TY - THES A1 - Sturm, Volker Jörg Friedrich T1 - \(^{19}F\) Magnetresonanztomographie zur Bildgebung von Infektionen im Zeitverlauf T1 - \(^{19}F\) magnetic resonance imaging to monitor the timecourse of bacterial infections in vivo N2 - Im Rahmen dieser Arbeit sollten die Möglichkeiten der MR Tomographie erkundet werden bakterielle Infektionen im Zeitverlauf darzustellen. Genauer gesagt sollte das Potential der MR Tomographie anhand eines durch eine Infektion induzierten lokalisierten Abszesses unter Verwendung dreier unterschiedlicher MRT Methoden untersucht werden: Mittels nativem \(T_2\) Kontrast; der Verwendung von superparamagnetischen Eisenoxid Partieln (USPIO) als \(T_2^*\) Kontrastmittel; und dem Einsatz von Perfluorkarbonen (PFC) als \(^{19}F\) MRT Marker (siehe Kapitel 3). Wie erwartet führte die durch die Infektion hervorgerufene Entzündung zu veränderten \(T_2\)-Zeiten, welche auf \(T_2\)-gewichteten MR Bildern eine Lokalisierung des Abszessbereiches erlauben. Jedoch eigneten sich diese Daten aufgrund der graduellen Änderung der \(T_2\)-Zeiten nicht, um eine klare Grenze zwischen Abszess und umliegendem Gewebe zu ziehen. Superparamagnetische Eisenoxidpartikel andererseit haben als MRT Kontrastmittel bereits in den letzten Jahren ihre Fähigkeit unter Beweis gestellt Entzündungen [53, 58, 64] darzustellen. Die Anreicherung dieser Partikel am Rande des Abszesses [53], wie sie auch in unseren MR Daten zu beobachten war, erlaubte eine relativ scharfe Abgrenzung gegenüber dem umgebenden Gewebe in der chronischen Phase der Infektion (Tag 9 p.i.). Hingegen genügte die nur sehr spärlichen Anreicherung von USPIO Partikeln in der akuten Phase der Infektion (Tag 3 p.i.) nicht für eine entsprechende Abgrenzung [58]. Aufgrund der sehr geringen biologischen Häufigkeit und den sehr kurzen Relaxationszeiten von endogenem Fluor eignen sich Perfluorkarbone als Markersubstanz in der MR Tomographie von biologischen Systemen. Insbesondere da PFC Emulsionen durch phagozytierende Zellen aufgenommen werden und im Bereich von Entzündungen akkumulieren [30, 59]. In dieser Arbeit konnte anhand der erhaltenen MRT Daten eine Akkumulation von Perfluorkarbonen nicht nur in der chronischen Phase, sondern auch in der akuten Phase nachgewiesen werden. Diese Daten erlauben somit zu allen untersuchten Zeitpunkten eine Abgrenzung zwischen Infektion und umliegenden Gewebe. Aufgrund der besagten Vorteile wurden die Perfluorkarbone gewählt, um die Möglichkeiten der MR Tomographie zu testen, quantitative Informationen über die schwere der Infektion zu liefern. Als Referenz für die Bakterienbelastung wurden die Biolumineszenzbildgebung (BLI) [49, 50] und die Standardmethode zur Bestimmung der Bakterienbelastung cfu (koloniebildenden Einheiten) herangezogen. Eine Gegenüberstellung der zeitlichen Verläufe der durch die Biolumineszenzbildgebung und durch die cfu erhaltenen Daten liefert eine qualitative Übereinstimmung mit den durch die 19F MR Tomographie erhaltenen Daten. Dies trifft hierbei sowohl auf die über den gesamten Infektionsbereich hinweg summierten Signalamplituden, als auch auf das Volumen zu, in dem Fluor am Ort der Infektion akkumuliert wurde. Im Gegensatz zur Methode der cfu Bestimmung sind die MR Tomographie und die Biolumineszenzbildgebung nicht invasiv und erlauben die Verfolgung des Infektionsverlaufes an einem einzelnen Individuum. Hierzu benötigt, im Gegensatz zur MR Tomographie, die Methode der Biolumineszenzbildgebung jedoch einen speziellen Pathogenstamm. Darüber hinaus ist hervorzuheben, dass die MR Tomographie zudem die Möglichkeit bietet auch morphologische Informationen über den Infektionsbereich und seine Umgebung zu akquirieren. Gerade weil jede dieser Methoden die mit der Infektion einhergehenden Prozesse aus einer leicht anderen Blickrichtung betrachtet, erscheint es sinnvoll diese etablierte Untersuchungsplattform bestehend aus MRT, BLI und cfu über die in dieser Arbeit bearbeitete Fragestellung hinaus näher zu untersuchen. Insbesondere der Aspekt inwieweit die drei Methoden sich gegenseitig ergänzen, könnte einen tieferen Einblick in die Wechselwirkung zwischen Pathogen und Wirt erlauben. Auch wenn für die betrachtete Fragestellung bereits der hierdurchgeführte semiquanitative Ansatz zur Bestimmung der relativen Fluormengen am Ort der Infektion ausreichte, so ist doch im Allgemeinen wünschenswert probenbezogen die Sensitivität der Spule und damit die Güte der Spulenabstimmung zu bestimmen. Hierzu ist jedoch die Aufnahme von \(B_1\)-Karten unabdingbar und wird entsprechend im Kapitel 4 \(Bloch-Siegert B_1^+-Mapping\) näher addressiert. Der Schwerpunkt liegt hierbei, wie der Kapitelname bereits andeutet, auf der Bloch-Siegert Methode, die insbesondere in der präsentierten Implementierung in einer Turbo/ Multi Spin Echo Sequenz eine effiziente Nutzung der relativ langen \(T_\)2-Zeiten der Perfluorkarbone erlaubt. Da zudem die Bloch-Siegert-Methode eine rein phasenbasierte Methode ist, kann neben der aus den Daten erzeugten \(B_1\)-Karte zugleich ein unverfälschtes Magnitudenbild generiert werden, wodurch eine sehr effiziente Nutzung der vorhandenen Messzeit ermöglicht wird. Diese Eigenschaft ist insbesondere für \(^{19}F\) Bildgebung von besonderem Interesse, da hier für jede Messung, aufgrund der üblicherweise relativ geringen Konzentration an Fluoratomen, lange Messzeiten benötigt werden. Zusammenfassend konnte anhand des untersuchten Tiermodells sowohl die Fähigkeit der MR Tomographie nachgewiesen werden Infektionen im Zeitverlauf darzustellen, als auch die Fähigkeit der MR Tomographie quantitative Informationen über den Verlauf der Infektion zu liefern. Desweiteren konnte eine Möglichkeit aufgezeigt werden, welche das Potential hat in vertretbarem Zeitrahmen auch in vivo B1+-Karten auf dem Fluorkanal zu erstellen und so einen zentralen Unsicherheitsfaktor, für Relaxometry und absolute Quantifizierung von \(^{19}F\) Daten in vivo, zu beseitigen. N2 - The main focus of this work is to investigate the potential of magnetic resonance imaging (MRI) to monitor the timecourse of bacterial infections in vivo. More specifically, it focuses on the ability to localize and assess an infection-induced localized bulky abscess using three different MRI methods: the utilization of native \(T_2\) contrast; the usage of super paramagnetic iron oxide nanoparticles (USPIO) as MRI \(T_2^*\) contrast agents; and the application of perfluorcarbons (PFC) as \(^{19}F\) MRI marker (see chapter 3). Study results demonstrated that, as expected the altered \(T_2\) values present in the abscess area permit localization of the infection when using \(T_2\) weighted data. The precise boundary of the abscess, however, could not be determined due to the gradual change of the \(T_2\) values in the area of the infection. Conforming to other studies [53, 58], the MR-detected accumulation of USPIO particles along the abscess rim allowed definition of a fairly exact demarcation line between the abscess and surrounding tissue during the chronic phase of the infection (day 9 p.i.). During the acute phase of the infection (day 3 p.i.), however, the particle accumulation at the abscess rim was too sparse for precise boundary definition [58]. Because of their extremely low biological abundance and the very short relaxation times of endogenous fluorine, PFCs can be imaged background-free in a biological system. Moreover, as emulsified PFCs were taken up by phagocytosing cells and accumulated at the site of inflammation [30, 59], the acquired MRI data showed PFC accumulation during both the chronic and acute phases of infection. It was thus possible to differentiate between the abscess and surrounding tissue at each examined time point. Due to the described advantages, PFCs were chosen to evaluate with MRI the infection severity. As a bacterial burden reference, colony forming units (cfu) and bioluminescence imaging (BLI) [49, 50] were selected. Observation of BLI, cfu and \(^{19}F\) MRI data showed qualitative correlation during the investigated time course. This was true for the accumulated \(^{19}F\) MR signal in the area of infection and for the \(^{19}F\) MR signal volume. Additionally, unlike the cfu method MRI and BLI are non-invasive and thus data can be gathered at multiple time points. However, contrary to BLI, MRI does not require a special pathogen strain. Moreover, it can provide morphological data from an abscess and the surrounding tissue. Because the data delivered by each of these three methods (MRI, BLI and cfu), are based on alternative approaches, additional examinations of the established platform are suggested. For example, the extent to which the methods supplement each other may provide deeper insight into the interaction between pathogen and host. Even though the chosen semi quantitative approach was sufficient in the context of the evaluated issues to estimate the relative fluorine amount at the site of infection, it is in general desirable for each quantification to determine the sensitivity of the coil per sample. To address this issue the Bloch Siegert (BS) based \(B_1\) mapping method implemented in a turbo/ multi spin echo (TSE/MSE) sequence is presented in Chapter 4 Bloch-Siegert \(B_1^+\)-Mapping. Such a sequence allows effective use of the relatively long PFC \(T_2\) times and encodes BS information solely into the phase data. Thus, a \(B_1\) map can be created in addition to the unaltered TSE/MSE magnitude image. In the context of \(^{19}F\) imaging, this is of special interest due to the usually low amounts of fluorine resulting in long measurement times. In conclusion, it was shown that MRI not only enables visualization of the temporal behavior of infections on the investigated animal model, but it can also provide quantitative information about the progress of the infection. Additionally, a method potentially allowing in vivo B1+ mapping was introduced. This is an important step to improve the reliability of relaxometry and absolute quantification of in vivo \(^{19}F\) MRI. KW - Kernspintomografie KW - Bakterielle Infektion KW - 19F MR KW - Perfluorkarbon KW - Infektionsbildgebung KW - Bloch Siegert KW - B1 Mapping KW - Kontrastmittel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122851 ER - TY - THES A1 - Hopfgartner, Andreas T1 - Magnetresonanztomographie in der Zahnheilkunde - hochauflösende zahnmedizinische Anwendungen in der MRT mit einer Entwicklung zur Bewegungskorrektur T1 - Magnetic Resonance Imaging in Dentistry – high-resolution dental applications in MRI with development of a method for motion correction N2 - Die zahnmedizinische Behandlung von Erkrankungen der Zähne oder im Bereich der Mundhöhle erfolgt bei Weitem nicht immer aus optischen Gründen. Diese Erkrankungen werden auch mit ernsthaften Erkrankungen in Zusammenhang gebracht. Studien haben gezeigt, dass einige Erkrankungen im Mund- und Zahnbereich zu Herz- und Lungenkrankheiten oder Diabetes führen können. Oftmals erstreckt sich die Pathologie oder Symptomatik von Mund- und Zahnerkrankungen über einen weiten Bereich. In der zahnmedizinischen Klinik kommen daher viele verschiedene diagnostische Apparate zum Einsatz. Allerdings zählt die Magnetresonanztomographie, die sich in anderen Bereichen bereits zum wichtigsten bildgebenden Diagnosetool entwickelt hat, dort noch nicht zu den Standardverfahren. Dabei liegen ihre Vorteile auf der Hand: sie ist bekannt für sehr gute Bildkontraste vor allem zwischen verschiedenen Weichgewebsarten und kommt ohne gefährliche ionisierende Strahlung aus. Wahrscheinlich ist ersteres der Grund, warum die MRT in der Zahnmedizin noch nicht sonderlich vertreten ist, kommt es dort oft auf die kontrastreiche Darstellung von Hartgeweben an. Neueste Entwicklungen und Studien belegen jedoch die vielseitigen Vorteile der MRT auch in diesem Bereich. Ziel dieser Arbeit von der applikativen Seite betrachtet, war es, das enorme Potential der MRT in den vielseitigen Bereichen der Zahnmedizin weiterhin aufzuzeigen. Viele dieser Anwendungen stellen jedoch sehr hohe Anforderungen an die Systeme. Meist sind die darzustellenden Strukturen sehr klein und erfordern eine hohe Auflösung. Während man beim Röntgenverfahren beispielsweise die Energie des Strahles (Dosis) steigern kann, bedeutet dies in der MRT (ohne das Gerät zu wechseln) eine Verlängerung der Messzeit. Gerade im Bereich des Kopfes kommt es oft zu ungewollten Bewegungen, die das Ergebnis und die Reproduzierbarkeit der gewonnenen diagnostischen Informationen verschlechtern oder gänzlich unbrauchbar machen. Die grösste Herausforderung dabei ist die dreidimensionale Abformung von Zahnoberflächen in der Prothetik. Dieses Verfahren kann eine aufwändige und unangenehme manuelle Abformung der Zähne und die Herstellung eines Zwischengipsmodells ersetzen und ein direktes dreidimensionales Modell der Zahnoberflächen produzieren. Durch die moderne CAD-/CAM-Technik kann daraus vom Zahntechniker direkt eine Zahnrestauration erstellt werden. Daher war ein wichtiger Bestandteil des Projekts dentale MRT die Entwicklung einer Methode zur Erkennung und gleichzeitiger Korrektur von Bewegungen. Verschiedenste Anforderungen waren an die Methode gestellt. Zum einen muss die Methode bereits Bewegungen im Bereich von ~100 µm erkennen, um die Anforderungen an die finale Bildauflösung zu unterschreiten. Bei der dentalen Abformung wird eine 1-Kanal-Empfängerspule verwendet und je nach Messung kann der Patient dabei auf dem Bauch oder Rücken liegen. Weiterhin muss die Bewegungserkennung ohne zusätzliche externe Geräte wie Kameras, deren Sicht z.B. durch den Patienten verdeckt ist, durchführbar sein. Die vorliegende Arbeit deckt also zwei größere Themenblöcke ab. Zum einen wurden in der Arbeit neue Applikationen entwickelt oder weiterentwickelt, um verschiedenen Bereichen der Zahnmedizin den Zugang zu MRTUntersuchungen zu eröffnen. Kapitel 4 beschreibt die Möglichkeit, die Bewegung des Kiefergelenks dynamisch zu erfassen. Es stellte sich in der Arbeit heraus, dass sowohl die Bewegung von Weichgewebeanteilen darstellbar waren, als auch der intraartikuläre Abstand im Kiefergelenk unter Kaubelastung in Echtzeit vermessen werden konnte. Dabei wurde die Bildgebungssequenz und der zugehörige Rekonstruktionsalgorithmus so entwickelt, dass die Daten flexibel und ohne Vorwissen akquiriert und aufbereitet werden können. Hierbei konnten verschiedenen Pathologien anhand der dynamischen Bilder sichtbar gemacht werden und die dynamische MRT konnte Erkrankungen erkennen, die mit anderen Mitteln nicht sichtbar waren. Die vielen diagnostischen Möglichkeiten, die dadurch entstehen sind bisher noch nicht untersucht und sollten durch großangelegte Studien untersucht und belegt werden. Kapitel 5 beschreibt die Ergebnisse einer großangelegten Studie im Bereich der dentomaxillären Bildgebung . Die diagnostischen Möglichkeiten der MRT für die kieferorthopädische Anwendung liegen klar auf der Hand. Die typischen Patienten in der Kieferorthopädie sind Kinder und Jugendliche. Die Abwesenheit von gewebsschädigender Strahlung ist hier ein besonderer Vorteil der MRT. Eine Messung dauert zudem nach diversen Weiterentwicklungen der Methode nur noch 2 (bzw. 4) Minuten. Die Auflösung in den gerenderten Bildern beträgt 0.25x0.25x0.5 mm. Mit der Methode konnte unter anderem die Geminisierung einer Zahnwurzel und der Abstand des Zahnmarks zur Zahnoberfläche (Zahnschmelz) dargestellt und vermessen werden. Kapitel 6 stellt Neuentwicklungen im Bereich der dentalen Abformung von Zahnoberflächen dar. Hier wurde eine neue Methode entwickelt um den Patientenkomfort bei der Messung zu steigern und so Bewegungen im Vorhinein zu unterbinden. Bei der alten Methode liegt der Patient auf dem Bauch und ein großer Teil der Mundhöhle ist mit Kontrastmittel befüllt. Durch die Verwendung einer präparierten Tiefziehschiene kann das Kontrastmittel nun lokal appliziert werden und eine Messung in Rückenlage das Patienten ist somit problemlos möglich. Die damit verbundene Reproduzierbarkeit der Abformungsergebnisse wäre durch eine großangelegte Studie zu zeigen. Die Hauptaufgabe der vorliegenden Dissertation war es, eine Methode zur Bewegungskorrektur zu entwickeln, die es ohne eine große Anzahl an Zusatzgeräten ermöglicht, die Bewegung eines Subjekts während der Messung zu erfassen und dementsprechend zu korrigieren. Diese neue Methode, gestützt auf einer Messung eines MRT-aktiven Markers der am Subjekt angebracht wird, beruht außer der Verwendung des Markers nur auf MRT-Hardware. Die Methode wird in Kapitel 8 vorgestellt. Da es sich bei der Methode um eine Neuentwicklung handelt, war es in erster Linie wichtig, die Einflüsse der verschiedenen Parameter, die sich auf die Positionierungsgenauigkeit auswirken, abzuschätzen und letzten Endes festzulegen. Dies wurde in mehreren Vorstudien, Experimenten und Computersimulationen abgehandelt. In der Arbeit konnte durch Validierungsexperimente gezeigt werden dass sich mit dem bildbasierten Navigator Bewegungen im Genauigkeitsbereich von ~50 µm (Translation) und ~0.13◦(Rotation) detektieren lassen. Mit den Positionsinformationen lassen sich MRT-Daten retrospektiv korrigieren oder idealerweise das Bildgebungsvolumen in Echtzeit anpassen um Inkonsistenzen in den Daten im Vorhinein vorzubeugen. Durch Bewegung beeinträchtigte in-vivo Daten konnten so mit der Methode korrigiert werden und anhand eines geeigneten Phantoms konnte die Verbesserung der Erkennung von Kanten, wie sie beispielsweise bei der dentalen Abformung angewandt wird, gezeigt werden. Die kontinuierlichen Entwicklungen in den Bereichen Hard-, Software und Algorithmik ermöglichen weitere hochauflösende Anwendungen. In Kapitel 9 sind die Ergebnisse einer Studie gezeigt, die sich mit der Analyse der Handbewegungen während einer Messung beschäftigt. Für eine hochauflösenden Darstellung der Handanatomie bei 7 T ist eine Unterbindung der Handbewegung sehr wichtig. Um ein geeignetes Design für eine Empfängerspule zu entwerfen, die Bewegungen der Hand unterbindet, wurde eine qualitative Bewegungsanalyse der Hand in mehreren verschiedenen Positionen durchgeführt. Durch Vergleich der Ergebnisse konnte so auf geeignete Designs zurückgeschlossen werden. N2 - The treatment of the teeth or diseased of the oral cavity is by far not only administered for aesthetic reasons. These diseases are sometimes also associated with other serious diseases. Studies have shown that some diseases of the mouth, the gingiva or the surrounding area can lead to heart and lung disease or diabetes. Oftentimes the pathology or symptomatology of dental or oral diseases extends to a wide area. In the dental clinic many different diagnostic devices are used. However, magnetic resonance imaging, which has developed in other areas as the most important diagnostic imaging tool, is not frequently used in dentistry to the present day, although their advantages are obvious: it is known for excellent image contrast, mainly between different soft tissues and comes without hazardous ionizing radiation. The former is probably the reason why the MRI is not yet a standard method in dentistry: here in most cases the contrast of hard tissues is of relevance. However, recent developments and studies demonstrated the versatile advantages of MRI in this area. The aim of this work as seen from the perspective of application, was to continuously show the enormous potential of MRI in the diverse areas of dentistry. However, many of these applications put very high requirements on the systems. Usually structures to display are very small and require very high resolution. To improve the resolution while using the X-ray method, e.g., one can increase the beam energy (dose). In MRI (without changing the MRT scanner) this results in an extension of measurement time. Especially in the area of the head this oftentimes leads to unwanted movements during the measurement time that worsen the outcome and reproducibility of the obtained diagnostic information or making it completely useless. The biggest challenge is the measurement of a three-dimensional impression of the tooth surfaces in prosthetics. This process can replace a complex and unpleasant manual impression of the teeth and avoid the production of an intermediate plaster model. Using MRT techniques, a direct three- dimensional model of the tooth surfaces can be produced. By modern CAD/CAM technology, a dental restoration can be directly manufactured by the dental technician using the digital 3D model. Therefore, an important task of the project was the development of a dental MRT method for the detection and correction of movements. Various requirements were imposed on the method. Firstly, the method must be able to detect movements in the range of ~100 µm to fall below the requirements of the final image resolution. For the acquisition of the contrast agent’s signal, a 1-channel receiver coil is used and depending on the measurement, the patient can lie prone or supine. Furthermore, the motion detection system must work without extensive external devices such as cameras, whose direct vision may be obscured by the patient, e.g. This thesis covers two major subject areas. Firstly, new applications and methods have been developed and further developed in order to provide the various fields of dentistry access to MRT techniques. Chapter 4 describes the possibility to image the motion of the temporomandibular joint dynamically in real-time. In this work it turned out that both, the movement of the soft tissue components were represented, as well as the intra-articular distance in the TMJ could be measured during mastication (under load) in real-time. Here, the imaging sequence and the corresponding reconstruction algorithm were designed such that the data can be acquired without a prioiri knowledge and processed flexibly. MRT showed different pathologies in the images and dynamic MRT could detect some diseases that could not be diagnosed by other means. The emerging diagnostic possibilities should be investigated and the results verified by large-scale studies. Chapter 5 describes the results of dento-maxillary MRT imaging, supported by a large-scale study. The diagnostic capabilities of MRI for orthodontic applications are obvious. The typical patient in orthodontics are children and adolescents. The absence of tissue-damaging radiation is a particular advantage of MRI here. After various developments, the acquisition time of a measurement lasted depending on the method only 2 (4) minutes. The resolution in the rendered images was 0.25x0.25x0.50 mm3. Using the proposed method, among other things a geminisation of a tooth root could be shown and the distance of the dental pulp to the tooth surface (enamel) measured. Chapter 6 presents new developments in the field of digital impressions of tooth surfaces. Here, a new method was developed in order to increase patient comfort during the measurement. This approach helps to prevent movements of the subject in advance. With the old method, the patient lies prone and a large part of the oral cavity is filled with contrast agent. By using a