an abscess and the surrounding tissue. Because the data delivered by each of these three methods (MRI, BLI and cfu), are based on alternative approaches, additional examinations of the established platform are suggested. For example, the extent to which the methods supplement each other may provide deeper insight into the interaction between pathogen and host. Even though the chosen semi quantitative approach was sufficient in the context of the evaluated issues to estimate the relative fluorine amount at the site of infection, it is in general desirable for each quantification to determine the sensitivity of the coil per sample. To address this issue the Bloch Siegert (BS) based \(B_1\) mapping method implemented in a turbo/ multi spin echo (TSE/MSE) sequence is presented in Chapter 4 Bloch-Siegert \(B_1^+\)-Mapping. Such a sequence allows effective use of the relatively long PFC \(T_2\) times and encodes BS information solely into the phase data. Thus, a \(B_1\) map can be created in addition to the unaltered TSE/MSE magnitude image. In the context of \(^{19}F\) imaging, this is of special interest due to the usually low amounts of fluorine resulting in long measurement times. In conclusion, it was shown that MRI not only enables visualization of the temporal behavior of infections on the investigated animal model, but it can also provide quantitative information about the progress of the infection. Additionally, a method potentially allowing in vivo B1+ mapping was introduced. This is an important step to improve the reliability of relaxometry and absolute quantification of in vivo \(^{19}F\) MRI. KW - Kernspintomografie KW - Bakterielle Infektion KW - 19F MR KW - Perfluorkarbon KW - Infektionsbildgebung KW - Bloch Siegert KW - B1 Mapping KW - Kontrastmittel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122851 ER -