TY - THES A1 - Müller, Thomas M. T1 - Computergestütztes Materialdesign: Mikrostruktur und elektrische Eigenschaften von Zirkoniumdioxid–Aluminiumoxid Keramiken T1 - Computer-Aided Material Design: Microstructure and Electrical Properties of Zirconia-Alumina-Ceramics N2 - Die Mikrostruktur von Zirkonoxid–Aluminiumoxid Keramiken wurde im Rasterelektronenmikroskop (REM) untersucht und mittels quantitativer Bildanalyse weiter charakterisiert. Die so erhaltenen spezifischen morphologischen Kennwerte wurden mit denen, die an dreidimensionalen Modellstrukturen äquivalent gewonnen wurden, verglichen. Es wurden modifizierte Voronoistrukturen benutzt, um die beteiligten Phasen in repräsentativen Volumenelementen (RVE) auf Voxelbasis zu erzeugen. Poren wurden an den Ecken und Kanten dieser Strukturen nachträglich hinzugefüg. Nachdem alle relevanten Kennwerte der Modellstrukturen an die realen keramischen Mikrostrukturen angepasst wurden, musste das RVE für die Finite Element Simulationen (FES) geeignet vernetzt werden. Eine einfache Übernahme der Voxelstrukturen in hexaedrische Elemente führt zu sehr langen Rechenzeiten, und die erforderliche Genauigkeit der FES konnte nicht erreicht werden. Deshalb wurde zunächst eine adaptive Oberflächenvernetzung ausgehend von einem generally classed marching tetrahedra Algorithmus erzeugt. Dabei wurde besonderer Wert auf die Beibehaltung der zuvor angepassten Kennwerte gelegt. Um die Rechenzeiten zu verkürzen ohne die Genauigkeit der FES zu beeinträchtigen, wurden die Oberflächenvernetzungen dergestalt vereinfacht, dass eine hohe Auflösung an den Ecken und Kanten der Strukturen erhalten blieb, während sie an flachen Korngrenzen stark verringert wurde. Auf Basis dieser Oberflächenvernetzung wurden Volumenvernetzungen, inklusive der Abbildung der Korngrenzen durch Volumenelemente, erzeugt und für die FES benutzt. Dazu wurde ein FE-Modell zur Simulation der Impedanzspektren aufgestellt und validiert. Um das makroskopische elektrische Verhalten der polykristallinen Keramiken zu simulieren, mussten zunächst die elektrischen Eigenschaften der beteiligten Einzelphasen gemessen werden. Dazu wurde eine Anlage zur Impedanzspektroskopie bis 1000 °C aufgebaut und verwendet. Durch weitere Auswertung der experimentellen Daten unter besonderer Berücksichtigung der Korngrenzeffekte wurden die individuellen Phaseneigenschaften erhalten. Die Zusammensetzung der Mischkeramiken reichte von purem Zirkonoxid (3YSZ) bis zu purem Aluminiumoxid. Es wurde eine sehr gute Übereinstimmung zwischen den experimentellen und simulierten Werten bezüglich der betrachteten elektrischen, mechanischen und thermischen Eigenschaften erreicht. Die FES wurden verwendet, um die Einflüsse verschiedener mikrostruktureller Parameter, wie Porosität, Korngröße und Komposition, auf das makroskopische Materialverhalten näher zu untersuchen. N2 - The microstructures of zirconia–alumina ceramics are investigated by scanning electron microscopy (SEM) and further characterised by quantitative image analysis. This leads to specific morphological parameters which are compared with the same parameters derived from three-dimensional model structures generated in voxel-based representative volume elements (RVE). Modified Voronoi clusters are employed to represent alumina and zirconia phases. Pores are added at the grain corners and edges respectively. After adjusting all the relevant morphological parameters of the model to the real ceramics’ microstructure, the RVE has to be meshed for finite element simulations (FES). Hexahedral elements which simply use the voxel structure did not lead to sufficient accuracy of the FES. As a first step, an adapted surface tessellation is generated, using a generally classed marching tetrahedra method. Special care is taken to preserve the topology as well as the individual volumes and interfaces of the model. In terms of processing time and accuracy of the FES it is very important to simplify the initially generated surface mesh in a manner that preserves detailed resolution at corners and along edges, while decimating the number of surface elements in flat regions, i.e. at the grain boundaries. From the surface mesh an adequate tetrahedral volume tessellation, including solid elements representing the grain boundaries, is created, which is used for the FES. Therefore, a FE-model for the simulation of impedance spectra has been established and validated. To simulate the macroscopic electrical behaviour of polycrystalline ceramics, the electrical properties of the individual constituting phases need to be measured. This is done by impedance spectroscopy up to 1000 °C. Further analysis of the experimental data with special respect to the effect of the grain boundaries is carried out to obtain the individual phases’ properties. The sample composition was varied from pure zirconia to pure alumina. A very good agreement between experimental and simulated data was achieved in terms of electrical, thermal and mechanical properties. The FES were employed to scrutinize the effects of systematically varying microstructural properties, such as porosity, grain