prepared dental cast, the contrast agent can be applied locally and hence the patient may lay supine during the measurement. The associated reproducibility of dental impressions should be shown through a large-scale study. The main task of this thesis was to develop a method for motion correction that allows to detect the movement of a subject during the measurement without a large number of additional devices and correct the acquired data accordingly. This new navigator method, based on the measurement of a MRT-active marker attached to the subject, makes use of MRT hardware only, except for the additional marker. The method is described in chapter 8. Since this is a new development, it was important to primarily estimate the effects of the various parameters and their impact on the positioning accuracy. This has been evaluated in several preliminary studies, experiments and computer simulations. By validation experiments it was shown in the studies that the image-based navigator detects movements with an accuracy of ~50 µm(translation) and ~0.13◦ (rotation). With the position information obtained from the navigator, the MRT data can be corrected retrospectively or the volume of interest can be adjusted in real-time during the imaging process to prevent inconsistencies in the data in advance. In-vivo MRT data impaired by motion of a subject during the measurement could be corrected using the MoCoLoCo method. By using an appropriate phantom and simulation a movement, it could be shown that using the proposed method, the quality of edge detection (as used in dental impressions, e.g.) could be restored. Various new high-resolution applications emerged due to the continuous development in hardware, software and algorithms. In chapter 9, the results of a study are presented, which deals with the analysis of shivering movements of the hand during a measurement. For a high-resolution depiction of hand anatomy at 7 T, a suppression of the hand movement is very important. In order to develop an optimal design for a hand receiver coil, a qualitative analysis of the hand movement in several different positions was performed. By comparison of the results, a suitable coil design could be developed. KW - Kernspintomografie KW - Kernspintomografie KW - Zahnmedizin Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122557 ER - TY - THES A1 - Thienel, Cornelius T1 - Exploring the transport properties of the three-dimensional topological insulator material HgTe T1 - Erkundung der Transporteigenschaften des dreidimensionalen Topologischen Isolators HgTe N2 - In der vorliegenden Dissertation werden die Transporteigenschaften von verspannten HgTe-Volumenkristallen untersucht. Verspanntes HgTe stellt einen dreidimensionalen topologischen Isolator dar und ist zur Erkundung von topologischen Oberflächenzuständen von speziellem Interesse, da es mit Hilfe von Molekularstrahlepitaxie in hoher Kristallqualität gewachsen werden kann. Die niedrige Defektdichte führt zu beachtlichen Ladungsträgerbeweglichkeiten, die deutlich über denen anderer topologischer Isolatoren liegen. Verspanntes HgTe hat jedoch eine kleine Energielücke von ca. 20 meV. Deshalb ist es für eine mögliche Verwendung des Materials ein wichtiger Aspekt, in welchem Parameterbereich Oberflächentransport stattfindet. Um dieser Frage nachzugehen, werden die HgTe-Proben bei tiefen Temperaturen (T < 100 mK) und unter dem Einfluss hoher Magnetfelder in verschiedenen Orientierungen untersucht. Der Einfluss von Gate-Elektroden ober- und unterhalb der Struktur sowie von Deckschichten, die die Oberflächen schützen, wird diskutiert. Basierend auf einer Analyse des Quanten-Hall-Effekts wird gezeigt, dass der Transport in diesem Material von topologischen Oberflächenzuständen dominiert ist. Die Abhängigkeit der topologischen Oberflächenzustände von der Gate-Spannung wird dargestellt. Durch diese Abhängigkeit ist es zum ersten Mal möglich, eine ungerade ganzzahlige Quanten-Hall-Plateau Sequenz nachzuweisen, die von den Oberflächen senkrecht zum Magnetfeld stammt. Des Weiteren wird im Rahmen dieser Arbeit in Proben hoher Oberflächenqualität zum ersten Mal für einen 3D TI der p-Typ QHE der Oberflächenzustände beobachtet. Aus der Gate-Abhängigkeit der Messungen wird geschlossen, dass das Abschirmverhalten in 3D TIs nicht trivial ist. Die Transportdaten werden mit Hilfe von intuitiven theoretischen Modellen auf qualitative Weise analysiert. N2 - In the present thesis the transport properties of strained bulk HgTe devices are investigated. Strained HgTe forms a 3D TI and is of special interest for studying topological surface states, since it can be grown by MBE in high crystal quality. The low defect density leads to considerable mobility values, well above the mobilities of other TI materials. However, strained HgTe has a small band gap of ca. 20 meV. With respect to possible applications the question is important, under which conditions the surface transport occurs. To answer this question, the HgTe devices are investigated at dilution refrigerator temperatures (T<100 mK) in high magnetic fields of different orientation. The influence of top and back gate electrodes as well as surface protecting layers is discussed. On the basis of an analysis of the quantum Hall behaviour it is shown that transport is dominated by the topological surface states in a surprisingly large parameter range. A dependence on the applied top gate voltage is presented for the topological surface states. It enables the first demonstration of an odd integer QHE sequence from the surfaces perpendicular to the magnetic field. Furthermore, the p-type QHE from the surface states is observed for the first time in any 3D TI. This is achieved in samples of high surface quality. It is concluded from the gate response that the screening behaviour in 3D TI devices is non-trivial. The transport data are qualitatively analysed by means of intuitive theoretical models. KW - Topologischer Isolator KW - Quecksilbertellurid KW - Elektronischer Transport KW - 3D topological insulator KW - Festkörperphysik KW - Hochmagnetfeld KW - Tieftemperatur KW - Quanten-Hall-Effekt Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-122031 ER - TY - THES A1 - Gold, Peter T1 - Quantenpunkt-Mikroresonatoren als Bausteine für die Quantenkommunikation T1 - Quantum Dot Microresonators as Building Blocks for Quantum Communication N2 - Technologien, die im wesentlichen auf quantenmechanischen Gesetzen beruhen, wie die Quanteninformationsverarbeitung und die Quantenkommunikation, sind weltweit Gegenstand enormer Forschungsanstrengungen. Sie nutzen die einzigartigen Eigenschaften einzelner Quantenteilchen, wie zum Beispiel die Verschränkung und die Superposition, um ultra-schnelle Rechner und eine absolut abhörsichere Datenübertragung mithilfe von photonischen Qubits zu realisieren. Dabei ergeben sich Herausforderungen bei der Quantenkommunikation über große Distanzen: Die Reichweite der Übertragung von Quantenzuständen ist aufgrund von Photonenverlusten in den Übertragungskanälen limitiert und wegen des No-Cloning-Theorems ist eine klassische Aufbereitung der Information nicht möglich. Dieses Problem könnte über den Einsatz von Quantenrepeatern, die in den Quantenkanal zwischen Sender und Empfäger eingebaut werden, gelöst werden. Bei der Auswahl einer geeigneten Technologieplattform für die Realisierung eines Quantenrepeaters sollten die Kriterien der Kompaktheit und Skalierbarkeit berücksichtigt werden. In diesem Zusammenhang spielen Halbleiterquantenpunkte eine wichtige Rolle, da sie sich nicht nur als Zwei-Niveau-Systeme ideal für die Konversion und Speicherung von Quantenzuständen sowie für die Erzeugung von fliegenden Qubits eignen, sondern auch mit den gängigen Mitteln der Halbleitertechnologie und entsprechender Skalierbarkeit realisierbar sind. Ein Schlüssel zur erfolgreichen Implementierung dieser Technologie liegt in der Zusammenführung des Quantenpunktes als Quantenspeicher mit einem Bauteil, welches einzelne Photonen einfangen und aussenden kann: ein Mikroresonator. Aufgrund der Lokalisierung von Elektron und Photon über einen längeren Zeitraum auf den gleichen Ort kann die Effizienz des Informationstransfers zwischen fliegenden und stationären Qubits deutlich gesteigert werden. Des Weiteren können Effekte der Licht-Materie-Wechselwirkung in Resonatoren genutzt werden, um hocheffiziente Lichtquellen zur Erzeugung nichtklassischen Lichts für Anwendungen in der Quantenkommunikation zu realisieren. Vor diesem Hintergrund werden in der vorliegenden Arbeit Halbleiterquantenpunkte mithilfe von spektroskopischen Methoden hinsichtlich ihres Anwendungspotentials in der Quantenkommunikation untersucht. Die verwendeten Quantenpunkte bestehen aus In(Ga)As eingebettet in eine GaAs-Matrix und sind als aktive Schicht in vertikal emittierende Mikroresonatoren auf Basis von dielektrischen Spiegeln integriert. Dabei werden entweder planare Strukturen verwendet, bei denen die Spiegel zur Erhöhung der Auskoppeleffizienz von Photonen dienen, oder aber Mikrosäulenresonatoren, die es ermöglichen, Effekte der Licht-Materie-Wechselwirkung in Resonatoren zu beobachten. Zur Untersuchung der Strukturen wurden Messplätze zur Photolumineszenz-, Resonanzfluoreszenz-,Reflexions- und Photostromspektroskopie sowie zu Photonenkorrelationsmessungen erster und zweiter Ordnung aufgebaut oder erweitert und eingesetzt. Reflexions- und Photolumineszenzspektroskopie an Mikrosäulenresonatoren mit sehr hohen Güten: Eine der wichtigsten Eigenschaften eines Mikrosäulenresonators ist seine Güte, auch Q-Faktor genannt. Er beeinflusst nicht nur das Regime der Licht-Materie-Wechselwirkung, sondern auch die Höhe der Auskoppeleffizienz eines Quantenpunkt-Mikrosäulenresonator-Systems. Vor diesem Hintergrund wird eine Analyse der Verlustmechanismen, die eine Abnahme des Q-Faktors bewirken, durchgeführt. Dazu wird die Güte von Mikrosäulenresonatoren mit Durchmessern im Bereich von 2 − 8 µm mithilfe von Reflexions- und Photolumineszenzspektroskopie gemessen. Aufgrund der erhöhten Absorption an nichtresonanten Quantenpunkten und freien Ladungsträgern sind die Verluste bei den Messungen in Photolumineszenzspektroskopie höher als in Reflexionsspektroskopie, wodurch die in Reflexionsspektroskopie ermittelten Q-Faktoren für alle Durchmesser größer sind. Für einen Quantenpunkt-Mikrosäulenresonator mit einem Durchmesser von 8 µm konnten Rekordgüten von 184.000 ± 8000 in Photolumineszenzspektroskopie und 268.000 ± 13.000 in Reflexionsspektroskopie ermittelt werden. Photostromspektroskopie an Quantenpunkt-Mikrosäulenresonatoren: Durch einen verbesserten Messaufbau und die Verwendung von Mikrosäulenresonatoren mit geringen Dunkelströmen konnte erstmals der Photostrom von einzelnen Quantenpunktexzitonlinien in elektrisch kontaktierten Mikroresonatoren detektiert werden. Dies war Voraussetzung, um Effekte der Licht-Materie-Wechselwirkung zwischen einem einzelnen Quantenpunktexziton und der Grundmode eines Mikrosäulenresonators elektrisch auszulesen. Hierzu wurden Photostromspektren in Abhängigkeit der Verstimmung zwischen Exziton und Kavitätsmode unter Anregung auf die Säulenseitenwand sowie in axialer Richtung durchgeführt. Unter seitlicher Anregung konnte der Purcell-Effekt, als Zeichen der schwachen Kopplung, über eine Abnahme der Photostromintensität des Quantenpunktes im Resonanzfall nachgewiesen werden und der entsprechende Purcell-Faktor zu Fp = 5,2 ± 0,5 bestimmt werden. Da die Transmission des Resonators bei der Anregung auf die Säulenoberseite von der Wellenlänge abhängt, ist die effektive Anregungsintensität eines exzitonischen Übergangs von der spektralen Verstimmung zwischen Exziton und Resonatormode bestimmt. Dadurch ergab sich im Gegensatz zur Anregung auf die Seitenwand des Resonators eine Zunahme des Photostroms in Resonanz. Auch in diesem Fall konnte ein Purcell-Faktor über eine Anpassung ermittelt werden, die einen Wert von Fp = 4,3 ± 1,3 ergab. Des Weiteren wird die kohärente optische Manipulation eines exzitonischen Qubits in einem Quantenpunkt-Mikrosäulenresonator gezeigt. Die kohärente Wechselwirkung des Zwei-Niveau-Systems mit den Lichtpulsen des Anregungslasers führt zu Rabi-Oszillationen in der Besetzungswahrscheinlichkeit des Quantenpunktgrundzustandes, die über dessen Photostrom ausgelesen werden können. Über eine Änderung der Polarisation des Anregungslasers wurde hier eine Variation der Kopplung zwischen dem Quantenemitter und dem elektromagnetischen Feld demonstriert. Interferenz von ununterscheidbaren Photonen aus Halbleiterquantenpunkten: Für die meisten technologischen Anwendungen in der Quantenkommunikation und speziell in einem Quantenrepeater sollten die verwendeten Quellen nicht nur einzelne sondern auch ununterscheidbare Photonen aussenden. Vor diesem Hintergrund wurden Experimente zur Interferenz von ununterscheidbaren Photonen aus Halbleiterquantenpunkten in planaren Resonatorstrukturen durchgeführt. Dazu wurde zunächst die Interferenz von Photonen aus einer Quelle demonstriert. Im Fokus der Untersuchungen stand hier der Einfluss der Anregungsbedingungen auf die Visibilität der Zwei-Photonen-Interferenz. So konnte in nichtresonanter Dauerstrichanregung ein nachselektierter Wert der Visibilität von V = 0,39 gemessen werden. Um den nicht nachselektierten Wert der Visibilität der Zwei-Photonen-Interferenz zu bestimmen, wurde die Einzelphotonenquelle gepulst angeregt. Während die Visibilität für nichtresonante Anregung in die Benetzungsschicht über ein Wiederbefüllen und zusätzliche Dephasierungsprozesse durch Ladungsträger auf einen Wert von 12% reduziert ist, konnte unter p-Schalen-Anregung in einem Hong-Ou-Mandel-Messaufbau eine hohe Visibilität von v = (69 ± 1) % erzielt werden. Außerdem wurde die Interferenz von zwei Photonen aus zwei räumlich getrennten Quantenpunkten demonstriert. Hierbei konnte eine maximale Visibilität von v = (39 ± 2)% für gleiche Emissionsenergien der beiden Einzelphotonenquellen erzielt werden. Durch die Änderung der Photonenenergie über eine Temperaturvariation eines der beiden Quantenpunkte konnten die Photonen der beiden Quellen zunehmend unterscheidbar gemacht werden. Dies äußerte sich in einer Abnahme der Interferenz-Visibilität. Um noch größere Visibilitäten der Zwei-Photonen-Interferenz zu erreichen, ist die resonante Anregung des Quantenpunktexzitons vielversprechend. Deswegen wurde ein konfokales Dunkelfeldmikroskop für Experimente zur Resonanzfluoreszenz aufgebaut und bereits Einzelphotonenemission sowie das Mollowtriplet im Resonanzfluoreszenzspektrum eines Quantenpunktexzitons nachgewiesen. N2 - Technologies relying on the basic laws of quantum mechanics are subject to huge research interest all over the world. They use the unique properties of single quantum particles, like quantum entanglement and superposition, to allow for ultra-fast computers and absolutely secure data transfer with photonic qubits. However, there are some challenges with quantum communication over long distances. The transfer range is limited due to unavoidable photon losses in transfer channels and classic signal amplification is not possible because of the ’no-cloning-theorem’. This issue could be solved by integrating quantum repeaters into the quantum channel between the transmitter and the receiver. An appropriate technology platform for the implementation of a quantum repeater should satisfy the criteria of compactness and scalability. In this context, semiconductor quantum dots become important. As two-level-systems, quantum dots are not only suited for the conversion and storage of quantum states and the generation of flying qubits, but also offer the advantage to be realized with standard semiconductor technology and the corresponding scalability. The key to successfully implement this technology is to combine quantum dots with a device that can trap and emit photons: a microcavity. This device allows for increasing the interaction between the two-level-system and a photon by localizing both at the same place for an extended period of time. In addition, cavity quantum electrodynamics effects can be used to create highly efficient sources of non-classical light for applications in quantum communications. In this context, semiconductor quantum dots are studied in this thesis by means of spectroscopic methods with regard to their potential for applications in quantum communication. The quantum dots consist of In(Ga)As embedded in a GaAs matrix and are integrated into microcavities with distributed bragg reflectors. Here, either planar structures are used to increase the out-coupling efficiency of photons by an asymmetric cavity design or micropillars are applied to facilitate the observation of light-matter coupling in the cavity quantum electrodynamics regime. Furthermore, different experimental setups were extended or built to investigate these structures, including photoluminescence, resonance fluorescence, reflection and photocurrent spectroscopy and setups for measuring the first and second order correlation function. Reflection- and Photoluminescence Spectroscopy of Micropillar Cavities with Very Large Quality Factors One of the most important characteristics of a microresonator is its quality factor. It influences not only the regime of the light-matter interaction but also the out-coupling efficiency of a quantum dot-micropillar cavity system. In this context, an analysis of the loss channels that lead to a reduction of the quality factor is performed. For this purpose, the quality factor of micropillar cavities with different diameters in the range 2 − 8 µm are measured by reflection- and photoluminescence spectroscopy. Because of the increased absorption due to nonresonant quantum dots and free carriers, the photon losses in photoluminescence are larger than in reflection spectroscopy. Therefore, the quality factors measured in reflection spectroscopy are larger for each diameter. Record quality factors of 184,000 ± 8,000 in photoluminescence and 268,000 ± 13,000 were obtained for a quantum dot-micropillar cavity with a diameter of 8 µm. Photocurrent Spectroscopy on Quantum Dot-Micropillar Cavities: An improved experimental setup and the exploitation of micropillar cavities with reduced dark currents made it possible to observe single quantum dot exciton lines in the photocurrent signal of an electrically contacted microresonator. This was the precondition for the electrical readout of light-matter coupling effects between a single quantum emitter and the fundamental mode of a micropillar cavity. For this purpose, photocurrent spectra were taken as a function of the detuning between the exciton and the cavity mode under excitation either on the pillar sidewall or on top of the pillar. In sidewall excitation, the Purcell effect, as a clear sign of the weak coupling regime, could be observed through a reduced photocurrent signal of the quantum dot in resonance with the cavity mode and a corresponding Purcell factor of Fp = 5,2 ± 0,5. In top excitation, the transmission of the resonator is a function of the wavelength, i.e. the maximum transfer of light into the resonator occurs when the laser wavelength coincides with an optical resonance of the micropillar cavity. Therefore, the effective excitation power of the excitonic transition depends on the spectral detuning between the exciton and the cavity mode. Due to this detuning dependent excitation intensity, the photocurrent signal shows an increase at resonance, which is in contrast to the sidewall excitation scheme. Also, in this case a Purcell factor of Fp = 4,3 ± 1,3 was extracted by a fit to the experimental data. In addition, the coherent optical control of an excitonic qubit in a quantum dot micropillar cavity is demonstrated. The coherent interaction of the two-level system with the light pulses of the excitation laser leads to Rabi oscillations in the occupation probability of the quantum dot ground state, which were monitored via the photocurrent originating from the quantum dot. By changing the polarization angle of the exciting laser, a variation of the coupling between the quantum emitter and the electromagnetic field was observed. Interference of Indistinguishable Photons Emitted from Semiconductor Quantum Dots: Most technological applications in the field of quantum communication, and especially quantum repeaters, require photon sources of not only single but also indistinguishable photons. In this context, experiments on the interference of indistinguishable photons emitted from semiconductor quantum dots in planar resonator structures were performed. First, the interference of consecutively emitted photons from the same quantum dot is studied. The investigation focuses on the influence of the excitation condition on the two-photon interference visibility. In nonresonant continuous wave excitation, a postselected value of the two-photon interference visibility of V = 0,39 is measured. To obtain the non-postselected value, the excitation of the single photon source has to be pulsed. Recapturing and dephasing processes of additional charge carriers reduce the nonpostselected visibility for nonresonant excitation into the wetting layer states to a value of 12%, while for p-shell excitation, a larger visibility of v = (69 ± 1) % was achieved in a Hong-Ou-Mandel setup.Furthermore, the interference of two photons from two spatially separated quantum dots is demonstrated. Here, a maximum visibility of v = (39 ± 2)% was achieved for equal emission energies of both single photon sources. By changing the emission energy of one of the two quantum dots via a variation of its temperature, the photons emitted from each source could be made increasingly distinguishable, resulting in a decrease of the interference visibility. To obtain even larger two-photon interference visibilities, a strict resonant excitation of the quantum dot exciton is very promising. Hence, a confocal dark field microscope was built for experiments in resonance fluorescence. Single photon emission as well as the Mollow triplet were already identified in resonance fluorescence. KW - Quantenpunkt KW - Optischer Resonator KW - Quantenkommunikation KW - Mikroresonator KW - Purcell-Effekt KW - quantum dot KW - micro cavity KW - two photon interference KW - photocurrent KW - Ununterscheidbarkeit KW - Einzelphotonenemisson KW - Photostrom Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121649 ER - TY - THES A1 - Berner, Götz T1 - Funktionelle oxidische Heterostrukturen aus dem Blickwinkel der Spektroskopie T1 - Functional oxide heterostructures from a spectroscopic perspective N2 - In oxidischen Heterostrukturen rufen Neuordnung von Ladung und Spin eine Vielzahl von unerwarteten physikalischen Eigenschaften hervor. Die Möglichkeit, Leitfähigkeit, Magnetismus oder auch Hochtemperatur-Supraleitung zu kontrollieren, machen diese künstlich hergestellten Materialien vor allem in Hinblick auf eine zukünftige Anwendung in der Mikroelektronik äußerst interessant. Dies erfordert jedoch ein grundsätzliches Verständnis für die zugrunde liegenden Mechanismen. Die vorliegende Doktorarbeit befasst sich mit photonengestützter Spektroskopie, die einen direkten Zugang zur elektronischen Struktur dieser Heterostruktursysteme ermöglicht. Ein weiteres Ziel ist es, geeignete spektroskopische Methoden zur Charakterisierung der vergrabenen Schichten zu etablieren. Zwei prototypische oxidische Mehrschichtsysteme stehen im Zentrum der hier vorgestellten Untersuchungen. Das LaAlO3/SrTiO3-Heterostruktursystem weist ab einer kritischen LaAlO3-Filmdicke an der Grenzfläche ein zweidimensionales Elektronensystem mit hochmobilen Ladungsträgern auf. Als treibender Mechanismus wird die elektronische Rekonstruktion diskutiert. Im Rahmen dieser Arbeit wurde dieses zweidimensionale Elektronensystem mithilfe der Photoelektronenspektroskopie und der resonanten inelastischen Röntgenstreuung charakterisiert. Die daraus bestimmten Ladungsträgerdichten weisen im Vergleich mit Daten aus Transportmessungen auf eine Koexistenz von lokalisierten und mobilen Ladungsträgern an der Grenzfläche hin. Die Analyse von Rumpfniveau- und Valenzbandspektren zeigt, dass man zur Erklärung der experimentellen Resultate ein modifiziertes Bild der elektronischen Rekonstruktion benötigt, bei der Sauerstofffehlstellen an der LaAlO3-Oberfläche als Ladungsreservoir dienen könnten. Mithilfe der resonanten Photoelektronenspektroskopie war es möglich, die metallischen Zustände am chemischen Potential impulsaufgelöst zu spektroskopieren. So gelang es erstmals, die vergrabene Fermi-Fläche einer oxidischen Heterostruktur zu vermessen. Außerdem konnten Titan-artige Zustände identifiziert werden, die höchstwahrscheinlich durch Sauerstofffehlstellen im SrTiO3 lokalisiert sind. Diese werden als mögliche Quelle für den Ferromagnetismus interpretiert, der mit der supraleitenden Phase in der LaAlO3/SrTiO3-Heterostruktur koexistiert. Bei dem anderen hier untersuchten Mehrschichtsystem handelt es sich um die LaNiO3-LaAlO3-Übergitterstruktur. Der Einbau des metallischen LaNiO3 in eine Heterostruktur ist aufgrund seiner Nähe zu einer korrelationsinduzierten isolierenden Phase hinsichtlich einer kontrollierten Ausbildung von neuartigen Phasen besonders interessant. In der Tat beobachtet man unterhalb einer LaNiO3-Schichtdicke von vier Einheitszellen einen kontinuierlichen Metall-Isolator-Übergang, der sich in den Valenzbandspektren durch einen Verlust an Quasiteilchenkohärenz äußert. Auch wenn die impulsaufgelösten Daten am Fermi-Niveau durch Photoelektronenbeugung beeinflusst sind, so lässt sich dennoch eine Fermi-Fläche identifizieren. Ihre Topologie bietet die Möglichkeit eines Fermi-Flächen-Nestings mit der Ausbildung einer Spindichtewelle. Die Resultate unterstützen die Hinweise auf eine magnetische Ordnung im zweidimensionalen Grundzustand. N2 - Oxide heterostructures exhibit a manifold of unexpected physical properties due to charge and spin rearrangement. Because of the possibility to control the conductivity, magnetism or high-temperature superconductivity, these artificial materials are prospective candidates for future application in microelectronics. However, this needs a fundamental understanding of the mechanism leading to such effects. This thesis addresses the investigations of such systems by photoassisted spectroscopy providing a direct access to the electronic structure. The further aim of this study is to establish applicable spectroscopic methods for characterizing the buried layers in heterostructures. The study presented here deals with two prototypical oxide heterostructures. In the prominent LaAlO3/SrTiO3 heterostructure the formation of a two-dimensional electron system at the interface is observed, if the LaAlO3 layer exceeds a critical thickness. The electronic reconstruction is discussed as the driving mechanism. In this study the two-dimensional electron system is characterized by photoelectron spectroscopy and resonant inelastic x-ray scattering. The comparison of the charge carrier densities determined from spectroscopy with data from transport measurements indicates the coexistence of localized and mobile charge carriers at the interface. The analysis of core-level spectra as well as valence band spectra show that a modified electronic reconstruction picture is needed to explain the experimental observations. In such a scenario oxygen vacancies in the LaAlO3 surface layer might provide the extra charge. By using resonant photoelectron spectroscopy momentum-resolved measurements were performed to observe the metallic states at the chemical potential. For the first time a mapping of the buried Fermi surface of an oxide heterostructure has been accomplished. Additionally, some Titanium-derived states were identified in the spectra which are probably localized by surrounding oxygen vacancies in the SrTiO3. They are interpreted as a possible source of the ferromagnetism, which coexists with the superconducting phase in the LaAlO3/SrTiO3 heterostructure. The other multilayer system studied here is the LaNiO3-LaAlO3 superlattice structure. Due to its closeness to the correlation-induced insulating phase the integration of the metallic LaNiO3 in a heterostructure possibly opens the way to novel phases. Actually, a continuous metal-insulator transition is observed below a LaNiO3 layer thickness of four unit cells, which is manifested in a loss of quasiparticle coherence in the valence band spectra. Even though the momentum-resolved data is affected by photoelectron diffraction, a Fermi surface can be identified. Its topology provides the possibility of Fermi surface nesting and the formation of a spin density wave. Thus, the results support the indication for a magnetic ordering in the two-dimensional ground state. KW - Heterostruktur KW - Photoelektronenspektroskopie KW - RIXS KW - Übergitter KW - ARPES Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121721 ER - TY - THES A1 - Schreyer, Manuel T1 - Search for supersymmetry in events containing light leptons, jets and missing transverse momentum in \(\sqrt{s}\) = 8 TeV pp collisions with the ATLAS detector T1 - Suche nach Supersymmetrie in Ereignissen mit leichten Leptonen, Jets und fehlendem Transversalimpuls in pp-Kollisionen bei \(\sqrt{s}\) = 8 TeV mit dem ATLAS-Detektor N2 - The results of two analyses searching for supersymmetry (SUSY) in data of the ATLAS experiment are presented in this thesis. The data were recorded in proton-proton collisions at the Large Hadron Collider in 2012 at a centre of mass energy of \(\sqrt{s}\)=8 TeV and correspond to an integrated luminosity of 20.3 fb\(^{−1}\). The first search is performed in signatures containing an opposite-sign electron or muon pair, which is compatible with originating from a Z boson decay, in addition to jets and large missing transverse momentum. The analysis targets the production of squarks and gluinos in R-parity conserving (RPC) models with SUSY breaking via General Gauge Mediation (GGM). The main Standard Model (SM) backgrounds are \(t\overline t\), WW, W+t and Z to \(\tau \tau\) processes which are entirely estimated from data using different-flavour events. Besides that, the SM production of Z bosons in association with jets and large fake missing momentum from mismeasurements plays a role and is predicted with the data-driven jet smearing method. Backgrounds from events with fake leptons are estimated with the data-driven matrix method. WZ/ZZ production as well as smaller background contributions are determined from Monte-Carlo simulations. The search observes an excess of data over the SM prediction with a local significance of 3.0 \(\sigma\) in the electron channel, 1.7 \(\sigma\) in the muon channel and 3.0 \(\sigma\) when the two channels are added together. The results are used to constrain the parameters of the GGM model. The second analysis uses the already published results of an ATLAS search for SUSY in events with one isolated electron or muon, jets and missing transverse momentum to reinterpret them in the context of squark and gluino production in SUSY models with R-parity violating (RPV) \(LQ\overline D\)-operators. In contrast to RPC models, the lightest SUSY particle (LSP) is not stable but decays into SM particles. "Standard" analyses often do not consider SUSY models with RPV although they are in principle sensitive to them. The exclusion limits on the squark and gluino mass obtained from the reinterpretation extend up to 1200 GeV. These are the first results by any ATLAS SUSY search which systematically cover a wide range of RPV couplings in the case of prompt LSP decays. However, the analysis is not sensitive to the full parameter space of the \(LQ\overline D\)-model and reveals gaps in the ATLAS SUSY program which have to be closed by dedicated search strategies in the future. N2 - In dieser Arbeit werden die Ergebnisse von zwei Suchen nach Supersymmetrie (SUSY) in Daten des ATLAS-Experiments präsentiert. Die Messdaten wurden im Jahr 2012 in Proton-Proton-Kollisionen am Large Hadron Collider bei einer Schwerpunktsenergie von \(\sqrt{s}\) = 8 TeV gewonnen und entsprechen einer integrierten Luminosität von 20,3 fb\(^{−1}\). Die erste Suche verwendet Signaturen mit Jets, großem fehlenden Transversalimpuls sowie einem Elektron- oder Myonpaar mit entgegengesetzter Ladung, dessen Eigenschaften mit einem Leptonpaar aus dem Zerfall eines Z-Bosons vereinbar sind. Die Analyse zielt auf die Untersuchung von Squark- und Gluinoproduktion im Rahmen R-paritätserhaltender (RPC) Modelle mit SUSY-Brechung durch General Gauge Mediation (GGM) ab. Die Hauptuntergründe des Standardmodells (SM) sind \(t\overline t\), WW, W+t und Z nach \(\tau \tau\) Prozesse. Diese werden komplett aus den Daten selbst unter Verwendung von Ereignissen mit Leptonpaaren unterschiedlichen Flavours abgeschätzt. Daneben spielt der Untergrund aus der SM-Produktion von Z-Bosonen in Verbindung mit Jets und großem fehlenden Impuls, der durch Fehlmessungen fälschlicherweise rekonstruiert wird, ein Rolle. Dieser wird mit der datengestützten Jet-Smearing-Methode abgeschätzt. Der Hintergrundbeitrag von Ereignissen mit fehlidentifizierten Leptonen wird mit der datengestützten Matrix-Methode bestimmt, während die Produktion von WZ/ZZ-Paaren sowie kleinere Untergrundprozesse mit Hilfe von Monte-Carlo-Simulationen abgeschätzt werden. Die Suche beobachtet einen Überschuss an Daten über der SM-Vorhersage mit einer lokalen Signifikanz von 3,0 \(\sigma\) im Elektronkanal, 1,7 \(\sigma\) im Myonkanal und 3,0 \(\sigma\), wenn beide Kanäle zusammengezählt werden. Mit den Ergebnissen lassen sich die Parameter des GGM-Modells einschränken. Die zweite Analyse interpretiert die bereits veröffentlichten Ergebnisse einer ATLAS SUSY-Suche in Ereignissen mit einem isolierten Elektron oder Myon, Jets und fehlendem Transversalimpuls im Rahmen von Squark- und Gluinoproduktion in SUSY-Modellen, in denen die R-Parität durch \(LQ\overline D\)-Operatoren verletzt wird. Im Gegensatz zu RPC-Modellen ist das leichteste SUSY-Teilchen (LSP) dort nicht stabil, sondern zerfällt in SM-Teilchen. R-paritätsverletzende (RPV) SUSY-Modelle werden von "Standardanalysen" oft vernachlässigt, obwohl diese prinzipiell sensitiv auf RPV SUSY sind. Die Ausschlussgrenzen auf die Squark- und Gluinomasse, die sich aus der Reinterpretation ergeben, reichen bis zu 1200 GeV. Dies sind die ersten derartigen Ergebnisse einer ATLAS SUSY-Suche, die einen großen Bereich möglicher RPV-Kopplungen für den Fall prompter LSP-Zerfälle auf systematische Art und Weise abdecken. Allerdings ist die Analyse nicht im gesamten Parameterraum des \(LQ\overline D\)-Modells sensitiv und deckt somit Lücken im ATLAS SUSY-Programm auf. Diese sollten in Zukunft durch speziell optimierte Suchstrategien geschlossen werden. KW - Supersymmetrie KW - Supersymmetry KW - Supersymmetrie KW - LHC KW - ATLAS-Detektor KW - Neue Physik KW - New physics KW - ATLAS KW - Proton-Proton-Streuung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120863 ER - TY - THES A1 - Kügel, Jens T1 - 3d-Übergangsmetallphthalocyanin-Moleküle auf Metalloberflächen: Der Einfluss der d-Orbitalbesetzung T1 - 3d transition metal phthalocyanine molecules on metal surfaces - influence of the d-level-occupation N2 - Im Rahmen dieser Dissertation wird die Untersuchung von 3d-Übergangsmetallphthalocyanin- Molekülen (ÜMPc) – quadratisch-planaren organischen Molekülen, welche im Zentrum ein 3d-Übergangsmetallion besitzen – auf metallischen Oberflächen vorgestellt. Der Fokus dieser Arbeit liegt dabei auf dem Einfluss der d-Orbitalbesetzung auf die magnetischen, elektronischen und strukturellen Eigenschaften der adsorbierten Moleküle, die mit Hilfe der Rastertunnelmikroskopie und -spektroskopie charakterisiert wurden. Die gewonnen Ergebnisse werden zum Teil mit theoretischen Berechnungen analysiert und interpretiert. Die erste Hälfte der experimentellen Auswertung behandelt die Untersuchung dieser Moleküle auf Ag(001) in Hinblick auf die Existenz einer magnetischen Wechselwirkung, bei der ein unkompensiertes magnetisches Moment des Moleküls durch die Substratelektronen abgeschirmt wird. Dieser Effekt wird als Kondo-Abschirmung bezeichnet und erzeugt in der Zustandsdichte des Moleküls eine Resonanz am Fermi-Niveau. Die Messungen zeigen, dass diese Resonanz ausschließlich am Zentralion von MnPc vorgefunden wird, wohingegen sie bei allen anderen 3d-Übergangsmetallphthalocyanin-Molekülen, die eine höhere d-Orbitalbesetzung besitzen, nicht vorhanden ist. Anhand theoretischer Berechnungen kann die Ursache für dieses Verhalten darauf zurückgeführt werden, dass von allen d-Orbitalen einzig das dz2-Orbital mit dem Substrat geeignet hybridisiert, um eine Kondo-Abschirmung zu erzeugen. Da ausschließlich MnPc einen unkompensierten Spin in diesem Orbital besitzt, kann die An- bzw. Abwesenheit des Kondo-Effekts auf die unterschiedliche Besetzung des dz2-Orbitals zurückgeführt werden. Neben der eben erwähnten Kondo-Resonanz ist bei MnPc ein weiteres Merkmal am Fermi- Niveau überlagert. Durch die Analyse der räumlichen Verteilung, den Vergleich mit anderen Molekülen und der Manipulation des MnPc-Moleküls kann gezeigt werden, dass es sich bei diesem Merkmal um einen d-Orbitalzustand handelt. Die Manipulation des Moleküls durch gezieltes Entfernen von Wasserstoffatomen ermöglicht darüber hinaus die Stärke der Kondo-Abschirmung zu beeinflussen. In der zweiten Hälfte der experimentellen Auswertung werden Moleküle auf bismutinduzierten Oberflächenlegierungen der Edelmetalle Cu(111) und Ag(111) untersucht. Diese Legierungen zeichnen sich durch einen ausgeprägten Rashba-Effekt aus, der durch eine Aufspaltung der Parabeldispersion und Aufhebung der Spin-Entartung im zweidimensionalen Elektronengas der Oberflächenlegierung charakterisiert ist. Das Wachstumsverhalten von CuPc und MnPc auf diesen Oberflächen zeigt ein sehr gegensätzliches Verhalten. Während bei MnPc die Substrat-Molekül-Wechselwirkung dominant ist, wodurch diese Moleküle immer einen festen Adsorptionsplatz auf der Oberfläche besitzen, ist diese Wechselwirkung bei CuPc schwach ausgeprägt. Aus diesem Grund wandern die CuPc-Moleküle zu den Stufenkanten und bilden Cluster. Das unterschiedliche Wachstumsverhalten der Moleküle lässt sich auf die partiell-gefüllten d-Orbitale von MnPc zurückführen, die aus der Molekülebene ragen, mit dem Substrat hybridisieren und damit das Molekül an das Substrat binden. Bei CuPc hingegen sind diese d-Orbitale gefüllt und die Hybridisierung kann nicht stattfinden. Im letzten Abschnitt werden die elektronischen und magnetischen Eigenschaften von MnPc auf diesen Substraten behandelt, die einige Besonderheiten aufweisen. So bildet sich durch die Adsorption des Moleküls auf den Oberflächen eine Grenzschichtresonanz aus, die eine partielle Füllung erkennen lässt. Spektroskopiedaten, aufgenommen am Ort der Grenzschichtresonanz, weisen eine symmetrisch um das Fermi-Niveau aufgespaltene Resonanz auf. Die Intensität der unter- und oberhalb der Fermi-Energie befindlichen Resonanz zeigen dabei ein komplementäres Verhalten bzgl. der jeweiligen Lage auf der Grenzschichtresonanz: An den Orten, an denen die Resonanz unterhalb des Fermi-Niveaus ihre maximale Intensität besitzt, ist die Resonanz oberhalb des Fermi-Niveaus nicht vorhanden und umgekehrt. Diese experimentellen Beobachtungen werden mit einem Modellansatz erklärt, welcher die Wirkung eines effektiven Magnetfeldes und eine Spin-Filterung postuliert. N2 - In the framework of this thesis, the investigation of 3d-transition metal phthalocyanine molecules (TM Pc) on metallic surfaces is presented. These molecules possess a square planar structure with a 3d transition metal ion in their center. The main focus of this work concentrates on the influence of the d-level-occupation on the magnetic, electronic and structural properties of the molecules, which are characterized by scanning tunneling microscopy and spectroscopy. The achieved results are partly analyzed and interpreted by theoretical calculations. The first half of this thesis deals with the investigation of TMPc molecules on Ag(001) and the existence of the so-called Kondo effect. This magnetic interaction, which is caused by the screening of an uncompensated magnetic moment of the molecule by the conduction electrons of the substrate, creates a resonance in the density of states close to the Fermi level. The results show, that this resonance is only present at the central metal ion of MnPc, whereas it is absent in the case of all the other 3d transition metal phthalocyanine molecules with a higher d-level occupation. Theoretical calculations indicate that the origin of this behavior can be explained by the fact that out of five d-orbitals only the dz2-orbital can sufficiently hybridize with the substrate to form a Kondo screening channel. As MnPc is the only molecule with an uncompensated spin in this orbital, the presence and absence of a Kondo resonance can be explained by the different occupation of the dz2-orbital. Besides the aforementioned Kondo resonance, another superimposed feature close to the Fermi energy was observed for MnPc. By analyzing the spatial distribution of the features, by comparing the spectroscopy curves of different molecules and by manipulating the MnPc molecule, this feature can be assigned to a d-orbital state. With the manipulation of the MnPc, which was achieved by removing hydrogen atoms of the molecule, the strength of the Kondo screening can be tuned. The second half of the experimental analysis deals with the molecular investigation on bismuth–induced surface alloys of the noble metal crystals Cu(111) and Ag(111). These surface alloys exhibit a pronounced Rashba effect, which splits the parabolic dispersion and lifts the spin degeneracy of the two-dimensional electron gas. On these surfaces, the growth behavior of CuPc and MnPc is very different. While the substrate-molecule–interaction dominates in the case of MnPc, leading to a specific and robust adsorption site of the molecule, this interaction is only weakly present in the case of CuPc. As a result, the CuPc molecules are able to move to the step edges and form clusters. This difference can be attributed to the partial filling of the d-orbitals in the case of MnPc, which protrude out of the molecular plane, hybridize with the substrate and bind the molecule to the substrate. Contrary, in the case of CuPc these orbitals are completely filled, which prevents the hybridization between the d-orbital and the substrate. In the last section, the electronic and magnetic properties of MnPc will be presented, which show some peculiar features. Due to adsorption of the molecule to the surface, an interface resonance with a partial occupancy is created. The spectroscopic data taken at the interface resonance indicate the existence of a split resonance arranged symmetrically with respect to the Fermi energy. The intensity of the occupied and unoccupied resonance show a complementary behavior regarding different positions of the interface resonance. At the positions, where the resonance in the occupied energy regime shows a maximum in intensity, the resonance in the unoccupied states is absent and vice versa. These experimental findings will be explained by a model approach, which postulates the influence of an effective magnetic field and a spin-filtering component. KW - Phthalocyanin KW - Rastertunnelmikroskop KW - Rastertunnelmikroskopie KW - Kondo-Effekt KW - Rashba-Effekt KW - Tieftemperatur-Rastertunnelmikroskopie Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121059 ER - TY - THES A1 - Mauerer, Tobias T1 - Ladungsdichtemodulationen an unterschiedlichen Probensystemen: Chrom auf Wolfram(110), Iridiumditellurid und Eisen auf Rhodium(001) T1 - Charge Density Waves at different sample systems: Chromium on thungsten(110), iridium ditelluride, and iron on rhodium (001) N2 - Im Rahmen der vorliegenden Arbeit werden mit einem Rastertunnelmikroskop (RTM) Ladungsdichtemodulationen (LDM) auf Oberflächen von drei verschiedenen Probensystemen untersucht. Bei den Proben handelt es sich um Chrom auf Wolfram(110), Iridiumditellurid (IrTe2) als Volumenmaterial und Eisen auf Rhodium(001). Es werden sowohl die Temperaturabhängigkeit der Phasenübergänge als auch die Wechselwirkung zwischen magnetischen und elektronischen Eigenschaften analysiert. Chrom (Cr) ist ein einfaches Übergangsmetall, in dem sowohl eine klassische Ladungsdichtewelle (LDW) als auch eine Spindichtewelle (SDW) auftreten. Die im Experiment betrachteten Cr-Inseln auf Wolfram(110) schlagen eine Brücke zwischen dem Volumenmaterial und ultradünnen Schichten. Dabei zeigt sich der Zusammenhang zwischen elektronischen und magnetischen Eigenschaften in der Ausbildung einer LDW-Lücke und dem gleichzeitigen Verschwinden des magnetischen Kontrastes bei lokalen Schichtdicken von dCr =� 4nm. Dies kann durch eine Rotation des Spindichtewellenvektors Q erklärt werden. Für dCr <� 3nm verschwindet die LDW erneut. Zusätzlich zur LDW und SDW entsteht aufgrund der unterschiedlichen Gitterparameter von Chrom und Wolfram bei lokalen Schichtdicken von dCr � < 3nm eine Moiré-Überstruktur. IrTe2 ist Gegenstand zahlreicher aktueller Forschungsaktivitäten und weist eine LDM mit gleichzeitiger Transformation des atomaren Gitters auf. Ein Phasenübergang erster Ordnung erzeugt zunächst bei der Übergangstemperatur TC =� 275K eine Modulation mit dem Wellenvektor q = 1/5(1, 1, 0). Mithilfe temperaturabhängiger RTM-Messungen kann das Phasendiagramm um einen weiteren Übergang erster Ordnung bei TS � = 180K erweitert werden. Dabei bilden sich zunehmend Te-Dimere an der sichtbaren (001)-Oberfläche und IrTe2 wechselt in einen Grundzustand mit maximaler Dichte von Dimeren und dem Wellenvektor q = 1/6(1, 1, 0). Der Mechanismus beider Phasenübergänge wird durch die Probenqualität und die Oberflächenpräparation beeinflusst, sodass die Phasenübergänge erster Ordnung teilweise verlangsamt ablaufen. Durch eine Analyse der Oberflächendynamik am Phasenübergang kann der zugrundeliegende Mechanismus des Domänenwachstums im Realraum untersucht werden. Im letzten Teil der Arbeit werden ultradünne