size and composition, on the macroscopic material behaviour. KW - Keramischer Werkstoff KW - Mikrostruktur–Eigenschafts–Korrelationen KW - Mikrostrukturmodellierung KW - Impedanzspektroskopie KW - Finite Element Simulationen KW - Microstructure–Property–Relationship KW - Microstructure Modelling KW - Impedance Spectroscopy KW - Finite Element Simulations KW - Mikrostruktur KW - Computersimulation KW - Finite-Elemente-Methode KW - Simulation KW - Dreidimensionales Modell KW - Gefügekunde Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110942 ER - TY - THES A1 - Henn, Tobias T1 - Hot spin carriers in cold semiconductors : Time and spatially resolved magneto-optical Kerr effect spectroscopy of optically induced electron spin dynamics in semiconductor heterostructures T1 - Heiße Spinträger in kalten Halbleitern N2 - The present thesis “Hot spin carriers in cold semiconductors” investigates hot carrier effects in low-temperature photoinduced magneto-optical Kerr effect (MOKE) microscopy of electron spins in semiconductor heterostructures. Our studies reveal that the influence of hot photocarriers in magneto-optical pump-probe experiments is twofold. First, it is commonly assumed that a measurement of the local Kerr rotation using an arbitrary probe wavelength maps the local electron spin polarization. This is the fundamental assumption that underlies the widely used two-color MOKE microscopy technique. Our continuous-wave (cw) spectroscopy experiments demonstrate that this assumption is not correct. At low lattice temperatures the nonresonant spin excitation by the focused pump laser inevitably leads to a strong heating of the electron system. This heating, in turn, locally modifies the magneto-optical coefficient which links the experimentally observed Kerr rotation to the electron spin polarization. As a consequence, the spin-induced local Kerr rotation is augmented by spin-unrelated changes in the magneto-optical coefficient. A spatially resolved measurement of the Kerr rotation then does not correctly map the electron spin polarization profile. We demonstrate different ways to overcome this limitation and to correctly measure the electron spin profile. For cw spectroscopy we show how the true local electron spin polarization can be obtained from a quantitative analysis of the full excitonic Kerr rotation spectrum. Alternatively, picosecond MOKE microscopy using a spectrally broad probe laser pulse mitigates hot-carrier effects on the magneto-optical spin detection and allows to directly observe the time-resolved expansion of optically excited electron spin packets in real-space. Second, we show that hot photocarriers strongly modify the spin diffusion process. Owing to their high kinetic energy, hot carriers greatly enhance the electron spin diffusion coefficient with respect to the intrinsic value of the undisturbed system. Therefore, for steady-state excitation the spin diffusivity is strongly enhanced close to the pump spot center where hot electrons are present. Similarly, for short delays following pulsed excitation the high initial temperature of the electrons leads to a very fast initial expansion of the spin packet which gradually slows as the electrons cool down to the lattice temperature. While few previous publications have recognized the possible influence of hot carriers on the electron spin transport properties, the present work is the first to directly observe and quantify such hot carrier contributions. We develop models which for steady-state and pulsed excitation quantitatively describe the experimentally observed electron spin diffusion. These models are capable of separating the intrinsic spin diffusivity from the hot electron contribution, and allow to obtain spin transport parameters of the undisturbed system. We perform extensive cw and time-resolved spectroscopy studies of the lattice temperature dependence of the electron spin diffusion in bulk GaAs. Using our models we obtain a consistent set of parameters for the intrinsic temperature dependence of the electron spin diffusion coefficient and spin relaxation time and the hot carrier contributions which quantitatively describes all experimental observations. Our analysis unequivocally demonstrates that we have, as we believe for the first time, arrived at a coherent understanding of photoinduced low-temperature electron spin diffusion in bulk semiconductors. N2 - Die vorliegende Arbeit untersucht den Einfluss heißer Ladungsträger in pump-probe magneto-optischer Kerr-Effekt (MOKE) Tieftemperatur-Mikroskopie-Messungen der optisch induzierten Elektronenspin-Dynamik in Galliumarsenid-basierten Halbleiterheterostrukturen. Die Arbeit zeigt, dass dieser Einfluss von zweierlei Art ist. Der erste Aspekt betrifft die magneto-optische Elektronenspin-Detektion. Es wird gewöhnlich angenommen, dass eine Messung der lokalen Kerr-Rotation unter Verwendung einer beliebigen Probelaser-Wellenlänge korrekt die lokale Elektronenspinpolarisation abbildet. Diese Prämisse ist die fundamentale Grundlage der MOKE Elektronenspin-Mikroskopie. Unsere Dauerstrich-Spektroskopie-Ergebnisse belegen, dass diese Annahme im Allgemeinen nicht korrekt ist. Bei tiefen Gittertemperaturen führt die nichtresonante optische Anregung spinpolarisierter Elektronen zu einer signifikanten Heizung des Elektronensystems. Diese Heizung modifiziert lokal den magneto-optischen Koeffizienten, der die im Experiment beobachtete Kerr-Rotation mit der zu messenden Elektronenspinpolarisation verknüpft. Als Konsequenz ist die spininduzierte lokale Kerr-Rotation von spinunabhängigen Änderungen des der magneto-optischen Koeffizienten überlagert. Eine ortsaufgelöste Messung der Kerr-Rotation bildet dann im Allgemeinen nicht korrekt die lokale Elektronenspinpolarisation ab. Wir demonstrieren verschiedene Möglichkeiten, diese Einschränkung zu überwinden und das korrekte Elektronenspin-Profil zu bestimmen. Für Dauerstrich-Anregung zeigen wir, dass das Elektronenspin-Profil korrekt durch eine quantitative Analyse des lokalen exzitonischen Kerr-Rotations-Spektrums ermittelt werden kann. Alternativ minimiert Pikosekunden-zeitaufgelöste MOKE Mikroskopie unter Verwendung eines spektral breiten gepulsten Probelasers den Einfluss heißer Elektronen auf die magneto-optische Spin-Detektion und erlaubt die direkte Beobachtung der diffusiven Ausbreitung optisch erzeugter Elektronenspin-Pakete im Realraum. Als zweites Hauptergebnis zeigen wir, dass optische angeregte heiße Ladungsträger signifikant die Spindiffusion beeinflussen. Durch ihre hohe kinetischen Energie erhöhen heiße Photoladungsträger stark den Elektronenspin-Diffusionskoeffizienten im Vergleich zum intrinsischen Wert des ungestörten Systems. Aus diesem Grund ist bei tiefen Gittertemperaturen für lokale Dauerstrich-Anregung der Spin-Diffusionskoeffizient in der Nähe des fokussierten Pumplaserstrahls, in der heiße Elektronen vorhanden sind, stark erhöht. Analog führt für kurze Zeiten nach gepulster optischer Anregung die hohe anfängliche Elektronentemperatur zu einer sehr schnellen initialen Ausbreitung des Spin-Paktes, welche sich allmählich verlangsamt, während die Elektronen auf die Gittertemperatur abkühlen. Während einzelne frühere Arbeiten bereits den möglichen Einfluss heißer Ladungsträger auf den Elektronenspin-Transport erkannten, ist die vorliegende Arbeit die erste, die die Wirkung heißer Träger auf die Elektronenspin-Diffusion direkt beobachtet und quantifiziert. Wir entwickeln verschiedene Modelle, die für gepulste und Dauerstrich-Anregung quantitativ die Elektronenspin-Diffusion beschreiben. Diese Modelle sind in der Lage, die intrinsische Spindiffusivität von den Beiträgen heißer Ladungsträger zu trennen und erlauben, die Spintransport-Eigenschaften des ungestörten Systems zu bestimmen. Wir untersuchen in zeitaufgelösten und Dauerstrich-Anregungs-Experimenten die Gittertemperatur-Abhängigkeit der Spindiffusion in n-dotiertem Volumen-GaAs. Mit Hilfe unserer Modelle ermitteln wir einen konsistenten Parameter-Satz für die intrinsische Temperaturabhängigkeit der Spinrelaxationszeit und des Elektronenspin-Diffusionskoeffizienten sowie der Beiträge heißer Ladungsträger, der quantitativ alle experimentellen Beobachtungen beschreibt. Damit haben wir erstmals ein kohärentes Verständnis der optisch induzierten Tieftemperatur-Elektronenspin-Diffusion in Halbleitern entwickelt. KW - Galliumarsenid KW - Optische Spektroskopie KW - Heterostruktur KW - spintronics KW - Spintronik KW - Elektronenspin KW - Halbleiterphysik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-110265 ER - TY - THES A1 - Fuchs, Peter T1 - Monolithische Quantenkaskadenlaser mit monomodiger und weit abstimmbarer Emission T1 - Monolithic quantum cascade lasers with monomode and widely tunable emission N2 - Ausgehend von mittels Molekularstrahlepitaxie im InGaAs/InAlAs/InP Materialsystem gewachsenen Lasermedien wurden monochromatische Quantenkaskadenlaser für die GasSensorik mit Emission im mittleren Infrarot entworfen, hergestellt und charakterisiert. Vorrangige Ziele waren hierbei die Entwicklung von leistungsstarken monomodigen Lasern im langwelligen Spektralbereich um 14 µm, sowie von Bauteilen mit weiter und schneller spektraler Abstimmbarkeit. Für den Entwurf der Laserstege wurde zunächst die zeitliche Entwicklung der Temperaturverteilung für verschiedene Varianten von Wellenleitern sowohl im gepulsten als auch im kontinuierlichen Betrieb simuliert. Anhand der berechneten thermischen Bauteilwiderstände konnten so geeignete Prozessparameter für die Herstellung der Laserstrukturen ermittelt werden Zur Herstellung von monochromatischen DFB-Lasern auf Basis eines MesaWellenleiters mit Seitenwandgittern wurde ein Prozess entwickelt, der sich - im Vergleichzu gängigen Verfahren zur Strukturierung von DFB-Gittern - durch eine stark reduzierte Anzahl an Verfahrenschritten und eine schnelle und einfache Durchführbarkeit auszeichnet. Für Laser mit 4 mm Länge und 14 µm mittlerer Breite wurde eine Spitzenleistung über 200 mW bei einer externen Effizienz von 330 mW/A und einer Schwellstromdichte von 2,1 kA/cm^2 bei Raumtemperatur bestimmt. DFB-Laser um 14 µm, welche - durch die große Wellenlänge bedingt – höhere Schwellstromdichten aufweisen, wurden dagegen auf Basis von