Eisenfilme auf Rhodium(001) betrachtet. Dabei treten auf der Doppellage Eisen (Fe) auf Rhodium (Rh) spannungsabhängige elektronische Modulationen mit senkrecht zueinander orientierten Wellenvektoren q1 = [(0, 30 ± 0, 03), 0, 0] und q2 = [0, (0, 30 ± 0, 03), 0] in Richtung [100] und [010] auf. Temperaturabhängige Messungen zeigen die stetige Verkleinerung der Modulation beim Erwärmen der Probe und somit einen Phasenübergang zweiter Ordnung. Die LDM tritt auch auf der dritten und vierten Lage Eisen mit gleichgerichteten aber kleineren Wellenvektoren q auf. Spinpolarisierte RTM-Daten zeigen einen c(2×2)-Antiferromagnetismus auf einer Monolage Eisen. Für Fe-Bedeckungen von 1ML � - 5ML tritt Ferromagnetismus perpendikular zur Oberfläche auf. Diese Messungen zeigen erstmals gleichzeitiges Auftreten einer elektronischen und magnetischen Phase in einem reinen 3d-Übergangsmetall im Realraum. N2 - In the scope of this thesis Charge Density Modulations (CDM) on surfaces of three different sample systems are examined with Scanning Tunneling Microscopy (STM). The sample systems include chromium on tungsten(110), bulk IrTe2, and iron on rhodium(001). The experimental results help to analyze the temperature dependence of phase transitions and the interaction between magnetic and electronic properties. Chromium (Cr) belongs to the basic transition metals and exhibits both a classical Charge Density Wave (CDW) and a Spin Density Wave (SDW). The data of Cr-islands on tungsten(110) presented in this work connects already known properties of the bulk material and ultrathin films. For local island thicknesses dCr =� 4nm the electronic properties show the onset of a CDW-gap, which is linked to the coexistent vanishing of magnetic contrast. The suppression of magnetic contrast can be explained by a rotation of the spinvector Q. This has been shown by spin-polarized STM (SP-STM). The CDW vanishes again for dCr <� 3nm. Additional to CDW and SDW a Moiré-pattern exists at thicknesses dCr � < 3nm caused by the lattice mismatch between chromium and tungsten. IrTe2 is currently a hot topic in physical science and shows a CDM with a coexisting transformation of the atomic lattice. A first-order phase transition occurs at the transition temperature TC =� 275K and results in a modulation with the wave-vector q = 1/5(1, 1, 0). The performance of temperature-dependent STM measurements helps to extend the phase diagram of IrTe2 with a second first-order phase transition at TS =� 180K. Within this phase transition the density of Te-dimers increases and the (001)-surface of IrTe2 develops into in a ground state with the wave vector q = 1/6(1, 1, 0). Both phase transitions are affected by the sample quality and the surface preparation and therefore proceed decelerated. It was possible to investigate the underlying mechanisms of the domain growth with the analysis of the surface dynamics in real space . The last part of this thesis deals with ultrathin iron layers on rhodium (001). On top of an iron (Fe) film with a thickness of two atomic layers some bias-dependent, electronic modulations perpendicular to each apper. The wavevectors q1 = [(0, 31 ± 0, 04), 0, 0] and q2 = [0, (0, 31 ± 0, 04), 0] are orientated along the [100]- and [010]-direction. Temperature dependent measurements show a continuous decrease of the electronic signal when warming up the sample. This behavior is characteristic for a second-order phase transition. The CDM is also visible on iron films with three and four atomic layers thickness. With increasing film thickness the wavevectors are still oriented in the same directions,but the periodicity decreases. SP-STM measurements show antiferromagnetic c(2×2)-ordering on the monolayer iron. The thin films develop ferromagnetism out-of-plane for coverages 1ML � - 5ML. These results present for the first time in real space the coeval appearance of an electronic and magnetic phase in a pure 3d-transition metal. KW - Ladungsdichtewelle KW - Rastertunnelmikroskop KW - Phasenumwandlung KW - Spinpolarisierte Rastertunnelmikroskopie, Temperaturabhängige Phasenübergänge KW - spinpolarized scanning tunneling microscopy, temperature dependent phase transitions Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120322 ER - TY - THES A1 - Maier, Luis T1 - Induced superconductivity in the topological insulator mercury telluride T1 - Induzierte Supraleitung im topologischen Isolator Quecksilbertellurid N2 - The combination of a topological insulator (TI) and a superconductor (S), which together form a TI/S interface, is expected to influence the possible surface states in the TI. It is of special interest, if the theoretical prediction of zero energy Majorana states in this system is verifiable. This thesis presents the experimental realization of such an interface between the TI strained bulk HgTe and the S Nb and studies if the afore mentioned expectations are met. As these types of interfaces were produced for the first time the initial step was to develop a new lithographic process. Optimization of the S deposition technique as well as the application of cleaning processes allowed for reproducible fabrication of structures. In parallel the measurement setup was upgraded to be able to execute the sensitive measurements at low energy. Furthermore several filters have been implemented into the system to reduce high frequency noise and the magnetic field control unit was additionally replaced to achieve the needed resolution in the μT range. Two kinds of basic geometries have been studied: Josephson junctions (JJs) and superconducting quantum interference devices (SQUIDs). A JJ consists of two Nb contacts with a small separation on a HgTe layer. These S/TI/S junctions are one of the most basic structures possible and are studied via transport measurements. The transport through this geometry is strongly influenced by the behavior at the two S/TI interfaces. In voltage dependent differential resistance measurements it was possible to detect multiple Andreev reflections in the JJ, indicating that electrons and holes are able to traverse the HgTe gap between both interfaces multiple times while keeping phase coherence. Additionally using BTK theory it was possible to extract the interface transparency of several junctions. This allowed iterative optimization for the highest transparency via lithographic improvements at these interfaces. The increased transparency and thus the increased coupling of the Nb’s superconductivity to the HgTe results in a deeper penetration of the induced superconductivity into the HgTe. Due to this strong coupling it was possible to enter the regime, where a supercurrent is carried through the complete HgTe layer. For the first time the passing of an induced supercurrent through strained bulk HgTe was achieved and thus opened the area for detailed studies. The magnetic dependence of the supercurrent in the JJ was recorded, which is also known as a Fraunhofer pattern. The periodicity of this pattern in magnetic field compared to the JJ geometry allowed to conclude how the junction depends on the phase difference between both superconducting contacts. Theoretical calculations predicted a phase periodicity of 4p instead of 2p, if a TI is used as weak link material between the contacts, due to the presence of Majorana modes. It could clearly be shown that despite the usage of a TI the phase still was 2p periodic. By varying further influencing factors, like number of modes and phase coherence length in the junction, it might still be possible to reach the 4p regime with bound Majorana states in the future. A good candidate for further experiments was found in capped HgTe samples, but here the fabrication process still has to be developed to the same quality as for the uncapped HgTe samples. The second type of geometry studied in this thesis was a DC-SQUID, which consists of two parallel JJs and can also be described as an interference device between two JJs. The DC-SQUID devices were produced in two configurations: The symmetric SQUID, where both JJs were identical, and the asymmetric SQUID, where one JJ was not linear, but instead has a 90° bent. These configurations allow to test, if the predicted uniformity of the superconducting band gap for induced superconductivity in a TI is valid. While the phase of the symmetric SQUID is not influenced by the shape of the band gap, the asymmetric SQUID would be in phase with the symmetric SQUID in case of an uniform band gap and out of phase if p- or d-wave superconductivity is dominating the transport, due to the 90° junction. As both devices are measured one after another, the problem of drift in the coil used to create the magnetic field has to be overcome in order to decide if the oscillations of both types of SQUIDs are in phase. With an oscillation period of 0.5 mT and a drift rate in the range of 5.5 μT/h the measurements on both configurations have to be conducted in a few hours. Only then the total shift is small enough to compare them with each other. For this to be possible a novel measurement system based on a real time micro controller was programmed, which allows a much faster extraction of the critical current of a device. The measurement times were reduced from days to hours, circumventing the drift problems and enabling the wanted comparison. After the final system optimizations it has been shown that the comparison should now be possible. Initial measurements with the old system hinted that both types of SQUIDs are in phase and thus the expected uniform band gap is more likely. With all needed optimizations in place it is now up to the successors of this project to conclusively prove this last point. This thesis has proven that it is possible to induce superconductivity in strained bulk HgTe. It has thus realized the most basic sample geometry proposed by Fu and Kane in 2008 for the appearance of Majorana bound states. Based on this work it is now possible to further explore induced superconductivity in strained bulk HgTe to finally reach a regime, where the Majorana states are both stable and detectable. N2 - Aus theoretischen Betrachtungen geht hervor, dass die Kombination eines topologischen Isolators (TI) und eines Supraleiters (S) zu einer TI/S Grenzfläche die möglichen Oberflächenzustände im TI beeinflussen kann. Von besonderem Interesse ist dabei die Vorhersage der Ausbildung von Majorana Zuständen bei Null-Energie. Diese Arbeit beschäftigt sich mit der experimentellen Realisierung einer solchen Grenzfläche zwischen dem TI verspanntes HgTe und dem S Nb und analysiert, ob die oben genannten Effekte tatsächlich in diesem System auftreten. Da diese Grenzflächen zum ersten Mal produziert wurden, musste zunächst ein neuer lithographischer Prozess dafür entwickelt werden. Nach der Optimierung der Depositionstechnik des S sowie der Anwendung von Reinigungsschritten, war eine reproduzierbare Fertigung von Probenstrukturen möglich. Parallel dazu wurde das Messsystem ausgebaut, damit die sensitiven Messungen bei geringer Energie durchgeführt werden konnten. So wurden mehrere Frequenzfilter eingebaut, um Hochfrequenzrauschen zu reduzieren und die Magnetfeldsteuerung ersetzt, damit die benötigte Auflösung im μT Bereich ereicht werden konnte. Es wurden zwei grundlegende Geometrien untersucht: Josephson Kontakte (engl. Josephson junctions, JJ) und supraleitende Quanteninterferenzeinheiten (engl. superconducting quantum interference devices, SQUIDs). Eine JJ besteht aus zwei Nb Kontakten mit einem kleinen Abstand zueinander, die auf einer HgTe Schicht aufgebracht werden. Diese S/TI/S Kontakte bilden eine der grundlegendsten Strukturen, die möglich sind und wurden mit Hilfe von Transportmessungen untersucht. Der Ladungstransport in dieser Geometrie wird stark durch die beiden S/TI Grenzflächen beeinflusst. In spannungsabhängigen Messungen des differenziellen Widerstandes konnten mehrfache Andreev Reflexionen in den JJ nachgewiesen werden, was zeigt, dass Elektronen und Löcher die HgTe Lücke zwischen beiden Nb Kontakten wiederholt phasenkoherent überwinden können. Zusätzlich konnte mit Hilfe der BTK Theorie die Transparenz der Grenzflächen bestimmt werden. Dies erlaubte eine iterative Optimierung zum Erreichen der höchst möglichen Transparenz durch lithographische Verbesserungen an den Grenzflächen. Eine verbesserte Transparenz erlaubt eine stärkere Kopplung der Supraleitung des Nb an das HgTe und somit ein tieferes Eindringen der induzierten Supraleitung in die HgTe Schicht. Aufgrund der verbesserten Ankopplung war es möglich, das Regime zu erreichen, in dem ein Suprastrom durch die HgTe Schicht zwischen den Nb Kontakten getragen werden kann. Erstmals konnte ein induzierter Suprastrom durch verspanntes HgTe geleitet werden und ermöglichte es, in diesem Forschungsbereich mit detaillierten Analysen zu beginnen. Es wurde die magnetische Abhängigkeit des Suprastroms in der JJ aufgenommen, auch bekannt als Fraunhofer Muster. Die Periodizität dieses Musters im Magnetfeld im Vergleich zur geometrischen Ausdehnung der JJ erlaubt Rückschlüsse darüber, wie der Suprastrom der JJ von der Phasendifferenz zwischen beiden supraleitenden Kontakten abhängt. Theoretische Berechnungen haben vorhergesagt, dass die Periodizität dieser Phasenbeziehung von ursprünglich 2p auf 4p wechselt, falls ein TI als Material zwischen den beiden Nb Kontakten verwendet wird, da Majorana Moden auftreten. Es konnte jedoch klar gezeigt werden, dass trotz Verwendung eines TI die Phasendifferenz immer noch 2p periodisch war. Durch die Variation weiterer Einflussfaktoren, wie die Anzahl der möglichen Moden oder die Phasenkohärenzlänge in der JJ könnte es in Zukunft trotz allem immer noch möglich sein, einen Bereich zu erreichen, in dem eine 4p Periodizität mit Majorana Zuständen vorliegt. Ein erfolgversprechender Kandidat für diese Experimente konnte in verspanntem HgTe mit CdHgTe Deckschicht gefunden werden, jedoch muss der Fabrikationsprozess für diese Material erst noch entwickelt werden, um in der Lage zu sein, Strukturen zu produzieren, die qualitativ vergleichbar mit denen ohne Deckschicht sind. Der zweite Geometrie-Typ, der untersucht wurde, ist ein DC-SQUID, das aus zwei parallelen JJs besteht und analog auch als Interferometer zweier JJs gesehen werden kann. Es wurden zwei Arten von DC-SQUIDs produziert: Das symmetrische SQUID, bestehend aus zwei identischen JJs und das asymmetrische SQUID, bei dem eine JJ nicht linear aufgebaut ist, sondern beide Nb Kontakte statt dessen einen Winkel von 90° zueinander aufweisen. Diese beiden Arten erlauben es die fehlende Winkelabhängigkeit der supraleitenden Bandlücke zu überprüfen, die für induzierte Supraleitung in einem TI prognostiziert wurde. Die Phase des symmetrischen SQUIDs wird nicht durch die Form der supraleitenden Bandlücke beeinflusst. Daher kann es als Referenz verwendet werden, um eine eventuelle Phasenverschiebung des asymmetrischen SQUIDs zu erkennen. Ist keine Phasenverschiebung vorhanden, ist dies eine Bestätigung der Uniformität der Bandlücke. Falls jedoch eine Phasenverschiebung aufgrund des 90° Kontaktes auftritt, würde der Transport hauptsächlich durch p- oder d-artige Supraleitung getragen werden. Da beide SQUIDs nacheinander vermessen werden, muss sichergestellt werden, dass Drifteffekte in der magnetfelderzeugenden Spule keinen Einfluss auf den Vergleich haben. Die typische Oszillationsfrequenz der SQUIDs beträgt 0.5 mT und die Driftrate der Spule liegt im Bereich von 5.5 μT/h. Um einen aussagekräftigen Vergleich durchführen zu können, müssen die Messungen an beiden SQUIDs in wenigen Stunden durchgeführt werden, damit der Gesamtdrift klein genug bleibt. Um diese Messgeschwindigkeit zu erreichen, wurde ein neues Messsystem zur Aufnahme des kritischen Stroms, basierend auf einem Echtzeit Microcontroller, entwickelt. Dies reduziert die Zeitskala der benötigten Messungen von Tagen auf Stunden und erlaubt es so, den gewünschten Vergleich durchzuführen. Nachdem alle Optimierungen im Messsystem realisiert wurden, konnte gezeigt werden, dass der Vergleich nun tatsächlich möglich ist. Erste Testmessungen mit dem alten Messsystem legen nahe, dass das asymmetrische SQUID ein Maximum bei B = 0 T zeigt und somit die homogene Bandlücke das wahrscheinlichere Resultat ist. Da nun alle messspezifischen Optimierungen abgeschlossen sind, sollte es den Nachfolgern dieses Projektes zukünftig möglich sein, die finale Messung durchzuführen. Diese Arbeit hat gezeigt, dass es möglich ist, Supraleitung in verspanntem HgTe zu induzieren. Es wurde somit die grundlegendste Probengeometrie realisiert, die von Fu und Kane in 2008 für das Auftreten von Majorana Zuständen vorgeschlagen wurde. Ausgehend von dieser Vorarbeit kann nun das Regime der induzierten Supraleitung in verspanntem HgTe weiter erforscht werden, um schlussendlich in einen Bereich vorzustoßen, in dem Majorana Zustände zugleich stabil und messbar sind. KW - superconductivity KW - induced KW - mercury KW - telluride KW - topological KW - insulator KW - TI KW - proximity effect KW - josephson junction KW - SQUID KW - topological insulator KW - Quecksilbertellurid KW - Topologischer Isolator KW - Supraleitung Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-119405 ER - TY - THES A1 - Ebensperger, Thomas T1 - Konzeption, Umsetzung und Evaluierung eines linsenlosen Röntgenmikroskopes T1 - Design, Setup and Characterization of a Lensless X-ray Microscope N2 - Diese Arbeit befasst sich mit der Konzeption, Umsetzung und Charakterisierung eines Rönt- genmikroskops für harte Röntgenstrahlung mit der Möglichkeit zur dreidimensionalen Bild- gebung. Der vorgestellte Aufbau basiert auf geometrischer Vergrößerung und verzichtet im Gegensatz zu anderen Röntgenmikroskopiemethoden auf den Einsatz optischer Elemente. Dreidimensionale Bildgebung wird durch einen linearlaminographischen Aufnahmemodus realisiert, bei dem unterschiedliche Durchstrahlungsrichtungen durch das Objekt durch eine relative Verschiebung von Quelle und Detektor zustande kommen. Die Röntgenquelle des Mikroskops besteht aus einer zu einer Nanofokusröntgenröhre um- gebauten Elektronenmikrosonde mit 30 kV Beschleunigungsspannung (dies entspricht einer Wellenlänge von bis zu 0,041 nm). Durch die Elektronenoptik kann ein intensiver Elektronen- strahl anstelle eine Probe auf ein Transmissionstarget fokussiert werden. In dieser Arbeit wird eine Möglichkeit evaluiert, die Schichtdicke der röntgenaktiven Schicht des Transmissionstar- gets für die gegebene Beschleunigungsspannung zu optimieren. Dabei werden eine Schichtdi- cke für maximale Röntgenleistung (700 nm Wolfram) und eine für maximale Röntgenleistung bezogen auf die entstehende Quellfleckgröße (100 nm Wolfram) identifiziert. Dadurch erreicht dieses System eine laterale Ortsauflösung von 197 nm, gemessen an einem Siemensstern. Diese ist eine Größenordnung besser als bei modernen SubμCT-Anlagen, die zur zerstörungsfrei- en Prüfung eingesetzt werden, und einen Faktor 2 besser als bei Laborröntgenmikroskopen basierend auf Fresnel’schen Zonenplatten. Abgesehen von der lateralen Auflösung bei hochkontrastigen Objekten werden auch die Abbil- dungseigenschaften für schwach absorbierende Proben mit Inline-Phasenkontrastbildgebung untersucht. Dazu wird eine Methode entwickelt mit der anhand der gegebenen Anlagenpara- meter der optimale Quell-Objekt-Abstand zur Maximierung des Fringe-Kontrasts gefunden werden kann. Dabei wird die Ausprägung des Fringe-Kontrasts auf die Phase −iα zurück geführt. Das vorgeschlagene Modell wird durch Messungen am Röntgenmikroskop und an einer weiteren Röngtenanlage verifiziert. Zur Beurteilung der dreidimensionalen Bildgebung mit dem vorgeschlagenen linearlaminogra- phischen Aufnahmemodus kann dieser auf eine konventionelle Computertomographie mit ein- geschränktem Winkelbereich zurückgeführt werden und so die maximal erreichbare Winkel- information bestimmt werden. Des Weiteren werden numerische Berechnungen durchgeführt, um die Einflüsse von Rauschen und geometrischen Vorgaben einschätzen zu können. Ein experimenteller Test des Laminographiesystems wird anhand eines hochkontrastigen (Fres- nel’sche Zonenplatte) und eines niederkontrastigen Objekts (Kohlefasergewebe) durchgeführt. Es zeigte sich, dass die laterale Auflösung während der dreidimensionalen Rekonstruktion gut erhalten bleibt, die Tiefenauflösung aber nicht die gleiche Qualität erreicht. Außerdem konnte festgestellt werden, dass die Tiefenauflösung sehr stark von der Geometrie und Zusammen- setzung des untersuchten Objekts abhängt. N2 - The general topic of this thesis is the design, setup and characterization of a hard x-ray microscope with 3D imaging capability. The presented setup is based on geometric magnifi- cation and does not make use of x-ray optical elements in contrast to most other methods for x-ray microscopy. Three dimensional imaging is realized using a linear laminographic ima- ging mode which uses a relative linear displacement of source and detector to realize different views through the object. The x-ray source of the setup is based on an electron probe micro analyzer with 30 kV acce- leration voltage that has been refitted to serve as a nano focus x-ray source producing x-rays with a wavelength down to 0.041 nm. By means of the used electron optics a highly intense electron beam can be focused on a transmission target. In this thesis a method of optimizing the thickness of the x-ray source layer of the target for a given acceleration voltage is evalua- ted. Thus, two thicknesses for the used tungsten target can be identified: one for maximum x-ray yield (700 nm) and one for maximum yield per source size (100 nm). With the optimized targets a lateral resolution of 197 nm can be achieved. This is an improvement of one order of magnitude compared to state-of-the-art sub-micron CT setups for non-destructive testing and an improvement of a factor of 2 compared to laboratory setups using Fresnel zone plates. In addition to resolution tests at high contrast specimens, the imaging of weakly absorbing specimens is addressed. Therefor, a method for identifying the optimal source object distance for a given imaging setup in order to maximize the fringe contrast in inline phase contrast imaging has been developed by maximizing the absolute value of the phase of the Fresnel propagator −iα. This method has been verified by experiments at the proposed microscope and with an x-ray imaging setup using a liquid metal jet anode. To assess the 3D imaging capabilities of the setup, the laminographic imaging mode can be described as a conventional computed tomography with limited scanning angle. This allows an assessment of the accessible volume information. Furthermore, numerical experiments have been performed to evaluate the influence of noisy projections and geometric inaccuracies. An experimental test of the laminographic system has been conducted using both a high- contrast specimen (Fresnel zone plate) and a low-contrast specimen (carbon fibre mesh). The lateral resolution of the single projections can be transferred to the 3D volumes. The