nasschemisch geätzten Doppelkanal-Wellenleitern mit in die Oberseite des Steges geätzten Gittern und dickem Gold auf den Stegflanken hergestellt, um eine bessere laterale Wärmeabfuhr zu erreichen. Basierend auf der Analyse des Strahlprofils und des Emissionsspektrums war trotz der großen Stegbreite ausschließlich Betrieb auf der Grundmode zu beobachten. So konnte eine Spitzenleistung von 810 mW bei einer Schwellstromdichte von 4,3 kA/cm^2 bei Raumtemperatur erreicht werden. Um eine größere spektrale Abstimmbarkeit zu erreichen als dies mit DFB-Lasern möglich ist, wurde ein Lasertyp auf Basis von zwei gekoppelten Fabry-P erot Kavitäten entworfen, hergestellt und untersucht. Mit diesem Konzept konnte über eine geringe Stromvariation ein Umschalten zwischen verschiedenen Resonanzen erreicht werden, was bei konstanter Temperatur der Wärmesenke um Raumtemperatur einen Abstimmbereich von 5,2 cm^−1 ermöglichte. Unter Einbeziehung einer Variation der Temperatur der Wärmesenke konnte monomodige Emission in einem Spektralbereich von 52 cm^−1 erreicht und die Tauglichkeit der Laser für die Gas-Sensorik anhand einer Absorptionsmessung an Ammoniak demonstriert werden. Da die monomodige Spitzenleistung dieser Laser jedoch konzeptbedingt auf wenige mW beschränkt war, wurde für den Einsatz weit abstimmbarer Laser in der Spurengasanalytik im letzten Teil der Arbeit ein anderer Lasertyp mit flachgeätztem Bragg-Reflektor entwickelt. Durch sorgfältige Wahl der Gitterparameter und ein spezielles Puls-Schema wurde eine über 30 cm^−1 quasi-kontinuierlich abstimmbare, monomodige Emission erreicht. Die Stabilität und die spektrale Reinheit des Laserlichts mit einer Seitenmodunterdrückung von mehr als 30 dB konnte anhand von zeitaufgelösten Messungen des Abstimmvorgangs und durch ein Absorptionsexperiment mit Ethen belegt werden. Die erzielte spektrale Auflösung war durch die Messelektronik begrenzt und betrug 0,0073 cm^-1. Zudem ergab sich auch die Möglichkeit einer Analyse des thermischen Übersprechens, welche einen vernachlässigbaren Einfluss für den Pulsbetrieb der Laser zeigte und eine moderate Erwärmung benachbarter Segmente um 10% des für das vorsätzlich beheizte Segment gemessenen Wertes. Des Weiteren konnte dank der Möglichkeit zur unabhängigen Strominjektion in verschiedene Sektionen die Temperaturabhängigkeit von Verstärkung und Absorption im Resonator untersucht werden. Herausstechende Eigenschaften dieser Laser wie die Verringerung der gepulsten Chirprate im Vergleich zu DFB-Lasern um den Faktor 3 konnten anhand von systematischen Untersuchungen mit einer Vielzahl von Bauteilen analysiert und auf die zeitlicheTemperaturentwicklung bzw. die räumliche Temperaturverteilung im Lasersteg zurückgeführt werden. Die optische Spitzenleistung von 600 mW und externe Effizienzen bis 300mW/A sollten auch den Einsatz in der Spurengasanalyse erlauben, die hohe Geschwindigkeit mit der die Emissionswellenlänge variiert werden kann, überdies die Untersuchung der Reaktionskinetik in der Gasphase. N2 - The main focus of this work was the design, fabrication and characterization of widely tunable monochromatic quantum cascade laser sources based on InGaAs/InAlAs/InP gain material grown by molecular beam epitaxy. Primary targets were the development of high-power lasers in the long-wavelength region of the mid-infrared around 14 µm as well as the design of devices with broad and fast tunability. To gain insight into the time evolution and spatial distribution of the waste heat in the laser ridge for both pulsed and cw-operation a thermal simulation was performed. Based on the calculated thermal resistance of the laser structures optimum parameters for the fabrication process were deducted. A fabrication procedure for monochromatic DFB-lasers based on mesa-waveguides with lateral sidewall gratings was devised. It exhibits a strongly reduced number of fabrication steps and enables a quick and simple implementation compared to established types of DFB lasers. The electro-optic characteristics as well as the farfield-profile of the laser emission and the coupling coefficient of the DFB-grating were systematically investigated in dependence of the geometry of the ridge waveguide. Lasers with a resonator length of 4 mm and an average ridge width of 14 µm showed a peak output power of more than 200 mW with an external efficiency of 330 mW/A and a threshold current density of 2.1 kA/cm^2. In contrast, DFB lasers emitting around 14 µm were fabricated as double-channel waveguides with a DFB-grating on top of the laser ridge. A thick gold layer was deposited around the laser ridge to provide enhanced heat dissipation since inherently higher losses at long wavelengths lead to higher electrical power densities during operation and subsequently the production of more waste heat. It was found that lasers with very wide ridges of 28 µm exhibited the highest average output power of 11 mW at room temperature given the maximum targeted duty-cycle of 10% as specified by the application of industrial detection of acetylene. This way a record peak output power of 810 mW with a threshold current density of 4.3 kA/cm^2 at room temperature was reached. In order to acquire greater spectral tunability compared to DFB-lasers, multisegment lasers based on two coupled FP-cavities were designed, fabricated and characterized. Single-mode emission with side-mode suppression ratios up to 30 dB, operation above room temperature and reproducible mode switching between different cavity-resonances via current-tuning was observed in accordance with theory. A tuning range of 5.2 cm−1 was achieved at constant temperature. With additional temperature tuning single-mode emission within a spectral range of 52 cm−1 was observed. The usability of these devices for gas sensing purposes was demonstrated with a gas absorption experiment using ammonia. Since the monomode peak output power of these coupled cavity lasers was limited to a few mW due to constraints of the mode selection principle, the last part of the thesis deals with a novel type of multi-segment laser featuring a shallow etched Bragg-reflector. Through careful design of the grating parameters and a specific pulsing scheme quasi-continuously tunable single mode emission over 30 cm−1 was achieved. Excellent spectral purity and pulse stability with side-mode suppression ratios greater than 30 dB (noise limited) could be demonstrated by means of time-resolved measurements of the tuning behavior. The achievable spectral resolution in an absorption experiment with ethene was shown to be better than 0.0073 cm−1 and limited by the signal acquisition electronics. The influence of thermal crosstalk between the laser segments was investigated and found to be negligible for pulsed operation. For constant injected currents a moderate temperature rise in the neighbouring segment of about 10% compared to the value in the deliberately heated segment was observed. Moreover the temperature dependence of both gain and waveguide absorption could be determined separately by individual current injection into different segments and subsequent analysis of the threshold currents. Outstanding characteristics of these lasers like the reduction of the laser chirp by a factor of three compared to DFB lasers were systematically investigated on the basis of a multitude of devices. Finally comprehension of the temperature evolution and the spatial distribution of the temperature in the laser resonator lead to an explanation for both phenomena. The high peak output power of 600 mW and external efficiences up to 300 mW/A should prepare the ground for trace gas sensing applications with these devices. Their fast tuning capabilities should also enable the investigation of reaction kinetics in the gas phase with a single laser source. KW - Quantenkaskadenlaser KW - Quantenkaskadenlaser KW - gekoppelte Kavitäten KW - weite Abstimmbarkeit KW - monomodige Laser KW - Einmodenlaser Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-109432 ER - TY - THES A1 - Neumann, Daniel T1 - Advances in Fast MRI Experiments T1 - Neue Methoden in der MR-Bildgebung N2 - Magnetic Resonance Imaging (MRI) is a non-invasive medical imaging technique, that is rou- tinely used in clinical practice for detection and diagnosis of a wide range of different diseases. In MRI, no ionizing radiation is used, making even repeated application unproblematic. This is an important advantage over other common imaging methods such as X-rays and Computer To- mography. One major drawback of MRI, however, are long acquisition times and associated high costs of experiments. Since the introduction of MRI, several important technical developments have been made to successfully reduce acquisition times. In this work, novel approaches were developed to increase the efficiency of MRI acquisitions. In Chapter 4, an improved radial turbo spin-echo (TSE) combined acquisition and reconstruction strategy was introduced. Cartesian turbo spin-echo sequences [3] are widely used especially for the detection and diagnosis of neurological pathologies, as they provide high SNR images with both clinically important proton density and T2 contrasts. TSE acquisitions combined with radial sampling are very efficient, since it is possible to obtain a number of ETL images with different contrasts from a single radial TSE measurement [56–58]. Conventionally, images with a particular contrast are obtained from both radial and Cartesian TSE acquisitions by combining data from different echo times into a single image. In the radial case, this can be achieved by employing k-space weighted image contrast (KWIC) reconstruction. In KWIC, the center region of k-space is filled exclusively with data belonging to the desired contrast while outer regions also are assembled with data acquired at other echo times. However, this data sharing leads to mixed contrast contributions to both Cartesian and radial TSE images. This is true especially for proton density weighted images and therefore may reduce their diagnostic value. In the proposed method, an adapted golden angle reordering scheme is introduced for radial TSE acquisitions, that allows a free choice of the echo train length and provides high flexibility in image reconstruction. Unwanted