depth resolution, however, does not reach the same quality due to the limited information. Furthermore, it can be stated that depth resolution is highly dependent on the scanned specimen. KW - Harte Röntgenstrahlung KW - Röntgenmikroskopie KW - Ultrathin Transmission Target KW - Röntgenmikroskop KW - Dreidimensionales Bild KW - Physik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117937 ER - TY - THES A1 - Zusan, Andreas T1 - The Effect of Morphology on the Photocurrent Generation in Organic Solar Cells T1 - Der Einfluss der Morphologie auf die Generierung von Photostrom in organischen Solarzellen N2 - Organic solar cells have great potential to become a low-cost and clean alternative to conventional photovoltaic technologies based on the inorganic bulk material silicon. As a highly promising concept in the field of organic photovoltaics, bulk heterojunction (BHJ) solar cells consist of a mixture of an electron donating and an electron withdrawing component. Their degree of intermixing crucially affects the generation of photocurrent. In this work, the effect of an altered blend morphology on polaron pair dissociation, charge carrier transport, and nongeminate recombination is analyzed by the charge extraction techniques time delayed collection field (TDCF) and open circuit corrected transient charge extraction (OTRACE). Different comparative studies cover a broad range of material systems, including polymer and small-molecule donors in combination with different fullerene acceptors. The field dependence of polaron pair dissociation is analyzed in blends based on the polymer pBTTT-C16, allowing a systematic tuning of the blend morphology by varying the acceptor type and fraction. The effect of both excess photon energy and intercalated phases are minor compared to the influence of excess fullerene, which reduces the field dependence of photogeneration. The study demonstrates that the presence of neat fullerene domains is the major driving force for efficient polaron pair dissociation that is linked to the delocalization of charge carriers. Furthermore, the influence of the processing additive diiodooctane (DIO) is analyzed using the photovoltaic blends PBDTTT-C:PC71BM and PTB7:PC71BM. The study reveals amulti-tiered alteration of the blend morphology of PBDTTT-C based blends upon a systematic increase of the amount of DIO. Domains on the hundred nanometers length scale in the DIO-free blend are identified as neat fullerene agglomerates embedded in an intermixed matrix. With the addition of the additive, 0.6% and 1% DIO already substantially reduces the size of these domains until reaching the optimum 3% DIO mixture, where a 7.1% power conversion efficiency is obtained. It is brought into connection with the formation of interpenetrating polymer and fullerene phases. Similar to PBDTTT-C, the morphology of DIO-free PTB7:PC71BM blends is characterized by large fullerene domains being decreased in size upon the addition of 3% DIO. OTRACE measurements reveal a reduced Langevin-type, super-second order recombination in both blends. It is demonstrated that the deviation from bimolecular recombination kinetics cannot be fully attributed to the carrier density dependence of the mobility but is rather related to trapping in segregated PC71BM domains. Finally, with regard to small-molecule donors, a higher yield of photogeneration and balanced transport properties are identified as the dominant factors enhancing the efficiency of vacuum deposited MD376:C60 relative to its solution processed counterpart MD376:PC61BM. The finding is explained by a higher degree of dimerization of the merocyanine dye MD376 and a stronger donor-acceptor interaction at the interface in the case of the vacuum deposited blend. N2 - Organische Solarzellen sind dank der Möglichkeit einer preisgünstigen und umweltfreundlichen Herstellung eine erfolgversprechende Alternative zu konventionellen Photovoltaiktechnologien, bei denen heutzutage hauptsächlich Silizium zum Einsatz kommt. Ein aussichtsreiches Konzept ist dabei die Heterogemisch (bulk heterojunction , BHJ)-Solarzelle. Deren aktive Schicht besteht aus einer Elektron-gebenden und einer Elektron-entziehenden Komponente, wobei die Generierung von Photostrom entscheidend von der Durchmischung beider Materialien abhängt. Dieser Einfluss der Morphologie auf die Trennung von Polaronpaaren, den Transport von freien Ladungsträgern und deren nichtgeminale Rekombination wird durch die Verwendung der Ladungsextraktionsmethoden time delayed collection field (TDCF) sowie open circuit corrected transient charge extraction (OTRACE) in dieser Arbeit im Detail untersucht. Die vorgestellten Studien umfassen mit Polymeren und kleinen Molekülen als Donatoren sowie verschiedenen Fulleren-Akzeptoren unterschiedlichste Materialsysteme. Der erste Teil der Arbeit befasst sich mit der feldabhängigen Trennung von Polaronpaaren in Solarzellen, die unter Verwendung des Polymers pBTTT-C16 hergestellt werden. Das Materialsystem erlaubt eine systematische Anpassung der Morphologie durch Art und Anteil des Akzeptors. Die Untersuchungen zeigen, dass sowohl Überschussenergie als auch interkalierte Phasen lediglich eine geringe Auswirkung auf die Photogenerierung haben, diese jedoch stark von der Fullerenmenge im Gemisch beeinflusst wird. Das Ergebnis verdeutlicht, dass reine Fullerendomänen die treibende Kraft für eine effiziente Trennung von Polaronpaaren sind, was mit der Delokalisierung von Ladungsträgern verknüpft wird. Im zweiten Teil wird der Einfluss des Additivs Diiodooktan (DIO) auf das Materialsystem PBDTTT-C:PC71BM untersucht. Die Studie zeigt eine mehrstufige Änderung der Morphologie bei einer schrittweisen Erhöhung der verwendeten DIO Menge. Wird das Heterogemisch PBDTTT-C:PC71BM ohne DIO hergestellt, ist dessen Nanostruktur durch große Agglomerate geprägt, die als reine Fullerendomänen identifiziert werden. Bereits die Verwendung von 0.6% und 1% DIO führt zu einer deutlichen Verkleinerung dieser Domänen, wobei erst die maximale Effizienz der mit 3% DIO hergestellten Solarzelle mit der Ausbildung von vernetzten Polymer- und Fullerenphasen in Verbindung gebracht wird. Vergleichbar zu PBDTTT-C weist auch PTB7:PC71BM große Fullerendomänen und deren bessere Dispersion durch die Verwendung von 3% DIO auf. In beiden Fällen zeigt OTRACE eine reduzierte Langevin-artige Rekombination sowie die Abweichung von einem bimolekularen Verhalten. Da diese erhöhte Rekombinationsordnung nicht mit der Ladungsträgerdichtenabhängigkeit der Mobilität erklärt werden kann, wird sie dem Einfangen von Ladungsträgern in Fullerendomänen zugeordnet. Im letzten Teil wird gezeigt, dass eine ergiebigere Photogenerierung sowie ausgeglichene Transporteigenschaften eine erhöhte Bauteileffizienz von aufgedampften MD376:C60 Solarzellen im Vergleich zum flüssigprozessierten Pendant MD376:PC61BM bedingen. Die Beobachtung wird mit einer verbesserten Dimerisation des Merocyanins MD376 und einer stärkeren Donator-Akzeptor-Wechselwirkung an der Grenzfläche erklärt. KW - Organische Solarzelle KW - Photostrom KW - Ladungsträgergenerierung KW - geminale Rekombination KW - nichtgeminale Rekombination KW - Elektronentransport KW - Photovoltaik KW - Rekombination Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117852 ER - TY - THES A1 - Beetz, Johannes T1 - Herstellung und Charakterisierung von Halbleiterbauelementen für die integrierte Quantenphotonik T1 - Fabrication and characterization of semiconductor devices for integrated quantum photonics N2 - Der Schwerpunkt dieser Arbeit liegt auf der Entwicklung quantenphotonischer Komponenten, welche für eine monolithische Integration auf einem Halbleiter-Chip geeignet sind. Das GaAs-Materialsystem stellt für solch einen optischen Schaltkreis die ideale Plattform dar, weil es flexible Einzelphotonenquellen bereithält und mittels ausgereifter Technologien auf vielfältige Weise prozessiert werden kann. Als Photonenemitter werden Quantenpunkte genutzt. Man kann sie mit komplexen Bauelementen kombinieren, um ihre optischen Eigenschaften weiter zu verbessern. Im Rahmen dieser Arbeit konnte eine erhöhte Effizienz der Photonenemission beobachtet werden, wenn Quantenpunkte in Wellenleiter eingebaut werden, die durch photonische Kristalle gebildet werden. Die reduzierte Gruppengeschwindigkeit die diesem Effekt zugrunde liegt konnte anhand des Modenspektrums von kurzen Wellenleitern nachgewiesen werden. Durch zeitaufgelöste Messungen konnte ermittelt werden, dass die Zerfallszeit der spontanen Emission um einen Faktor von 1,7 erhöht wird, wenn die Emitter zur Mode spektrale Resonanz aufweisen. Damit verbunden ist eine sehr hohe Modeneinkopplungseffizienz von 80%. Das Experiment wurde erweitert, indem die zuvor undotierte Membran des Wellenleiters durch eine Diodenstruktur ersetzt und elektrische Kontakte ergänzt wurden. Durch Anlegen von elektrischen Feldern konnte die Emissionsenergie der Quantenpunkte über einen weiten spektralen Bereich von etwa 7meV abgestimmt werden. Das Verfahren kann genutzt werden, um die exzitonischen Quantenpunktzustände in einen spektralen Bereich der Wellenleitermode mit besonders stark reduzierter Gruppengeschwindigkeit zu verschieben. Hierbei konnten für Purcell-Faktor und Kopplungseffizienz Bestwerte von 2,3 und 90% ermittelt werden. Mithilfe einer Autokorrelationsmessung wurde außerdem nachgewiesen, dass die Bauelemente als Emitter für einzelne Photonen geeignet sind. Ein weiteres zentrales Thema dieser Arbeit war die Entwicklung spektraler Filterelemente. Aufgrund des selbstorganisierten Wachstums und der großen räumlichen Oberflächendichte von Quantenpunkten werden von typischen Anregungsmechanismen Photonen mit einer Vielzahl unterschiedlicher Energien erzeugt. Um die Emission eines einzelnen Quantenpunktes zu selektieren, muss der Transmissionsbereich des Filters kleiner sein als der Abstand zwischen benachbarten Spektrallinien. Ein Filter konnte durch die Variation des effektiven Brechungsindex entlang von indexgeführten Wellenleitern realisiert werden. Es wurde untersucht wie sich die optischen Eigenschaften durch strukturelle Anpassungen verbessern lassen. Ein weiterer Ansatz wurde mithilfe photonischer Kristalle umgesetzt. Es wurde gezeigt, dass der Filter hierbei eine hohe Güte von 1700 erreicht und gleichzeitig die Emission des Quantenpunkt-Ensembles abgetrennt werden kann. Die Bauelemente wurden so konzipiert, dass die im photonischen Kristall geführten Moden effizient in indexgeführte Stegwellenleiter einkoppeln können. Ein Teil dieser Arbeit beschäftigte sich zudem mit den Auswirkungen von anisotropen Verspannungen auf die exzitonischen Zustände der Quantenpunkte. Besonders starke Verspannungsfelder konnten induziert werden, wenn der aktive Teil der Bauelemente vom Halbleitersubstrat abgetrennt wurde. Dies wurde durch ein neu entwickeltes Fabrikationsverfahren ermöglicht. Infolgedessen konnten die Emissionsenergien reversibel um mehr als 5meV abgestimmt werden, ohne dass die optischen Eigenschaften signifikant beeinträchtigt wurden. Die auf den aktiven Teil der Probe wirkende Verspannung wurde durch die Anwendung verschiedener Modelle abgeschätzt. Darüberhinaus wurde gezeigt, dass durch Verspannungen der spektrale Abstand zwischen den Emissionen von Exziton und Biexziton gezielt beeinflusst werden kann. Die Kontrolle dieser exzitonischen Bindungsenergie kann für die Erzeugung quantenmechanisch verschränkter Photonen genutzt werden. Dieses Ziel kann auch durch die Reduzierung der Feinstrukturaufspaltung des Exzitons erreicht werden. Die experimentell untersuchten Quantenpunkte weisen Feinstrukturaufspaltungen in der Größenordnung von 100meV auf. Durch genau angepasste Verspannungsfelder konnte der Wert erheblich auf 5,1meV verringert werden. Beim Durchfahren des Energieminimums der Feinstrukturaufspaltung wurde eine Drehung der Polarisationsrichtung um nahezu 90° beobachtet. Desweiteren wurde ein Zusammenhang des Polarisationsgrades mit der Feinstrukturaufspaltung nachgewiesen. Es wurde ein weiterer Prozessablauf entworfen, um komplexe Halbleiterstrukturen auf piezoelektrische Elemente übertragen zu können. Damit war es möglich den Einfluss der Verspannungsfelder auf Systeme aus Quantenpunkten und Mikroresonatoren zu untersuchen. Zunächst wurde demonstriert, dass die Modenaufspaltung von Mikrosäulenresonatoren reversibel angepasst werden kann. Dies ist ebenfalls von Interesse für die Erzeugung polarisationsverschränkter Photonen. An Resonatoren aus photonischen Kristallen konnte schließlich gezeigt werden, dass das Verhältnis der spektralen Abstimmbarkeiten von exzitonischen Emissionslinien und Resonatormode etwa fünf beträgt, sodass beide Linien in Resonanz gebracht werden können. Dieses Verhalten konnte zur Beeinflussung der Licht-Materie-Wechselwirkung genutzt werden. N2 - The focus of this work lies on the development of quantum photonic components which are capable to be integrated into a monolithic semiconductor chip. The GaAs material system is an ideal platform for such an optical circuit since it offers flexible emitters for single photons and can be processed in various ways using mature technologies. Quantum dots can serve as photon emitters. They can be readily combined with complex devices in order to enhance their optical properties. In this thesis, an increased efficiency of the photon emission was observed when quantum dots are embedded into photonic crystal waveguides. The reduced group velocity which is responsible for this effect was verified in short waveguides by analyzing spectral features of the mode. Time resolved measurements were used to show a decrease of the decay time of the spontaneous emission time by a factor of 1.7 when the emitter is resonant to the mode. As a consequence, a very high mode coupling efficiency of 80% was found. In an extended experiment, the previously undoped membrane of the waveguide was replaced by a diode-like layer structure and electrical contacts were added to the device. Using an electrical field, the emission energies of the quantum dots were tuned in a wide spectral range of approximately 7 meV. This technique can be used to shift the excitonic states of the quantum dots towards the spectral part of the waveguide mode where the group velocity is strongly reduced. As a result, the Purcell factor and the coupling efficiency were found to be as high as 2.3 und 90%. Using autorcorrelation measurements single photon emission was demonstrated for the devices. A futher topic of this work is focused on the development of spectral filters. Due to the self-assembled growth and high spatial surface density of quantum dots, typical excitation schemes generate a great number of photons with different energies. In order to select the emission of a single quantum dot, the transmission range of the filters must be lower than the distance of adjacent spectral lines. A filter device was realized by variations of the effective refractive index alongside of ridge waveguides. The optical properties were improved by structural adjustments. Another approach was implemented by using photonic crystals. This filter yielded a quality factor of 1700 and was able to suppress the emission of the quantum dot ensemble. The devices were designed to efficiently couple the mode from the photonic crystal to a ridge waveguide. Another part of this work addresses the effect of anistropic strain on the excitonic states of the quantum dots. In order to induce high amounts of strain, the active parts of the devices must be separated from the semiconductor substrate. For this reason a new fabrication process was developed. Consequently, reversible tuning ranges of more than 5 meV could be achieved for the emission energies while largely maintaining the optical properties. Strain applied at the active parts of the sample was estimated using various models. Furthermore, it was demonstrated that the spectral distance between exciton and biexziton is influenced by strain. The manipulation of the excitonic binding energy is useful for the generation of quantum-mechanically entangled photons. Another way to accomplish this goal is the reduction of the fine structure splitting of the exciton. The fine structur splitting of quantum dots used in the experiments is in the order of magnitude of 100 µeV. This value was decreased to 5.1 µeV by precise adjustments of the induced strain. A rotation of the emission polarization by almost 90◦ was observed when crossing the energetic minimum of the fine structure splitting. Furthermore, a change of the degree of polarization associated with the fine structure splitting was demontrated. A further process flow was developed in order to transfer complex device structures onto piezoelectric substrates. This allows for the investigation of strain induced to systems composed of quantum dots and microresonators. It was demonstrated that the spectral splitting of the mode of micropillar resonators can be tuned in a reversible manner. This finding is again interesting for the generation of polarization-entangled photons. When strain is applied to photonic crystal resonators a ratio of 5 is observed for the tuning ranges of excitonic emission lines and resonator mode with the result that resonance can accomplished between both lines. Since the tuning sensitivities are different the interaction of light and matter can be adjusted by strain. KW - Galliumarsenid-Bauelement KW - Resonatoren KW - Photonische Kristalle KW - Quantenpunkt KW - Photonik KW - Halbleiter Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-117130 ER - TY - THES A1 - Gorenflot, Julien François T1 - Optical study of the excited states in the semiconducting polymer poly(3-hexylthiophene) for photovoltaic applications T1 - Untersuchung angeregter Zustände des halbleitenden Polymers Poly(3-hexylthiophene) mittels optischer Spektroskopie für Anwendungen in der Photovoltaik N2 - In the course of this dissertation, we have presented the interest of using spectroscopic methods to unravel the physics of polymer semiconductors in photovoltaic applications. Applying photoluminescence and photoinduced absorption spectroscopy to the reference system P3HT:PCBM has enabled us to study the major steps of photocurrent generation in organic bulk heterojunctions, from excitons generation to charges extraction and loss mechanisms and thus to improve the understanding of those mechanisms. The exciton binding energy, is the first obstacle to overcome for photocurrent generation in organic solar cell and the reason for the use of two materials, whose heterojunction act as a driving force for charge separation. We developed an original photoluminescence-detected field-induced exciton quenching method to investigate this energy. Absorption and photoluminescence spectra of pure P3HT show that, while both amorphous and crystalline domains participate in absorption, the energy is then transferred to the crystalline domains, from where the photoluminescence is exclusively originating. The field dependence of this photoluminescence showed that an energy of no less than 420 meV is necessary to split excitons into non photon-emitting species. Comparing those results with energy levels obtained by absorption and photoelectron spectroscopies, confirmed that the formation of those species is only a first step toward dissociation into free charges. Indeed, photoemission spectroscopy and the onset of photocurrent upon increasing the photon energy in a pure P3HT solar cell, concomitantly show that the energy level of a pair of free polarons is located 0.7 eV above the one of the exciton. The comprehensive analysis of those results originating from those different method enable us to draw a global picture of the states and energies involved in free polarons generation in pure material. This work has been widely acknowledged by the scientific community, published in Physical Review B in 2010 [1] and presented in national [2] and international [3] conferences. The spectroscopy of excited states is used to detect the presence of wanted species (charges) and potentially unwanted neutral species upon photoexcitation. As such, it offers us the possibility to qualify the efficiency of charge generation and, if any, identify the competing processes and the generation of unwanted species. In the frame of the European Marie Curie Research Network SolarNType,[4] this possibility was used - in combination with morphological, charge transport and devices characterizationsn - to study a number of new donor:acceptor blends. Thanks to those techniques, we were able to not only quantify the potential of those blends, but also to provide the chemist laboratories with a precious and detailed feedback on the strengths and weakness of the molecules, regarding charge generation, transport and extraction. The detailed study of terrylene-3,4:11,12-bis(dicarboximide) as electron acceptor for solar cells application was published in the peer review journal Synthetic Metals and was chosen to illustrate the cover page of the issue [5]. Finally, in the last chapter, we have used time resolved photoinduced absorption to improve the understanding of the charge carrier loss mechanisms in P3HT:PCBM active layers. This comprehension is of prime importance because, the fact that this recombination is far weaker than expected from the Langevin theory, enable polarons to travel further without recombining and thus to build thicker and more efficient devices. A comprehensive analysis of steady-state PIA spectra of pure P3HT, indicates that probing at 980 nm at a temperature between 140 and 250 K enables to monitor specifically polaron densities in both neat P3HT and P3HT:PCBM. Applying this finding to transient absorption enabled us to monitor, for the first time, the bimolecular recombination in pure P3HT, and to discover that - in sharp contrast with the blend - this recombination was in agreement with the Langevin theory. Moreover, it enables us to pinpoint the important role played by the existence of two materials and of energetical traps in the slow recombination and high recombination orders observed in the blend. This work has been published in the Journal of Applied Physics.[6] Those new insights in the photophysics of polymer:fullerene photoactive layers could have a strong impact on the future developement of those materials. Consistent measurements of the binding energy of excitons and intermediate species, would enable to clarify the role played by excess thermal energy in interfacial states dissociation. Better understanding of blends morphology and its influence on solar cells parameters and in particular on recombination could enable to reproduce the conditions of limited recombination on material systems offering some promising performances but with only limited active layer thicknesses. However, due to the number of parameters involved, further experimentation is required, before we can reach a quantitative modeling of bimolecular recombination. [1] Deibel et al., Phys. Rev. B, 81:085202, 2010 [2] Gorenflot et al., Deutsche Physikalische Gesellschaft Frühjahrstagung 2010, CPP20:10, Regensburg, Germany, 2010 [3] Gorenflot et al., International Conference of Synthetic Metals, 7Ax:05, Kyoto, Japan, 2010 [4] Marie-Curie RTN "SolarNTyp" Contract No. MRTN-CT-2006-035533 [5] Gorenflot et al., Synth. Met., 161(23{24):2669-2676, 2012 [6] Gorenflot et al., J. Appl. Phys., 115(14):144502, 2014 N2 - In der vorliegenden Arbeit wurden die zugrundeliegenden Mechanismen, die während der Photostromgeneration in Polymer:Fulleren-Solarzellen stattfinden, von der Exzitonengeneration bis zur Ladungsträgerextraktion, mittels spektroskopischer Methoden untersucht. Nach der Absorption eines Photons ist die Exzitonenbindungsenergie das erste zu überwindende Hindernis, um einen Photostrom in organischen Halbleitern zu generieren. Diese begründet die Notwendigkeit, zwei unterschiedliche Halbleitermaterialien zu implementieren, deren energetischer Offset die treibende Kraft für Exzitonentrennung am Heterogrenzfläsche bildet. Zur Erforschung dieser Energie haben wir eine neuartige Methode entwickelt, mit welcher wurden Einfluss eines elektrischen Feldes auf die Exzitonen durch Photolumineszenzmessungen quantifizieren können. Aus Absorptions- und Photolumineszenzspektren ist ersichtlich, dass im reinen P3HT sowohl amorphe als auch kristalline Bereiche zur Absorption beitragen. Daraufhin erfolgt ein anschließender effektiver. Energietransfer zu den kristallinen Domänen, der durch die ausschließlich in diesen Bereichen auftretende Photolumineszenz nachgewiesen wird. Diese Exzitonen sind als interchain excitons bekannt, die bereits bei 0.42 eV; in nicht emittierende Spezies dissoziiert werden können, wie unsere feldabhängigen Photolumineszenzmessungen zeigen. Mit Hilfe komplementärer Methoden konnten wir nachweisen, dass diese Dissoziation nur ein erster Schritt zur Generation freier Ladungsträger ist. So konnte durch Photoelektronenspektroskopie 10 und Messungen der externen Quanteneffizienz gezeigt werden, dass die Erstellung freier Ladungsträger 0.7 eV benötigt. Die zusammenführende Analyse dieser Ergebnisse ermöglicht die Erstellung eines umfassenden Bildes der für die Photostromgeneration relevanten Energieniveaus in reinem P3HT. Desweiteren wurden die Ergebnisse dieser Arbeit national [1] als auch international [2] auf Konferenzen präsentiert und im Jahr 2010 in Physical Review B [3] publiziert. Die Tatsache, dass diese bereits über 50 mal zitiert wurden, verdeutlicht die große Bedeutung der erlangten Resultate. Durch die Verwendung der Quasi-Steady-State-Spektroskopie angeregter Spezies können unter Beleuchtung erwünschte (Ladungsträger) und unerwünschte (neutrale) Zustände detektiert werden. Im Rahmen des EU-Projekts "SolarNType" [4] wurden dazu mehrere, als Elektronenakzeptor dienende, Moleküle teilnehmender Institutionen untersucht. Mit Hilfe unserer spektroskopischen Methode und durch ergänzende Messungen des Ladunsträgerstransports sowie der Morphologie und Strom-Spannungs-Charakteristiken der Solarzellen waren wir im Stande, nicht nur das Potential dieser Moleküle zu beurteilen, sondern auch unseren Projektmitarbeitern detaillierte und wertvolle Informationen über die Stärken und Schwächen der von ihnen synthetisierten Materialien zu geben. Die detaillierte Untersuchung von terrylene-3,4:11,12-bis(dicarboximide) als Elektronenakzeptor, welche wir für das Max-Planck-Institut in Mainz erstellten, wurde im Jahr 2012 in Synthetic Metals publiziert und für die Titelseite ausgewählt. [5] Im letzten Abschnitt werden die Ergebnisse transienter photoinduzierter Absorptionsmessungen diskutiert, welche zur Bestimmung der Rekombination freier Ladunsträger in P3HT:PCBM Mischschichten durchgeführt wurden. Diese Rekombination ist dafür bekannt, nicht der Langevin-Theorie zu folgen, was für Solarzellen von großer Bedeutung ist. Anstelle von Rekombination zweiter Ordnung nach der Langevin-Theorie, rekombinieren Ladungsträger in dieser Materialkombination unter höherer Ordnung und einem starken zusätzlichen Reduktionsfaktor. Dies hat zur Folge, dass die Ladungsträger weiter difundieren können, was die Erstellung dickerer und daher effizienterer Solarzellen ermöglicht. Durch umfassende Analysen der P3HT Quasi-Steady-State-Spektren wurde einspektraler sowie thermischer Bereich identifiziert, in dem in reinem P3HT ausschließlich Polaronen für die Absorption verantwortlich sind. Die Verwendung dieser Ergebnisse in transienten Absorptionsmessungen ermöglichte es erstmals, das Rekombinationsverhalten in reinen sowie mit PCBM gemischten P3HT Schichten zu vergleichen. Es zeigt sich, dass die Abnahme der Ladungsträgerdichte in reinem P3HT der Langevin-Theorie perfekt folgt. Demzufolge scheint die beobachtete limitierte Rekombination in gemischten P3HT:PCBM-Schichten aus der Präsenz zweier unterschiedlicher Materialien zu resultieren. Nach der Betrachtung mehrerer möglicher Mechanismen kommen wir zu dem Schluss, dass eine Kombination von energetischem Trapping und Phasenseparation für dieses Verhalten verantwortlich ist. Diese Ergebnisse wurden im Jahr 2014 in the Journal of Applied Physics publiziert. [6] Die erlangten neuen Einblicke in die photophysischen Eigenschaften von Polymer:Fulleren-Mischschichten besitzen große Bedeutung für die weitere Entwicklung in diesem Bereich. Systematische Messungen der Bindungsenergien von Exzitonen sowie Polaronenpaaren scheinen eine vielversprechende Methode zu sein, die Bedeutung der Exzitonen-Überschussenergie für die Photostromgeneration zu verstehen. Ein besseres Verständnis der Mischungsmorphologie sowie ihren Einfluss auf die bimolekulare Rekombinationsdynamik bahnt den Weg zur Steigerung der Leistung in vielversprechenden Materialsystemen, die bisher durch die limitierte Dicke der Solarzellen eingeschränkt ist. Allerdings bedingt die große Anzahl an Faktoren, die in diesen Rekombinationsmechanismen eine Rolle spielen, weitere fundierte experimentelle Ergebnisse, bevor eine quantitative Modellierung der Prozesse erreicht werden kann. [1] Gorenflot et al., Deutsche Physikalische Gesellschaft Frühjahrstagung 2010, CPP20:10, Regensburg, Germany, 2010 [2] Gorenflot et al., International Conference of Synthetic Metals, 7Ax:05, Kyoto, Japan, 2010 [3] Deibel et al., Phys. Rev. B, 81:085202, 2010 [4] Marie-Curie RTN "SolarNTyp" Contract No. MRTN-CT-2006-035533 [5] Gorenflot et al., Synth. Met., 161(23{24):2669-2676, 2012 [6] Gorenflot et al., J. Appl. Phys., 115(14):144502, 2014 KW - Organische Solarzelle KW - Fotovoltaik KW - Organischer Halbleiter KW - Renewable energies KW - Solar energy KW - Excited states spectroscopy KW - Organic semiconductors KW - Semiconductors physics KW - Plastic electronics KW - Excitons KW - Experimental physics KW - Disordered semiconductor KW - Charges recombination KW - Spectroscopy Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-116730 ER - TY - THES A1 - Kern, Johannes T1 - Optical and electrical excitation of nanoantennas with atomic-scale gaps T1 - Optische und elektrische Anregung von Nanoantennen mit atomar kleinen Spalten N2 - Nano-antennas are an emerging concept for the manipulation and control of optical fields at the sub-wavelength scale. In analogy to their radio- and micro-wave counterparts they provide an efficient link between propagating and localized fields. Antennas operating at optical frequencies are typically on the order of a few hundred nanometer in size and are fabricated from noble metals. Upon excitation with an external field the electron gas inside the antenna can respond resonantly, if the dimensions of the antenna are chosen appropriate. Consequently, the resonance wavelength depends on the antenna dimensions. The electron-density oscillation is a hybrid state of electron and photon and is called a localized plasmon resonance. The oscillating currents within the antenna constitute a source for enhanced optical near-fields, which are strongly localized at the metal surface. A particular interesting type of antennas are pairs of metal particles separated by a small insulating gap. For anti-symmetric gap modes charges of opposite sign reside across the gap. The dominating field-components are normal to the metal surface and due to the boundary conditions they are sizable only inside the gap. The attractive Coulomb interaction increases the surface-charge accumulation at the gap and enhanced optical fields occur within the insulating gap. The Coulomb interaction increases with decreasing gap size and extreme localization and strongest intensity enhancement is expected for small gap sizes. In this thesis optical antennas with extremely small gaps, just slightly larger than inter-atomic distances, are investigated by means of optical and electrical excitation. In the case of electrical excitation electron tunneling across the antenna gap is exploited. At the beginning of this thesis little was known about the optical properties of antennas with atomic scale gaps. Standard measurement techniques of field confinement and enhancement involving well-separated source, sample and detector are not applicable at atomic length-scales due to the interaction of the respective elements. Here, an elegant approach has been found. It is based on the fact that for closely-spaced metallic particles the energy splitting of a hybridized mode pair, consisting of symmetric and anti-symmetric mode, provides a direct measure for the Coulomb interaction over the gap. Gap antennas therefore possess an internal ruler which sensitively reports the size of the gap. Upon self-assembly side-by-side aligned nanorods with gap sizes ranging from 2 to 0.5nm could be obtained. These antennas exhibit various symmetric and anti-symmetric modes in the visible range. In order to reveal optical modes of all symmetries a novel scattering setup has been developed and is successfully applied. Careful analysis of the optical spectra and comparison to numerical simulations suggests that extreme field confinement and localization can occur in gaps down to 0.5 nm. This is possibly the limit of plasmonic enhancement since for smaller gaps electron tunneling as well as non-locality of the dielectric function affect plasmonic resonances. The strongly confined and intense optical fields provided by atomic-scale gaps are ideally suited for enhanced light-matter interaction. The interplay of intense optical-frequency fields and static electric fields or currents is of great interest for opto-electronic applications. In this thesis a concept has been developed, which allows for the electrical connection of optical antennas. By means of numerical simulations the concept was first verified for antennas with gap sizes on the order of 25 nm. It could be shown, that by attaching the leads at positions of a field minimum the resonant properties are nearly undisturbed. The resonance wavelengths shift only by a small amount with respect to isolated antennas and the numerically calculated near-field intensity enhancement is about 1000, which is just slightly lower than for an unconnected antenna. The antennas are fabricated from single-crystalline gold and exhibit superior optical and electrical properties. In particular, the conductivity is a factor of 4 larger with respect to multi-crystalline material, the resistance of the gap is as large as 1 TOhm and electric fields of at least 10^8 V/m can be continuously applied without damage. Optical scattering spectra reveal well-pronounced and tunable antenna resonances, which demonstrates the concept of electrically-connected antennas also experimentally. By combining atomic-scale gaps and electrically-connected optical antennas a novel sub-wavelength photon source has been realized. To this end an antenna featuring an atomic scale gap is electrically driven by quantum tunneling across the antenna gap. The optical frequency components of this fluctuating current are efficiently converted to photons by the antenna. Consequently, light generation and control are integrated into a planar single-material nano-structure. Tunneling junctions are realized by positioning gold nanoparticles into the antenna gap, using an atomic force microscope. The presence of a stable tunneling junction between antenna and particle is demonstrated by measuring its distinct current-voltage characteristic. A DC voltage is applied to the junction and photons are generated by inelastically tunneling electrons via the enhanced local density of photonic states provided by the antenna resonance. The polarization of the emitted light is found to be along the antenna axis and the directivity is given by the dipolar antenna mode. By comparing electroluminescence and scattering spectra of different antennas, it has been shown that the spectrum of the generated light is determined by the geometry of the antenna. Moreover, the light generation process is enhanced by two orders of magnitude with respect to a non-resonant structure. The controlled fabrication of the presented single-crystalline structures has not only pushed the frontiers of nano-technology, but the extreme confinement and enhancement of optical fields as well as the light generation by tunneling electrons lays a groundwork for a variety of fundamental studies and applications. Field localization down to the (sub-)nanometer scale is a prerequisite for optical spectroscopy with near-atomic resolution. Indeed, recently first pioneering experiments have achieved molecular resolution exploiting plasmon-enhanced Raman scattering. The small modal volume of antennas with atomic-scale gaps can lead to light-matter interaction in the strong coupling regime. Quantum electro-dynamical effects such as Rabi splitting or oscillations are likely when a single emitter is placed into resonant structures with atomic-scale gaps. The concept of electrically-connected optical antennas is expected to be widely applied within the emerging field of electro-plasmonics. The sub-wavelength photon source developed during this thesis will likely gain attention for future plasmonic nanocircuits. It is envisioned that in such a circuit the optical signal provided by the source is processed at ultrafast speed and nanometer-scales on the chip and is finally converted back into an electronic signal. An integrated optical transistor could be realized by means of photon-assisted tunneling. Moreover, it would be interesting to investigate, if it is possible to imprint the fermionic nature of electrons onto photons in order to realize an electrically-driven source of single photons. Non-classical light sources with the potential for on-chip integration could be built from electrically-connected antennas and are of great interest for quantum communication. To this end single emitters could be placed in the antenna gap or single electron tunneling could be achieved by means of a single-channel quantum point contact or the Coulomb-blockade effect. N2 - Nanoantennen sind ein zukunftweisendes Konzept für die Manipulation und Kontrolle von optischen Feldern auf der Subwellenlängen-Skala. Analog zu Radio- und Mikrowellenantennen können sie auf effiziente Weise propagierende und lokalisierte Felder ineinander umwandeln. Optische Antennen sind typischerweise nur einige hundert Nanometer groß und werden aus Edelmetallen hergestellt. Besitzt die Antenne passende geometrische Maße, kann das Elektronengas durch Anregung mit einem externen Feld in resonante Schwingungen versetzt werden. Die Resonanzwellenlänge ist somit durch die Antennengeometrie bestimmt. Die Elektronendichte-Schwingung ist ein Hybridzustand aus Elektron und Photon und wird lokalisierte Plasmonenresonanz genannt. Wird die Resonanz angeregt so kommt es zu oszillierenden Strömen, welche eine Quelle für verstärkte optische Nahfelder darstellen. Diese Felder sind an die Metalloberfläche gebunden und daher stark lokalisiert. Eine besonders interessante Antennengeometrie ist ein Paar von Metallpartikeln, die durch einen schmalen Spalt getrennt sind. Antisymmetrische Antennenmoden besitzen Ladungen mit entgegengesetzten Vorzeichen auf der jeweiligen Seite des Spalts. Die dominierenden elektrischen Felder stehen senkrecht zur Metalloberfläche und sind aufgrund der elektromagnetischen Randbedingungen hauptsächlich im Antennenspalt lokalisiert. Bei anti-symmetrischen Moden verstärkt die Coulombanziehung die Landungsträgerdichte in der Nähe des Spalts und es treten verstärkte optische Nahfelder zwischen den zwei Antennenarmen auf. Die Coulombwechselwirkung nimmt mit kleiner werdendem Abstand zu und für Strukturen mit sehr kleinem Abstand ist eine sehr große Feldverstärkung und eine sehr starke Lokalisation zu erwarten. In dieser Dissertation wurden optische Antennen untersucht, deren zwei Antennenarme durch einen extrem schmalen Spalt in der Größenordnung von interatomaren Abständen getrennt sind. Eigenmoden der Antennen werden durch zwei fundamental verschiedene Mechanismen anregt: Entweder durch optische Anregung oder durch das Anlegen einer elektrischen Gleichspannung. Bei der zweiten Methode wird der quantenmechanische Elektron-Tunnelprozess ausgenutzt. Zu Beginn dieser Arbeit existierten nur wenige Studien über Antennen mit sehr kleinen Spaltbreiten und es war nicht bekannt ob optische Felder auf atomarer Skala lokalisiert und verstärkt werden können. Allerdings ist eine direkte Messung der Feldlokalisation und Feldverstärkung auf atomarer Skala nicht möglich, da eine Unterscheidung zwischen Quelle, Probe und Detektor aufgrund deren gegenseitigen Wechselwirkungen schwierig ist. In dieser Arbeit wurde jedoch ein eleganter Ansatz entwickelt um dieses Problem zu umgehen. Dieser Ansatz nutzt aus, dass die energetische Aufspaltung eines hybridisierten Modenpaares, bestehend aus einer symmetrischen und anti-symmetrischen Mode, proportional zur Coulombwechselwirkung zwischen den Antennenarmen ist. Die Coulombwechselwirkung skaliert mit der Spaltbreite und somit gibt die energetische Aufspaltung der beiden Moden sehr genau den Abstand zwischen den zwei Antennenarmen wieder. Die untersuchten Strukturen waren zwei längsseitig-parallel liegende Nanostäbchen mit einem Abstand von 2 bis weniger als 0,5 nm. Diese Antennen konnten auf einfache Weise durch Selbstorganisation erhalten werden. Ein weiterer Grund für die Verwendung dieser Strukturen lag darin, dass bei ihnen symmetrische und anti-symmetrische Moden im sichtbaren Spektralbereich liegen. Um optische Moden jeglicher Symmetrie anregen zu können wurde in dieser Arbeit ein neuartiger experimenteller Aufbau zur Messung von Streuspektren entwickelt und erfolgreich eingesetzt. Sorgfältige Analysen der optischen Spektren und Vergleiche mit numerischen Rechnungen legen nahe, dass hohe Feldverstärkungen und Lokalisationen selbst für Strukturen mit Spaltbreiten von nur 0,5 nm auftreten. Möglicherweise erreichen die untersuchten Antennen die maximal möglichen Feldverstärkungen, denn für kleinere Abstände werden Plasmonenresonanzen durch elektronische Tunnelprozesse und nicht-lokale Effekte der dielektrischen Funktion geschwächt. Die lokalisierten und verstärkten optischen Felder, die durch Antennen mit Spaltbreiten auf der Skala von atomaren Abständen erreicht werden können, eignen sich hervorragend für eine Verstärkung von Licht-Materie-Wechselwirkungen. Für opto-elektronische Anwendungen ist hierbei das Wechselspiel zwischen Feldern mit optischen Frequenzen und statischen elektrischen Feldern oder Strömen von großem Interesse. In dieser Arbeit wurde ein Konzept erarbeitet, welches es ermöglicht optische Antennen elektrisch zu kontaktieren. Dieses Konzept wurde zunächst an Antennen mit circa 25 nm breiten Spalten mithilfe von numerischen Berechnungen verifiziert. Es konnte gezeigt werden, dass durch die Kontaktierung an den Positionen der Feldminima die Eigenmoden der Antenne nahezu unverändert bleiben. So liegen die Resonanzen der kontaktierten Antennen bei nahezu den gleichen Wellenlängen wie bei der unkontaktierten Antennen und die berechneten Feldverstärkungen sind mit einem Wert von 1000 nur minimal kleiner. Die Strukturen wurden aus einkristallinem Gold hergestellt und besitzen sehr gute optische und elektrische Eigenschaften. Beispielsweise ist die elektrische Leitfähigkeit viermal größer als bei multikristallinen Strukturen. Der elektrische Widerstand der Spalte ist circa 1 TOhm und elektrische Felder mit einer Stärke von mindestens 10^8 V/m können dauerhaft angelegt werden, ohne die Strukturen zu beschädigen. Mithilfe von Weißlicht-Streuexperimenten wurden die optischen Eigenschaften der hergestellten Strukturen untersucht. Die gemessenen Spektren zeigen wohl definierte Plasmonenresonanzen, deren Resonanzwellenlänge durch die Antennenlänge bestimmt ist. Somit konnte das Konzept auch experimentell bestätigt werden. Durch Kombination von Spalten in der Größenordnung von atomaren Abständen mit elektrisch kontaktierten Antennen konnte eine Lichtquelle mit Abmessungen kleiner als die Lichtwellenlänge realisiert werden. Die Lichtquelle basiert auf einem neuartigen Mechanismus bei dem Photonen durch elektrisches Treiben der Antenne generiert werden. Die hierzu benötigten Felder mit optischen Frequenzen werden durch statistische Fluktuationen des quantenmechanischen Tunnelstromes bereitgestellt. Somit findet die Lichterzeugung und -kontrolle in einer planaren Nanostruktur statt, die nur aus einem einzelnen Material besteht. Um einen Tunnelkontakt zwischen den elektrisch kontaktierten Antennenarmen zu erreichen, wurden Goldnanopartikel mithilfe eines Rasterkraftmikroskops in dem Antennenspalt platziert. Zwischen dem Goldpartikel und mindestens einem der Antennenarmen bildet sich dabei ein stabiler Tunnelkontakt, dessen Existenz durch die reproduzierbare Messung der charakteristischen Strom-Spannungskennlinie bewiesen werden konnte. Durch Anlegung einer konstanten Spannung kommt es zu inelastischen Tunnelprozessen bei denen Photonen erzeugt werden. Dabei wird die erhöhte optische Zustandsdichte der Antenne ausgenutzt, so dass das abgestrahlte Licht eine Polarisation entlang der Antennenachse zeigt und die räumliche Abstrahlcharakteristik durch die dipolartige Antennenmode bestimmt ist. Durch Variation der Antennengeometrie und durch Vergleich mit Streuspektren konnte gezeigt werden, dass die Wellenlänge des elektrisch erzeugten Lichts durch die Antennengeometrie bestimmt ist. Der Vergleich mit einer nicht-resonanten Referenzstruktur zeigt, dass die Antenne die Effizienz des Lichterzeugungsprozesses um zwei Größenordnungen erhöht. Die in dieser Arbeit entwickelten Methoden zur kontrollierten Herstellung ein\-kris\-talliner Nanoantennen mit Spaltbreiten auf der Skala von atomaren Abständen erweitern die Grenzen der Nanotechnologie. Darüber hinaus konnte gezeigt werden, dass lokalisierte und verstärkte optische Felder auf atomarer Skala existieren können und es wurde mit einer Gleichspannung mithilfe des inelastischen Tunnelprozesses Licht erzeugt. Diese Studien eröffnen vielfältige Möglichkeiten sowohl für Grundlagenforschung als auch praktische Anwendungen. Die Lokalisation von optischen Feldern auf der (sub)-nanometer Skala ist die Voraussetzung für