contrast contaminations are greatly reduced by employing a narrow-band KWIC filter, that restricts data sharing to a small temporal window around the de- sired echo time. This corresponds to using fewer data than required for fully sampled images and consequently leads to images exhibiting aliasing artifacts. In a second step, aliasing-free images are obtained using parallel imaging. In the neurological examples presented, the CG-SENSE algorithm [42] was chosen due to its stable convergence properties and its ability to reconstruct arbitrarily sampled data. In simulations as well as in different in vivo neurological applications, no unwanted contrast contributions could be observed in radial TSE images reconstructed with the proposed method. Since this novel approach is easy to implement on today’s scanners and requires low computational power, it might be valuable for the clinical breakthrough of radial TSE acquisitions. In Chapter 5, an auto-calibrating method was introduced to correct for stimulated echo contribu- tions to T2 estimates from a mono-exponential fit of multi spin-echo (MSE) data. Quantification of T2 is a useful tool in clinical routine for the detection and diagnosis of diseases as well as for tis- sue characterization. Due to technical imperfections, refocusing flip angles in a MSE acquisition deviate from the ideal value of 180○. This gives rise to significant stimulated echo contributions to the overall signal evolution. Therefore, T2 estimates obtained from MSE acquisitions typically are notably higher than the reference. To obtain accurate T2 estimates from MSE acquisitions, MSE signal amplitudes can be predicted using the extended phase graph (EPG, [23, 24]) algo- rithm. Subsequently, a correction factor can be obtained from the simulated EPG T2 value and applied to the MSE T2 estimates. However, EPG calculations require knowledge about refocus- ing pulse amplitudes, T2 and T1 values and the temporal spacing of subsequent echoes. While the echo spacing is known and, as shown in simulations, an approximate T1 value can be assumed for high ratios of T1/T2 without compromising accuracy of the results, the remaining two parameters are estimated from the data themselves. An estimate for the refocusing flip angle can be obtained from the signal intensity ratio of the second to the first echo using EPG. A conventional mono- exponential fit of the MSE data yields a first estimate for T2. The T2 correction is then obtained iteratively by updating the T2 value used for EPG calculations in each step. For all examples pre- sented, two iterations proved to be sufficient for convergence. In the proposed method, a mean flip angle is extracted across the slice. As shown in simulations, this assumption leads to greatly reduced deviations even for more inhomogeneous slice profiles. The accuracy of corrected T2 values was shown in experiments using a phantom consisting of bottles filled with liquids with a wide range of different T2 values. While T2 MSE estimates were shown to deviate significantly from the spin-echo reference values, this is not the case for corrected T2 values. Furthermore, applicability was demonstrated for in vivo neurological experiments. In Chapter 6, a new auto-calibrating parallel imaging method called iterative GROG was pre- sented for the reconstruction of non-Cartesian data. A wide range of different non-Cartesian schemes have been proposed for data acquisition in MRI, that present various advantages over conventional Cartesian sampling such as faster acquisitions, improved dynamic imaging and in- trinsic motion correction. However, one drawback of non-Cartesian data is the more complicated reconstruction, which is ever more problematic for non-Cartesian parallel imaging techniques. Iterative GROG uses Calibrationless Parallel Imaging by Structured Low-Rank Matrix Completion (CPI) for data reconstruction. Since CPI requires points on a Cartesian grid, it cannot be used to directly reconstruct non-Cartesian data. Instead, Grappa Operator Gridding (GROG) is employed in a first step to move the non-Cartesian points to the nearest Cartesian grid locations. However, GROG requires a fully sampled center region of k-space for calibration. Combining both methods in an iterative scheme, accurate GROG weights can be obtained even from highly undersampled non-Cartesian data. Subsequently, CPI can be used to reconstruct either full k- space or a calibration area of arbitrary size, which can then be employed for data reconstruction with conventional parallel imaging methods. In Chapter 7, a new 2D sampling scheme was introduced consisting of multiple oscillating effi- cient trajectories (MOET), that is optimized for Compressed Sensing (CS) reconstructions. For successful CS reconstruction of a particular data set, some requirements have to be met. First, ev- ery data sample has to carry information about the whole object, which is automatically fulfilled for the Fourier sampling employed in MRI. Additionally, the image to be reconstructed has to be sparse in an arbitrary domain, which is true for a number of different applications. Last, data