optische Spektroskopie nahe an der atomaren Auflösung. So konnte kürzlich in einem wegweisenden optischen Experiment molekulare Auflösung durch Messung von plasmonen verstärkter Ramanstreuung gezeigt werden. Das kleine Modenvolumen von Antennen mit Spaltbreiten in der Größenordnung atomarer Abstände kann zu einer Licht-Materie-Wechselwirkung im Bereich der starken Kopplung führen. Dies hätte zur Folge, dass Quanten-Elektro-Dynamische Effekte wie Rabi-Aufspaltung oder -Oszillationen in Zukunft bei Experimenten, in denen einzelne Lichtemitter in sehr schmale Antennenspalte platziert sind, beobachtet werden können. Es ist zu erwarten, dass elektrisch kontaktierte optische Antennen zukünftig in dem neuen Forschungsgebiet der Elektro-Plasmonik eingesetzt werden. Die entwickelte Subwellenlängen-Lichtquelle ist von großem Interesse für zukünftige plasmonische Nano-Schaltkreise. Es ist vorstellbar, dass optische Signale in solchen Schaltkreisen mit sehr hoher Geschwindigkeit auf der Nanoskala manipuliert werden und anschließend wieder in elektrische Signale umgewandelt werden können. Des Weiteren wäre es möglich einen optischen Transistor, basierend auf einer kontaktierten Antenne, zu integrieren. Die Schaltung des Transistors könnte durch den photon-unterstützten Tunneleffekt erreicht werden. Ein weiteres interessantes Experiment in naher Zukunft wäre die Übertragung der fermionischen Eigenschaften von Elektronen auf Photonen, um eine elektrisch-getriebene Einzelphotonen-Quelle zu erhalten. Solch eine nicht-klassische Lichtquelle könnte aus elektrisch kontaktierten Antennen hergestellt werden und besäße das Potential zur Integration in Schaltkreise für Quantenkommunikations-Anwendungen. Ein Ansatz dafür wäre die Positionierung von Einzelemittern in den Antennenspalt. Ein anderer Ansatz könnte auf Einzel-Elektronen-Tunnelprozessen basieren, wie sie in Einkanal-Quantenpunktkontakten oder aufgrund des Coulombblockade-Effektes stattfinden. KW - Nanooptik KW - Nanostruktur KW - near-field optics KW - Nahfeld Optik KW - nanoantenna KW - atomic-scale gap KW - electrical excitation KW - plasmonics KW - electron tunneling KW - Nanoantenne KW - atomar kleine Lücke KW - elektrische Anregung KW - Elektronen Tunneln KW - Antenne KW - Nahfeldoptik KW - Plasmon Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115492 ER - TY - THES A1 - Benkert, Thomas T1 - Neue Steady-State-Techniken in der Magnetresonanztomographie T1 - Novel Steady-State Techniques for Magnetic Resonance Imaging N2 - Die bSSFP-Sequenz kombiniert kurze Akquisitionszeiten mit einem hohen Signal-zu-Rausch-Verhältnis, was sie zu einer vielversprechenden Bildgebungsmethode macht. Im klinischen Alltag ist diese Technik jedoch bisher - abgesehen von vereinzelten Anwendungen - kaum etabliert. Die Hauptgründe hierfür sind Signalauslöschungen in Form von Bandingartefakten sowie der erzielte T2/T1-gewichtete Mischkontrast. Das Ziel dieser Dissertation war die Entwicklung von Methoden zur Lösung der beiden genannten Limitationen, um so eine umfassendere Verwendung von bSSFP für die MR-Diagnostik zu ermöglichen. Magnetfeldinhomogenitäten, die im Wesentlichen durch Suszeptibilitätsunterschiede oder Imperfektionen seitens der Scannerhardware hervorgerufen werden, äußern sich bei der bSSFP-Bildgebung in Form von Bandingartefakten. Mit DYPR-SSFP (DYnamically Phase-cycled Radial bSSFP) wurde ein Verfahren vorgestellt, um diese Signalauslöschungen effizient zu entfernen. Während für bereits existierende Methoden mehrere separate bSSFP-Bilder akquiriert und anschließend kombiniert werden müssen, ist für die Bandingentfernung mittels DYPR-SSFP lediglich die Aufnahme eines einzelnen Bildes notwendig. Dies wird durch die neuartige Kombination eines dynamischen Phasenzyklus mit einer radialen Trajektorie mit quasizufälligem Abtastschema ermöglicht. Die notwendigen Bestandteile können mit geringem Aufwand implementiert werden. Des Weiteren ist kein spezielles Rekonstruktionsschema notwendig, was die breite Anwendbarkeit des entwickelten Ansatzes ermöglicht. Konventionelle Methoden zur Entfernung von Bandingartefakten werden sowohl bezüglich ihrer Robustheit als auch bezüglich der notwendigen Messzeit übertroffen. Um die Anwendbarkeit von DYPR-SSFP auch jenseits der gewöhnlichen Bildgebung zu demonstrieren, wurde die Methode mit der Fett-Wasser-Separation kombiniert. Basierend auf der Dixon-Technik konnten so hochaufgelöste Fett- sowie Wasserbilder erzeugt werden. Aufgrund der Bewegungsinsensitivät der zugrunde liegenden radialen Trajektorie konnten die Messungen unter freier Atmung durchgeführt werden, ohne dass nennenswerte Beeinträchtigungen der Bildqualität auftraten. Die erzielten Ergebnisse am Abdomen zeigten weder Fehlzuordnungen von Fett- und Wasserpixeln noch verbleibende Bandingartefakte. Ein Nachteil der gewöhnlichen Dixon-basierten Fett-Wasser-Separation ist es, dass mehrere separate Bilder zu verschiedenen Echozeiten benötigt werden. Dies führt zu einer entsprechenden Verlängerung der zugehörigen Messzeit. Abhilfe schafft hier die Verwendung einer Multiecho-Sequenz. Wie gezeigt werden konnte, ermöglicht eine derartige Kombination die robuste, bandingfreie Fett-Wasser-Separation in klinisch akzeptablen Messzeiten. DYPR-SSFP erlaubt die Entfernung von Bandingartefakten selbst bei starken Magnetfeldinhomogenitäten. Dennoch ist es möglich, dass Signalauslöschungen aufgrund des Effekts der Intravoxeldephasierung verbleiben. Dieses Problem tritt primär bei der Bildgebung von Implantaten oder am Ultrahochfeld auf. Als Abhilfe hierfür wurde die Kombination von DYPR-SSFP mit der sogenannten z-Shim-Technik untersucht, was die Entfernung dieser Artefakte auf Kosten einer erhöhten Messzeit ermöglichte. Die mit DYPR-SSFP akquirierten radialen Projektionen weisen aufgrund des angewendeten dynamischen Phasenzyklus leicht verschiedene Signallevel und Phasen auf. Diese Tatsache zeigt sich durch inkohärente Bildartefakte, die sich jedoch durch eine Erhöhung der Projektionsanzahl effektiv reduzieren lassen. Folglich bietet es sich in diesem Kontext an, Anwendungen zu wählen, bei denen bereits intrinsisch eine verhältnismäßig hohe Anzahl von Projektionen benötigt wird. Hierbei hat sich gezeigt, dass neben der hochaufgelösten Bildgebung die Wahl einer 3D radialen Trajektorie eine aussichtsreiche Kombination darstellt. Die in der vorliegenden Arbeit vorgestellte 3D DYPR-SSFP-Technik erlaubte so die isotrope bandingfreie bSSFP-Bildgebung, wobei die Messzeit im Vergleich zu einer gewöhnlichen bSSFP-Akquisition konstant gehalten werden konnte. Verbleibende, durch den dynamischen Phasenzyklus hervorgerufene Artefakte konnten effektiv mit einem Rauschunterdrückungsalgorithmus reduziert werden. Anhand Probandenmessungen wurde gezeigt, dass 3D DYPR-SSFP einen aussichtsreichen Kandidaten für die Bildgebung von Hirnnerven sowie des Bewegungsapparats darstellt. Während die DYPR-SSFP-Methode sowie die darauf beruhenden Weiterentwicklungen effiziente Lösungen für das Problem der Bandingartefakte bei der bSSFP-Bildgebung darstellen, adressiert die vorgestellte RA-TOSSI-Technik (RAdial T-One sensitive and insensitive Steady-State Imaging) das Problem des bSSFP-Mischkontrasts. Die Möglichkeit der Generierung von T2-Kontrasten basierend auf der bSSFP-Sequenz konnte bereits in vorausgehenden Arbeiten gezeigt werden. Hierbei wurde die Tatsache ausgenutzt, dass der T1-Anteil des Signalverlaufs nach Beginn einer bSSFP-Akquisition durch das Einfügen von Inversionspulsen in ungleichmäßigen Abständen aufgehoben werden kann. Ein so akquiriertes Bild weist folglich einen reinen, klinisch relevanten T2-Kontrast auf. Die im Rahmen dieser Arbeit vorgestellte Methode basiert auf dem gleichen Prinzip, jedoch wurde anstelle einer gewöhnlichen kartesischen Trajektorie eine radiale Trajektorie in Kombination mit einer KWIC-Filter-Rekonstruktion verwendet. Somit können bei gleichbleibender oder sogar verbesserter Bildqualität aus einem einzelnen, mit RA-TOSSI akquirierten Datensatz verschiedene T2-Wichtungen als auch gewöhnliche T2/T1-Wichtungen generiert werden. Mittels Variation der Anzahl der eingefügten Inversionspulse konnte ferner gezeigt werden, dass es neben den besagten Wichtungen möglich ist, zusätzliche Kontraste zu generieren, bei denen verschiedene Substanzen im Bild ausgelöscht sind. Diese Substanzen können am Beispiel der Gehirnbildgebung Fett, graue Masse, weiße Masse oder CSF umfassen und zeichnen sich neben den reinen T2-Kontrasten durch eine ähnlich hohe klinische Relevanz aus. Die mögliche Bedeutung der vorgestellten Methode für die klinische Verwendung wurde durch Messungen an einer Gehirntumorpatientin demonstriert. Zusammenfassend lässt sich sagen, dass die im Rahmen dieser Dissertation entwickelten Techniken einen wertvollen Beitrag zur Lösung der eingangs beschriebenen Probleme der bSSFP-Bildgebung darstellen. Mit DYPR-SSFP akquirierte Bilder sind bereits mit bestehender, kommerzieller Rekonstruktionssoftware direkt am Scanner rekonstruierbar. Die Software für die Rekonstruktion von RA-TOSSI-Datensätzen wurde für Siemens Scanner implementiert. Folglich sind beide Methoden für klinische Studien einsetzbar, was gleichzeitig den Ausblick dieser Arbeit darstellt. N2 - The bSSFP sequence combines short acquisition times with a high signal-to-noise ratio, and is therefore a promising imaging technique. However, aside from a few applications, this method is hardly established in the clinical routine. The main reasons for this are signal voids that arise as banding artifacts and the obtained T2/T1-weighted mixed contrast. The goal of this dissertation was to develop strategies to overcome these limitations and allow for a more widespread use of bSSFP for MR diagnostics. In bSSFP imaging, magnetic field inhomogeneities, which are mainly caused by susceptibility differences and imperfections of the scanner hardware, manifest as banding artifacts. In order to efficiently remove these artifacts from the image, DYnamically Phase-cycled Radial bSSFP (DYPR-SSFP) was proposed. While existing methods rely on the acquisition and subsequent combination of several separate bSSFP images, banding removal with DYPR-SSFP requires the acquisition of only a single data set. This is achieved by combining a dynamic phase-cycle with a radial trajectory and a quasi-random acquisition scheme. The individual components of this method can be implemented with little effort. Furthermore, no specific reconstruction scheme is necessary, guaranteeing the broad applicability of the developed approach. DYPR-SSFP outperformed conventional methods for banding removal both in robustness and scan time. In order to demonstrate the applicability of DYPR-SSFP beyond conventional imaging, the method was also applied to fat-water separation. Based on the Dixon technique, fat and water images were generated with high resolution. Due to the motion robustness of the underlying radial trajectory, measurements could be performed during free-breathing, without notable degradation of image quality. Abdominal images showed neither regional fat-water flipping nor residual banding artifacts. A drawback of standard Dixon-based fat-water separation is the fact that several separate images with different echo times have to be acquired, therefore prolonging the respective scan time. This can be overcome by using a multiecho sequence. It was demonstrated that the combination of such multiecho sequence and Dixon DYPR-SSFP allows for robust, banding-free fat-water separation in clinically acceptable scan times. DYPR-SSFP guarantees removal of banding artifacts even for strong magnetic field inhomogeneities. However, signal voids may remain due to intravoxel dephasing. This problem primarily arises when imaging metallic implants or when moving to ultra-high field strengths. To address this issue, the combination of DYPR-SSFP with the so-called z-shim technique was investigated, allowing the removal of these artifacts at the expense of an increased measurement time. Due to the applied dynamic phase-increment, radial projections which are acquired with DYPR-SSFP exhibit slightly different signal levels and phases. This results in incoherent artifacts, that can be effectively reduced by increasing the number of acquired projections. Therefore, DYPR-SSFP should be preferably applied when many projections are intrinsically necessary. It has been demonstrated that, besides high resolution imaging, the choice of a 3D radial trajectory is a promising combination. The proposed 3D DYPR-SSFP technique allowed isotropic banding-free bSSFP imaging without any expense of additional scan time compared to a conventional bSSFP acquisition. Residual artifacts caused by the dynamic phase-cycle could be effectively mitigated by applying a denoising algorithm. Volunteer measurements showed that 3D DYPR-SSFP is a promising candidate for imaging of the cranial nerves and the musculoskeletal system. While DYPR-SSFP and all presented resulting methods constitute an efficient solution for banding artifacts in bSSFP imaging, the proposed RAdial T-One sensitive and insensitive Steady-State Imaging (RA-TOSSI) method addresses the problem of the mixed contrast in bSSFP imaging. The possibility to generate T2-contrast with bSSFP has been shown before. The previous approach is based on the fact that T1-relaxation during the transient phase of a bSSFP acquisition can be suppressed by inserting unequally spaced inversion pulses. Thus, the resulting image shows a clinically relevant T2-contrast. The method which was presented as part of this dissertation relies on the same principle. However, instead of the originally proposed Cartesian trajectory, a radial trajectory in combination with a KWIC-filter reconstruction was applied. This allows the generation of several T2-weighted images as well as T2/T1-weighted images from a single RA-TOSSI dataset, while image quality remains comparable or even improves compared with existing methods. It could further be shown that varying the number of inversion pulses allows the generation of additional contrasts, where different tissue types are attenuated in the image. In the case of brain imaging for instance, these tissues comprise fat, gray matter, white matter, and CSF and offer high clinical relevance similar to T2-weighted images. Measurements of a patient with a brain tumor demonstrate the possible impact of the proposed method. In conclusion, the techniques developed as part of this dissertation present a valuable contribution to the solution of various problems which are associated with bSSFP imaging. Images acquired with DYPR-SSFP can be reconstructed directly at the scanner using existing, commercial reconstruction software. The software for the reconstruction of RA-TOSSI data was implemented for Siemens scanners. Therefore, both methods can be directly employed for clinical studies which remain as future work. KW - Kernspintomografie KW - Radiale Bildgebung KW - Steady-State-Sequenzen KW - balanced SSFP KW - Nicht-kartesische Bildgebung KW - Radial Imaging KW - Steady-State Sequences KW - balanced SSFP KW - Non-Cartesian Imaging KW - Magnetische Kernresonanz KW - Biophysik Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115381 ER - TY - THES A1 - El-Kareh, Lydia T1 - Rashba-type spin-split surface states: Heavy post transition metals on Ag(111) T1 - Rashba aufgespaltene Oberflächenzustände schwerer Hauptgruppenmetalle auf Ag(111) N2 - In the framework of this thesis, the structural and electronic properties of bismuth and lead deposited on Ag(111) have been investigated by means of low-temperature scanning tunneling microscopy (LT-STM) and spectroscopy (STS). Prior to spectroscopic investigations the growth characteristics have been investigated by means of STM and low energy electron diffraction (LEED) measurements. Submonolayer coverages as well as thick films have been investigated for both systems. Subsequently the quantum well characteristics of thick Pb films on Ag(111) have been analyzed and the quantum well character could be proved up to layer thicknesses of N ≈ 100 ML. The observed characteristics in STS spectra were explained by a simple cosine Taylor expansion and an in-plane energy dispersion could be detected by means of quasi-particle interferences. The main part of this work investigates the giant Rashba-type spin-split surface alloys of (√3 × √3)Pb/Ag(111)R30◦ and (√3 × √3)Bi/Ag(111)R30◦. With STS experiments the band positions and splitting strengths of the unoccupied (√3 × √3)Pb/Ag(111)R30◦ band dispersions could be resolved, which were unclear so far. The investigation by means of quasi-particle interferences resulted in the observation of several scattering events, which could be assigned as intra- and inter-band transitions. The analysis of scattering channels within a simple spin-conservation–approach turned out to be incomplete and led to contradictions between experiment and theory. In this framework more sophisticated DFT calculations could resolve the apparent deviations by a complete treatment of scattering in spin-orbit–coupled materials, which allows for constructive interferences in spin-flip scattering processes as long as the total momentum J_ is conserved. In a similar way the band dispersion of (√3 × √3)Bi/Ag(111)R30◦ was investigated. The STS spectra confirmed a hybridization gap opening between both Rashba-split bands and several intra- and inter-band scattering events could be observed in the complete energy range. The analysis within a spin-conservation–approach again turned out to be insufficient for explaining the observed scattering events in spin-orbit–coupled materials, which was confi by DFT calculations. Within these calculations an inter-band scattering event that has been identified as spin-conserving in the simple model could be assigned as a spin-flip scattering channel. This illustrates evidently how an incomplete description can lead to completely different indications. The present work shows that different spectroscopic STM modes are able to shed light on Rashba-split surface states. Whereas STS allowed to determine band onsets and splitting strengths, quasi-particle interferences could shed light on the band dispersions. A very important finding of this work is that spin-flip scattering events may result in constructive interferences, an eff which has so far been overlooked in related publications. Additionally it has been found that STM measurements can not distinguish between spin-conserving scattering events or spin-flip scattering events, which prevents to give a definite conclusion on the spin polarization for systems with mixed orbital symmetries just from the observed scattering events. N2 - Im Rahmen dieser Arbeit wurden die strukturellen und elektronischen Eigenschaften von Bismut und Blei bedampften Ag(111) Oberflächen mittels Tieftemperatur-Rastertunnelmi- kroskopie und -spektroskopie untersucht. Im Vorfeld zur Untersuchung der elektronischen Struktur wurde das Wachstumsverhalten sowohl von Bismut als auch Blei auf Ag(111) für Submonolagen und dicke Filme untersucht. Als komplementäre Messmethode wurden hierbei auch LEED Messungen herangezogen. Im Anschluss an die strukturellen Untersuchungen wurden die elektronischen Eigenschaften von dicken Bleifilmen auf Ag(111) untersucht. Der Quantentrogcharakter konnte hier- bei deutlich für sehr dicke Filme von bis zu 100 Monolagen nachgewiesen werden. Die beobachteten STS Spektren wurden im Rahmen einer Cosinus-Taylorentwicklung erläutert und erklärt. Eine Dispersion parallel zur Oberfläche konnte mittels Quasiteilcheninterferenz nachgewiesen werden. Der Hauptteil dieser Arbeit beschäftigte sich mit den Legierungsoberflächen der (√3 × √3)Pb/Ag(111)R30◦ und (√3 × √3)Bi/Ag(111)R30◦ Strukturen, welche über eine außer- gewöhnlich starke Rashba Aufspaltung verfügen. Zunächst wurde die Bandstruktur der (√3 × √3)Pb/Ag(111)R30◦ Oberfläche aufgeklärt, welche aufgrund ihrer energetischen Lage weit oberhalb des Ferminiveaus für ARPES Messungen nicht zugänglich ist und darum bisher ungeklärt blieb. Zur Untersuchung der Banddispersionen wurden Quasiteilcheninterferenzexperimente durchgeführt, durch die mehrere Intra- und Interbandstreuprozesse identifiziert werden konnten. Die Analyse der Streuprozesse hinsichtlich der Spinpolarisationen der beteiligten Bänder in einem einfachen spinerhaltenden Ansatz führte zu einem Widerspruch zwischen experimentell beobachteten Streuprozessen und theoretisch vorhergesagten Spinpolarisationen. In diesem Zusam- menhang konnten neue DFT Rechnungen, die einen vollständigeren Ansatz verfolgten, zeigen, dass dieser Widerspruch gelöst werden konnte, indem anstelle eines spinerhaltenden Ansatzes die Erhaltung des Gesamtdrehimpulses J_ gefordert wurde. Anschließend wurde die Banddispersion der isostrukturellen (√3 × √3)Bi/Ag(111)R30◦- Oberfläche in ähnlicher Weise untersucht. Die STS-Daten bestätigten die Existenz einer Hybridisierungslücke zwischen den beiden Rashba-aufgespaltenen spz und px, py Bändern. Die im gesamten Energiebereich der Bänder beobachteten Intra- und Interbandübergänge konnten ähnlich zur Untersuchung auf der (√3 × √3)Pb/Ag(111)R30◦ nicht im Rahmen eines spinerhaltenden Ansatz zufriedenstellend erklärt werden, sondern nur unter Erhaltung des Gesamdtrehimpulses J_. Es konnte sogar gezeigt werden, dass ein Interbandübergang, der im vereinfachten Modell als spinerhaltend identifziert wurde, in der vollständigeren Betrachtung einem Spinflipstreuereignis zugeordnet werden konnte. Dies zeigt deutlich, dass eine unvollständige Betrachtung mitunter zu völlig verschiedenen Interpretationen führen kann. Die vorliegende Arbeit konnte zeigen, dass es möglich ist Rashba-aufgespaltene Oberflächen mittels verschiedener spektroskopischer STM Messmodi zu untersuchen. Punktspektren erlauben aufgrund des charakteristischen Signals eines Rashba-aufgespaltenen Zustandes Aussagen über Bandmaxima und Aufspaltungen zu ermitteln. In günstigen Fällen ist es mittels Quasiteilcheninterferenz möglich die unverschobenen Banddispersionen abzubilden. Die Interpretation von Quasiteilcheninterferenzen wurde bisher stets im einfachen spiner- haltenden Bild durchgeführt und in diesem Zusammenhang ist ein sehr wichtiger Aspekt dieser Arbeit die Erkenntnis, dass auch Spinflip-Streuungen zu konstruktiven Interferenzen führen können. Zusätzlich wurde herausgefunden, dass es mittels Quasiteilcheninterferenz nicht möglich ist zu unterscheiden, ob der zugrunde liegende Streuvorgang einem spin- erhaltenden oder Spinflip-Übergang zuzuordnen ist. Diese Tatsache verhindert, dass in Systemen mit gemischter orbitaler Symmetrie sichere Aussagen über Spinpolarisationen anhand der experimentell beobachteten Streuereignisse getroffen werden können. KW - Silber KW - Kristallfläche KW - Bismut KW - Blei KW - scanning tunneling microscopy KW - electronic structure KW - spin-orbit coupling KW - Rashba effect KW - Dünne Schicht KW - Elektronische Eigenschaft KW - Rastertunnelmikroskop KW - Elektronenstruktur KW - Spin-Bahn-Wechselwirkung KW - Rashba-Effekt Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112722 ER - TY - THES A1 - Wolf, Nadine T1 - Synthese, Charakterisierung und Modellierung von klassischen Sol-Gel- und Nanopartikel-Funktionsschichten auf der Basis von Zinn-dotiertem Indiumoxid und Aluminium-dotiertem Zinkoxid T1 - Synthesis, characterization and modeling of classical sol gel and nanoparticle functional layers on the basis of indium tin oxide and alumnium zinc oxide N2 - Das Ziel dieser Arbeit ist neben der Synthese von Sol-Gel-Funktionsschichten auf der Basis von transparent leitfähigen Oxiden (transparent conducting oxides, TCOs) die umfassende infrarotoptische und elektrische Charakterisierung sowie Modellierung dieser Schichten. Es wurden sowohl über klassische Sol-Gel-Prozesse als auch über redispergierte Nanopartikel-Sole spektralselektive Funktionsschichten auf Glas- und Polycarbonat-Substraten appliziert, die einen möglichst hohen Reflexionsgrad im infraroten Spektralbereich und damit einhergehend einen möglichst geringen Gesamtemissionsgrad sowie einen niedrigen elektrischen Flächenwiderstand aufweisen. Zu diesem Zweck wurden dotierte Metalloxide, nämlich einerseits Zinn-dotiertes Indiumoxid (tin doped indium oxide, ITO) und andererseits Aluminium-dotiertes Zinkoxid (aluminum doped zinc oxide, AZO)verwendet. Im Rahmen dieser Arbeit wurden vertieft verschiedene Parameter untersucht, die bei der Präparation von niedrigemittierenden ITO- und AZO-Funktionsschichten im Hinblick auf die Optimierung ihrer infrarot-optischen und elektrischen Eigenschaften sowie ihrer Transmission im sichtbaren Spektralbereich von Bedeutung sind. Neben der Sol-Zusammensetzung von klassischen Sol-Gel-ITO-Beschichtungslösungen wurden auch die Beschichtungs- und Ausheizparameter bei der Herstellung von klassischen Sol-Gel-ITO- sowie -AZO-Funktionsschichten charakterisiert und optimiert. Bei den klassischen Sol-Gel- ITO-Funktionsschichten konnte als ein wesentliches Ergebnis der Arbeit der Gesamtemissionsgrad um 0.18 auf 0.17, bei in etwa gleichbleibenden visuellen Transmissionsgraden und elektrischen Flächenwiderständen, reduziert werden, wenn anstelle von (optimierten) Mehrfach-Beschichtungen Einfach-Beschichtungen mit einer schnelleren Ziehgeschwindigkeit anhand des Dip-Coating-Verfahrens hergestellt wurden. Mit einer klassischen Sol-Gel-ITO-Einfach-Beschichtung, die mit einer deutlich erhöhten Ziehgeschwindigkeit von 600 mm/min gedippt wurde, konnte mit einem Wert von 0.17 der kleinste Gesamtemissionsgrad dieser Arbeit erzielt werden. Die Gesamtemissionsgrade und elektrischen Flächenwiderstände von klassischen Sol-Gel-AZOFunktionsschichten konnten mit dem in dieser Arbeit optimierten Endheizprozess deutlich gesenkt werden. Bei Neunfach-AZO-Beschichtungen konnten der Gesamtemissionsgrad um 0.34 auf 0.50 und der elektrische Flächenwiderstand um knapp 89 % auf 65 Ω/sq verringert werden. Anhand von Hall-Messungen konnte darüber hinaus nachgewiesen werden, dass mit dem optimierten Endheizprozess, der eine erhöhte Temperatur während der Reduzierung der Schichten aufweist, mit N = 4.3·1019 cm-3 eine etwa doppelt so hohe Ladungsträgerdichte und mit µ = 18.7 cm2/Vs eine etwa drei Mal so große Beweglichkeit in den Schichten generiert wurden, im Vergleich zu jenen Schichten, die nach dem alten Endheizprozess ausgehärtet wurden. Das deutet darauf hin, dass bei dem optimierten Heizschema sowohl mehr Sauerstofffehlstellen und damit eine höhere Ladungsträgerdichte als auch Funktionsschichten mit einem höheren Kristallisationsgrad und damit einhergehend einer höheren Beweglichkeit ausgebildet werden. Ein Großteil der vorliegenden Arbeit behandelt die Optimierung und Charakterisierung von ITO-Nanopartikel-Solen bzw. -Funktionsschichten. Neben den verwendeten Nanopartikeln, dem Dispergierungsprozess, der Beschichtungsart sowie der jeweiligen Beschichtungsparameter und der Nachbehandlung der Funktionsschichten, wurde erstmals in einer ausführlichen Parameterstudie die Sol-Zusammensetzung im Hinblick auf die Optimierung der infrarot-optischen und elektrischen Eigenschaften der applizierten Funktionsschichten untersucht. Dabei wurde insbesondere der Einfluss der verwendeten Stabilisatoren sowie der verwendeten Lösungsmittel auf die Schichteigenschaften charakterisiert. Im Rahmen dieser Arbeit wird dargelegt, dass die exakte Zusammensetzung der Nanopartikel-Sole einen große Rolle spielt und die Wahl des verwendeten Lösungsmittels im Sol einen größeren Einfluss auf den Gesamtemissionsgrad und die elektrischen Flächenwiderstände der applizierten Schichten hat als die Wahl des verwendeten Stabilisators. Allerdings wird auch gezeigt, dass keine pauschalen Aussagen darüber getroffen werden können, welcher Stabilisator oder welches Lösungsmittel in den Nanopartikel-Solen zu Funktionsschichten mit kleinen Gesamtemissionsgraden und elektrischen Flächenwiderständen führt. Stattdessen muss jede einzelne Kombination von verwendetem Stabilisator und Lösungsmittel empirisch getestet werden, da jede Kombination zu Funktionsschichten mit anderen Eigenschaften führt. Zudem konnte im Rahmen dieser Arbeit erstmals stabile AZO-Nanopartikel-Sole über verschiedene Rezepte hergestellt werden. Neben der Optimierung und Charakterisierung von ITO- und AZO- klassischen Sol-Gel- sowie Nanopartikel-Solen und -Funktionsschichten wurden auch die infrarot-optischen Eigenschaften dieser Schichten modelliert, um die optischen Konstanten sowie die Schichtdicken zu bestimmen. Darüber hinaus wurden auch kommerziell erhältliche, gesputterte ITO- und AZO-Funktionsschichten modelliert. Die Reflexionsgrade dieser drei Funktionsschicht-Typen wurden einerseits ausschließlich mit dem Drude-Modell anhand eines selbstgeschriebenen Programmes in Sage modelliert, und andererseits mit einem komplexeren Fit-Modell, welches in der kommerziellen Software SCOUT aus dem erweiterten Drude-Modell, einem Kim-Oszillator sowie dem OJL-Modell aufgebaut wurde. In diesem Fit-Modell werden auch die Einflüsse der Glas-Substrate auf die Reflexionsgrade der applizierten Funktionsschichten berücksichtigt und es können die optischen Konstanten sowie die Dicken der Schichten ermittelt werden. Darüber hinaus wurde im Rahmen dieser Arbeit ein Ellipsometer installiert und geeignete Fit-Modelle entwickelt, anhand derer die Ellipsometer-Messungen ausgewertet und die optischen Konstanten sowie Schichtdicken der präparierten Schichten bestimmt werden können. N2 - The aim of this thesis is on the one hand the synthesis of sol-gel functional layers on the basis of transparent conducting oxides (TCOs) and on the other hand a comprehensive infrared-optical and electrical characterization as well as modeling of these layers. Spectrally selective coatings have been prepared with the classical sol-gel route as well as with redispersed nanoparticle sols on glass and polycarbonate substrates and these coatings should have a reflectance in the infrared spectral range which is as high as possible and therefore a total emittance and an electrical sheet resistance which are as small as possible. For this purpose tin doped indium oxide (ITO) and aluminum doped zinc oxide (AZO) have been used as doped metal oxides. Within this thesis several parameters have been investigated in-depth which play a decisive role in the preparation of ITO and AZO low emissivity coatings, in order to prepare such coatings with optimized infrared-optical and electrical properties as well as visual transmittances. Besides the composition of the classical sol-gel ITO coating solutions, also the parameters of the coating as well as the heating processes have been characterized and optimized in the manufacture of classical sol-gel ITO and AZO functional layers. As a significant result the total emittance of classical sol-gel ITO functional layers could be reduced by 0.18 to 0.17 while the visual transmittance and electrical sheet resistances stay approximately the same, if just one-layered coatings are applied with a higher withdrawal speed with the dip coating technique instead of (optimized) multi-layered coatings. With a classical sol-gel ITO single coating, which has been produced with a withdrawal speed of 600 mm/min, the smallest total emittance of this work could be realized with 0.17. The total emittances and electrical sheet resistances of classical sol-gel AZO functional layers were reduced drastically in this work by using the optimized final heating process. The total emittance could be reduced by 0.34 to 0.50 and the electrical sheet resistance by 89 % to 65Ω/sq with a coating which consists of nine single layers. On the basis of Hall measurements it has been shown that coatings which were treated with the optimized heating process (which exhibits a higher temperature during the reducing treatment of the coatings) show a higher charge carrier density as well as a higher mobility than those coatings treated with the old heating process. With the optimized heating process the ninelayered coatings exhibit a charge carrier density of N = 4.3·1019 cm-3 which is approximately twice as high and a mobility of µ = 18.7 cm2/Vs which is about three times higher than the values of coatings which have been heated with the old process. This indicates that with the optimized heating process more oxygen vacancies and, associated therewith a higher charge carrier density as well as a higher crystallinity of the layer and thus a higher mobility are generated. One focus of the presented work lies on the optimization and characterization of ITO redispersed nanoparticle sols and functional layers respectively. In addition to the used nanoparticles, the dispersion process, the coating type with the respective coating parameters and post-treatments of the functional layers also a detailed parameter study has been done. This parameter study examined the composition of the nanoparticle sols with a view to the optimization of the infrared-optical and electrical properties of the applied coatings. The coating properties have been studied in particularly with regard to the influence of the used stabilizers and solvents respectively. In this work it will be shown, that the accurate composition of the nanoparticle sols plays a decisive role and the choice of the used solvents has a bigger impact on the coating properties than the choice of the used stabilizers. However, it will also be shown, that no general statements can be made which stabilizers or which solvents within the sols lead to coatings which have small total emittances and small electrical sheet resistances. Instead each combination of used stabilizer and used solvent has to be empirically tested since each combination leads to coatings with different properties. Furthermore stable AZO nanoparticle sols based on several formulas have been developed for the first time. Besides the optimization and characterization of ITO and AZO classical sol-gel as well as nanoparticle sols and functional layers, also the infrared-optical properties of these coatings have been modeled in order to determine the optical constants as well as the coating thicknesses. Furthermore also commercially available sputtered ITO and AZO coatings have been modeled. The reflectances of these three types of coatings have been modeled on the one hand by using only the Drude model within a self-written program in the software Sage. On the other hand these coatings have been modeled with more complex fitting models within the commercially available software called SCOUT. These more complex fitting models consist of the extended Drude model, a Kim oscillator and an OJL model and they also take the influence of the glass substrates on the reflectances of the applied coatings into account. By using these fitting models, the optical constants of the applied coatings and the coating thicknesses can be obtained. In addition an Ellipsometer has been installed as part of this work and suitable fitting models have been developed. These models can be used for analyzing the Ellipsometer measurements in order to determine the optical constants and the coating thicknesses of the coatings applied. KW - Transparent-leitendes Oxid KW - Sol-Gel-Verfahren KW - Beschichtung KW - Funktionswerkstoff KW - Sol-Gel-Synthese KW - ITO KW - AZO KW - redispergierte Nanopartikel-Sole KW - Drude-Modell KW - sol gel KW - redispersed nanoparticle sol KW - Drude model KW - Charakterisierung KW - Modellierung KW - Physikalische Schicht KW - Nanopartikel Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-112416 ER - TY - THES A1 - Choli, Morwan T1 - Hybridmethoden zur Reduzierung der spezifischen Absorptionsrate für neuroradiologische MRT-Untersuchungen an Hochfeldsystemen T1 - Hybrid methods for reducing specific Absorption rate in neuroradiologic MRI-examinations at high-field MR-systems N2 - Die klinische Magnetresonanztomografie (MRT) operiert meist bei einer Magnetfeldstärke von 1,5 Tesla (T). Es halten jedoch immer mehr 3T MRT-Systeme Einzug im klinischen Alltag und seit kurzem auch 7T Ganzkörper-MRT-Systeme in die Grundlagenforschung. Höhere Magnetfeldstärken führen grundsätzlich zum einem verbesserten Signal-zu-Rausch- Verhältnis, welches sich gewinnbringend in eine erhöhte Ortsauflösung oder schnellere Bildaufnahme äußert. Ein Nachteil ist aber die dabei im Patienten deponierte Hochfrequenz-Energie (HF-Energie), welche quadratisch mit ansteigender Feldstärke zusammenhängt. Charakterisiert wird diese durch die spezifische Absorptionsrate (SAR) und ist durch vorgegebene gesetzliche Grenzwerte beschränkt. Moderne, SAR-intensive MRT-Techniken (z.B. Multispinecho-Verfahren) sind bereits bei 1,5T nahe den zulässigen SAR-Grenzwerten und somit nicht unverändert auf Hochfeld-Systeme übertragbar. In dieser Arbeit soll das Potential modularer Hybrid-MRT-Techniken genutzt werden, um das SAR bei besonders SAR-intensiven MRT-Verfahren ohne signifikante Einbußen in der Bildqualität erheblich zu verringern. Die Hybrid-Techniken sollen in Verbindung mit zusätzlichen Methoden der SAR-Reduzierung den breiteren Einsatz SAR-intensiver MRT-Techniken an hohen Magnetfeldern ermöglichen. Ziel dieser Arbeit ist es, routinefähige und SAR-reduzierte MRT-Standard-Protokolle für neuroanatomische Humanuntersuchungen mit räumlicher Höchstauflösung bei Magnetfeldern von 3T und 7T zu etablieren. N2 - Spin echo based MRI sequences builds one of the main priorities in the medical/-morphological MRI imaging. Especially T2-weighted spin-echo sequences and the multi-spin-echo RARE imaging sequence represents one of the basic methods, which allows to minimize measurement times down to minutes or seconds. Modern MRI systems usually have a magnetic field strength beyond 1.5T. In order to acquire high resolution images with acceptable acquisition times, high RF power is needed. In many cases the intrinsic safety limits of the radiated power are already exeeded at field strengths of 3T. This leads often to restrictions for the full performance. In research systems of 7T and more T2-weighted images are only feasible with significant amount of time. Especially in RARE imaging methods, which require a large number of refocusing pulses, this is a significant restriction factor. Therefore, in recent years there were further development of hybrid sequences which combines different acquisition methods together into one, to exploit their fully advantages of the basic methods and to minimize ... KW - Kernspintomografie KW - spezifische Absorptionsrate KW - Magnetresonanztomografie KW - Hybridbildgebung KW - Absorption Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-100023 ER - TY - THES A1 - Gerhard, Felicitas Irene Veronika T1 - Controlling structural and magnetic properties of epitaxial NiMnSb for application in spin torque devices T1 - Anpassung der strukturellen und magnetischen Eigenschaften von epitaktischem NiMnSb in Hinsicht auf die Anwendung in Spin Drehmoment Bauteilen N2 - This thesis describes the epitaxial growth of the Half-Heusler alloy NiMnSb by molecular beam epitaxy. Its structural and magnetic properties are controlled by tuning the composition and the resulting small deviation from stoichiometry. The magnetic in-plane anisotropy depends on the Mn concentration of the sample and can be controlled in both strength and orientation. This control of the magnetic anisotropy allows for growing NiMnSb layers of a given thickness and magnetic properties as requested for the design of NiMnSb-based devices. The growth and characterization of NiMnSb-ZnTe-NiMnSb heterostructures is presented - such heterostructures form an all-NiMnSb based spin-valve and are a promising basis for spin torque devices. N2 - Diese Arbeit beschreibt das epitaktische Wachstum der Halb-Heusler Legierung NiMnSb mittels Molekularstrahl Epitaxie. Durch Abstimmen der Zusammensetzung und einer daraus folgenden geringen Abweichung der Stöchiometrie werden die strukturellen und magnetischen Eigenschaften gesteuert. Die magnetische Anisotropie hängt von der Mn Konzentration der Probe ab, wobei sowohl die Stärke als auch die Orientierung der Anisotropie angepasst werden kann. Die Kontrolle der magnetischen Anisotropie erlaubt das Wachstum von NiMnSb Schichten mit gegebener Dicke und magnetischen Eigenschaften, die für das Design von NiMnSb-basierten Bauteilen erforderlich sind. Das Wachstum und die Charakterisierung von NiMnSb-ZnTe-NiMnSb Heterostrukturen wird präsentiert - solche Heterostrukturen bilden ein rein NiMnSb-basiertes Spinventil und sind eine vielversprechende Basis für Spin Drehmoment Bauteile. KW - Nickelverbindungen KW - Manganverbindungen KW - Half Heusler alloy NiMnSb KW - molecular beam epitaxy KW - magnetic anisotropy KW - spin valve KW - spin torque device KW - Halb-Heusler Legierung NiMnSb KW - Molekularstrahl Epitaxie KW - Magnetische Anisotropie KW - Spinventil KW - Spindrehmoment Bauteil KW - Antimonverbindungen KW - Heterostruktur KW - Molekularstrahlepitaxie KW - Heuslersche Legierung Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111690 ER - TY - THES A1 - Nguyen, Thanh Nam T1 - A model system for carbohydrates interactions on single-crystalline Ru surfaces T1 - Modellsystem für die Wechselwirkungen von Kohlenwasserstoffen mit ein kristallinen Rutheniumoberflächen N2 - In this thesis, I present a model system for carbohydrate interactions with single-crystalline Ru surfaces. Geometric and electronic properties of copper phthalocyanine (CuPc) on top of graphene on hexagonal Ru(0001), rectangular Ru(10-10) and vicinal Ru(1,1,-2,10) surfaces have been studied. First, the Fermi surfaces and band structures of the three Ru surfaces were investigated by high-resolution angle-resolved photoemission spectroscopy. The experimental data and theoretical calculations allow to derive detailed information about the momentum-resolved electronic structure. The results can be used as a reference to understand the chemical and catalytic properties of Ru surfaces. Second, graphene layers were prepared on the three different Ru surfaces. Using low-energy electron diffraction and scanning tunneling microscopy, it was found that graphene can be grown in well-ordered structures on all three surfaces, hexagonal Ru(0001), rectangular Ru(10-10) and vicinal Ru(1,1,-2,10), although they have different surface symmetries. Evidence for a strong interaction between graphene and Ru surfaces is a 1.3-1.7e V increase in the graphene pi-bands binding energy with respect to free-standing graphene sheets. This energy variation is due to the hybridization between the graphene pi bands and the Ru 4d electrons, while the lattice mismatch does not play an important role in the bonding between graphene and Ru surfaces. Finally, the geometric and electronic structures of CuPc on Ru(10-10), graphene/Ru(10-10), and graphene/Ru(0001) have been studied in detail. CuPc molecules can be grown well-ordered on Ru(10-10) but not on Ru(0001). The growth of CuPc on graphene/Ru(10-10) and Ru(0001) is dominated by the Moire pattern of graphene. CuPc molecules form well-ordered structures with rectangular unit cells on graphene/Ru(10-10) and Ru(0001). The distance of adjacent CuPc molecules is 1.5 and 1.3 nm on graphene/Ru(0001) and 1.54 and 1.37 nm on graphene/Ru(10-10). This indicates that the molecule-substrate interaction dominates over the intermolecular interaction for CuPc molecules on graphene/Ru(10-10) and graphene/Ru(0001). N2 - In dieser Arbeit stelle ich ein Modellsystem für die Wechselwirkungen von Kohlenwasserstoffen mit ein kristallinen Rutheniumoberflächen vor. Die geometrischen und elektronischen Eigenschaften von Kupfer-Phthalocyanin (CuPc) als Deckschicht über Graphen auf hexagonalen Ru(0001)-, rechteckigen Ru(10-10)- und vicinalen Ru(1,1,-2,10)-Oberflächen wurden untersucht. Zunächst wurden die Fermioberflächen und Bandstrukturen der drei Rutheniumoberflächen mittels hochauflösender winkelaufgelöster Photoemissions spektroskopie ermittelt. Die experimentellen Daten und theoretischen Berechnungen erlauben es, detaillierte Informationen zur impulsaufgelösten elektronischen Struktur abzuleiten. Die Ergebnisse können als Referenz für ein besseres Verständnis der chemischen und katalytischen Eigenschaften von Rutheniumoberflächen dienen. Als nächstes wurden Graphenschichten auf den drei verschiedenen Rutheniumoberflächen hergestellt. Bei Messungen der Beugung niederenergetischer Elektronen an den Oberflächen sowie mittels Rastertunnelmikroskopie stellte sich heraus, dass Graphen hoch geordnete Strukturen auf allen drei Oberflächen, hexagonalem Ru(0001), rechteckigem Ru(10-10) und vicinalem Ru(1,1,-2,10), bildet, obwohl diese unterschiedliche Symmetrien aufweisen. Ein Hinweis auf eine starke Wechselwirkung zwischen Graphen und den Rutheniumoberflächen ist der Anstieg der Bindungsenergie der Graphen-pi-Bänder um 1.3-1.7 eV im Vergleich zu freistehenden Graphenschichten. Diese Änderung der Energie beruht auf der Hybridisierung zwischen den Graphen-pi-Bändern und den 4d-Elektronen des Rutheniums, wohingegen der Gitterversatz keine große Rolle bei der Bindung zwischen Graphen und Rutheniumoberflächen spielt. Abschließend wurden die geometrischen und elektronischen Strukturen von CuPc auf Ru(10-10), Graphen/Ru(10-10) und Graphen/Ru(0001) im Detail untersucht. CuPc-Moleküle konnten mit hoher Ordnung auf Ru(10-10) abgelagert werden, nicht jedoch auf Ru(0001). Das Wachstum von CuPc auf Graphen/Ru(10-10) und Ru(0001) wird durch die Moirestruktur des Graphens bestimmt. CuPc-Moleküle bilden hoch geordnete Strukturen mit rechteckigen Elementarzellen auf Graphen/Ru(10-10) und Ru(0001). Der Abstand benachbarter CuPc-Moleküle beträgt 1.5 und 1.3 nm auf Graphen/Ru(0001) sowie 1.54 und 1.37 nm auf Graphen/Ru(10-10). Dies weist darauf hin, dass die Molekül-Substrat-Wechselwirkung bei CuPc-Molekülen auf Graphen/Ru(10-10) und Graphen/Ru(0001) stärker ist als die intermolekulare Wechselwirkung zwischen den CuPc-Molekülen. KW - Ruthenium KW - Kristalloberfläche KW - Kohlenwasserstoffe KW - Wechselwirkung KW - single-crystalline Ru surfaces KW - Graphene KW - CuPc KW - Ru(0001) KW - Step Ru surface Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-111485 ER -