sam- pling has to be performed in an incoherent fashion. For 2D imaging, this important requirement of CS is difficult to achieve with conventional Cartesian and non-Cartesian sampling schemes. Ra- dial sampling is often used for CS reconstructions of dynamic data despite the streaking present in undersampled images. To obtain incoherent aliasing artifacts in undersampled images while at the same time preserving the advantages of radial sampling for dynamic imaging, MOET com- bines radial spokes with oscillating gradients of varying amplitude and alternating orientation orthogonal to the readout direction. The advantage of MOET over radial sampling in CS re- constructions was demonstrated in simulations and in in vivo cardiac imaging. MOET provides superior results especially when used in CS reconstructions with a sparsity constraint directly in image space. Here, accurate results could be obtained even from few MOET projections, while the coherent streaking artifacts present in the case of radial sampling prevent image recovery even for smaller acceleration factors. For CS reconstructions of dynamic data with sparsity constraint in xf-space, the advantage of MOET is smaller since the temporal reordering is responsible for an important part of incoherency. However, as was shown in simulations of a moving phantom and in the reconstruction of ungated cardiac data, the additional spatial incoherency provided by MOET still leads to improved results with higher accuracy and may allow reconstructions with higher acceleration factors. N2 - Die Magnetresonanztomographie (MRT) ist ein wichtiges nicht-invasives medizinisches Bildge- bungsverfahren, das im klinischen Alltag zur Entdeckung und Diagnose einer Vielzahl von Krank- heiten verwendet wird. Im Gegensatz zu anderen Methoden wie Röntgen und Computertomo- graphie kommt die MRT ohne den Einsatz ionisierender Strahlung aus, was selbst häufige An- wendungen ohne gesundheitliche Risiken erlaubt. Einer der größten Nachteile der MRT sind lange Messzeiten, die in Kombination mit der teuren Technik hohe Untersuchungskosten bedin- gen. Obwohl in der Vergangenheit durch die Entwicklung von sowohl verbesserter Hardware als auch neuen Rekonstruktionsverfahren bereits bedeutende Fortschritte in Bezug auf die Akquisi- tionsdauer erzielt werden konnten, ist eine weitere Beschleunigung nach wie vor ein wichtiges Forschungsgebiet im Bereich der MRT. Ziel dieser Arbeit war daher die Entwicklung neuer An- sätze zur Steigerung der Effizienz von MRT Experimenten. In Kapitel 4 wurde eine kombinierte Akquisitions- und Rekonstruktionsstrategie für radiale Turbo Spin-Echo (TSE) Experimente vorgestellt. Im klinischen Alltag sind kartesische TSE Sequenzen zur Untersuchung diverser Krankheitsbilder weit verbreitet, da sie ein hohes SNR aufweisen und die Aufnahme der klinisch wichtigen Bilder mit Protonendichte- und T2-Kontrast erlauben. Im Gegensatz zu kartesischem Abtasten, wo aus einem Datensatz lediglich ein Bild mit bes- timmtem Kontrast erzeugt wird, sind radiale TSE Akquisitionen hocheffizient, da hier aus einem Datensatz mehrere Bilder mit verschiedenem Kontrast gewonnen werden können. In beiden Fällen wird in konventionellen Rekonstruktionsmethoden jedes Bild eines definierten Kontrasts durch das Zusammensetzen eines vollständig abgetasteten k-Raums mit Daten von verschiedenen Echozeiten erzeugt. Im radialen Fall geschieht dies durch die sogenannte "k-space weighted im age contrast" (KWIC) Rekonstruktion. Hierbei wird das Zentrum des k-Raums ausschließlich mit zum gewünschten Kontrast gehörigen Daten gefüllt, während die äußeren Bereiche des k-Raums auch Daten von anderen Echozeiten enthalten. Obwohl der Kontrast von MRT Bildern haupt- sächlich von den Daten im k-Raum Zentrum dominiert wird, führt die Kombination von Daten verschiedener Echozeiten in sowohl radialen als auch kartesischen TSE Bildern zu einem uner- wünschten Mischkontrast. Dieser Effekt wird vor allem in protonendichtegewichteten Bildern sichtbar und kann somit deren diagnostischen Wert deutlich verringern. Ein unerwünschter Mischkontrast kann verhindert werden, indem die Bandbreite des KWIC- Filters auf ein kleines zeitliches Fenster um die angestrebte Echozeit herum eingeschränkt wird. Um eine freie Wahl der Echozuglänge und hohe Flexibilität in der Bildrekonstruktion zu er- möglichen, wurde für die radiale TSE Akquisition ein angepasstes Abtastschema unter Verwen- dung des goldenen Winkels vorgestellt. Da bei einem KWIC-Filter mit reduzierter Bandbre- ite für jedes Bild weniger Daten zur Verfügung stehen als für einen voll abgetasteten k-Raum benötigt, weisen rekonstruierte Bildern Einfaltungsartefakte auf. Diese werden in einem zweiten Schritt durch die Anwendung paralleler Bildgebung beseitigt. In den gezeigten Beispielen wurde dazu der CG-SENSE Algorithmus verwendet, da er stabile Konvergenz aufweist und für die Rekonstruktion von Daten mit irregulären Abtastschema angewandt werden kann. Anschließend werden bestehende Korrelationen der Bilderserie zur Reduktion verbleibender Artefakte und zu einer Verbesserung des SNR ausgenutzt. Wie mittels Simulationen gezeigt und für neurologische Daten bestätigt, weisen radiale TSE Bilder, die mit dieser Methode rekonstruiert wurden, keinen sichtbaren Mischkontrast mehr auf. Die erreichte Bildqualität ist hierbar vergleichbar mit kon- ventionellen Rekonstruktionsmethoden. Da die vorgestellte Rekonstruktion einfach auf heutigen Scannern implementiert werden kann und lediglich niedrige Rechenkapazitäten benötigt, könnte sie einen wichtigen Beitrag für den klinischen Durchbruch radialer TSE Akquisitionen darstellen. In Kapitel 5 wurde eine selbstkalibrierende Methode zur Korrektur von aus Multi Spin-Echo (MSE) Bildern gewonnenen T2 Karten vorgestellt. In der klinischen Anwendung spielt die Quan- tifizierung von T2 unter anderem bei der Diagnose von Krankheiten sowie bei der Klassifizierung von Gewebe eine wichtige Rolle. Eine MSE Sequenz verwendet mehrere RF-Pulse, um ein einzelnes Spin-Echo wiederholt zu refokussieren. Idealerweise betragen die Flipwinkel der Re- fokussierungspulse hierbei exakt 180○, um einen exponentiellen Signalabfall zu erhalten. Auf- grund technischer Ungenauigkeiten weichen die Werte der Flipwinkel von Refokussierungspulsen jedoch grundsätzlich von 180○ ab. Niedrigere Flipwinkel führen zu stimulierten Echos, die wesentlich zu den einzelnen Echoamplituden beitragen und den Signalabfall entlang des Echozugs deutlich verlängern können. Somit weisen auch T2 Werte, die aus solchen Bilderserien berech- net werden, eine teilweise deutliche Erhöhung auf. Um exakte Werte zu erhalten, kann der MSE Signalverlauf mittels des "extended phase graph" (EPG) Algorithmus abgeschätzt und so ein Kor- rekturfaktor ermittelt werden. Hierzu müssen die Flipwinkel der Refokussierungspulse, T1 und T2 Werte sowie der zeitliche Abstand der Echos (ESP) bekannt sein. Wie in Simulationen gezeigt wurde, kann T1 für hohe Werte des Quotienten T1/T2 abgeschätzt werden, ohne an Genauigkeit der T2 Ergebnisse einzubüßen. Abschätzungen der verbleibenden benötigten Parameter können direkt aus den Daten selbst gewonnen werden. Während der Flipwinkel aus den Intensitäten der ersten beiden Echos berechnet wird, liefert ein mono-exponentieller Fit der MSE Bilderserie eine erste Näherung für T2. Die Korrektur für die T2 Werte kann anschließend aus den EPG Sig- nalverläufen berechnet werden. Durch Aktualisierung von T2 und erneuter Ausführung des EPG-Algorithmus wird die Genauigkeit der Korrektur iterativ erhöht, wobei schon eine sehr geringe Zahl von Iterationen zu Konvergenz führt. Wie in Simulationen und in Phantomexperimenten für verschiedenste T2-Werte gezeigt, weisen korrigierte T2 Werte eine hohe Genauigkeit auf. Dies gilt auch für niedrigere nominelle Flipwinkel als 180○ und ist somit von speziellem Interesse bei höheren Feldstärken B0, wo Grenzwerte der spezifischen Absorptionsrate die Einstrahlung einer Vielzahl von RF-Pulsen hoher Amplitude verbietet. In Kapitel 6 wurde iteratives GROG, eine neue selbstkalibrierende iterative parallele Bildge- bungsmethode für die Rekonstruktion von nichtkartesischen Daten vorgestellt. Es sind eine Vielzahl nichtkartesischer Trajektorien für MRT Messungen bekannt, die zahlreiche Vorteile gegenüber kartesischer Bildgebung bieten. Dazu gehören unter anderem eine schnellere Akquisi- tion, verbesserte dynamische Bildgebung sowie die Möglichkeit zur intrinischen Bewegungskor- rektur. Ein Nachteil nichtkartesischer Daten jedoch ist eine aufwendigere Rekonstruktion, sowohl bei voll abgetasteten Datensätzen als insbesondere auch in der parallelen Bildgebung. Itera- tives GROG verwendet Calibrationless Parallel Imaging by Structured Low-Rank Matrix Com- pletion (CPI) zur Rekonstruktion fehlender Daten. Diese Methode benötigt Daten auf karte- sischen Gitterpunkten und kann nicht direkt für nichtkartesische Experimente angewandt wer- den. Stattdessen werden die nichtkartesischen Daten zunächst mittels Grappa Operator Gridding (GROG) in einem ersten Schritt auf ein kartesisches Gitter verschoben. GROG basiert auf paral- leler Bildgebung und benötigt einen voll abgetasteten Teil des k-Raums zur Kalibrierung. Erste Kalibrationsdaten können gewonnen werden, indem die nichtkartesischen Punkte ohne Änderung auf die nächsten kartesischen Gitterpunkte verschoben werden und eine CPI-Rekonstruktion eines zentralen k-Raum Bereichs durchgeführt wird. Anschließend wird GROG angewandt um exakte Werte der kartesischen Gitterpunkte zu erhalten und der Prozess wird iteriert. Nach Kon- vergenz können entweder Kalibrationsdaten gewünschter Größe für eine konventionelle parallele Bildgebungsmethode erzeugt oder artefaktfreie Bilder mit CPI rekonstruiert werden. In Kapitel 7 wurde ein neues Abtastungsschema für die 2D Bildgebung vorgestellt, das aus Multiplen Oszillierenden Effizienten Trajektorien (MOET) besteht und optimierte Compressed Sensing (CS) Rekonstruktionen ermöglicht. Für eine erfolgreiche Anwendung von Compressed Sensing müssen einige Voraussetzungen erfüllt sein. Erstens muss jeder Datenpunkt Informa- tionen über das ganze Objekt enthalten, was bei der MRT aufgrund der Datenakquisition im Fourier-Raum automatisch erfüllt ist. Weiterhin muss das gemessene Objekt in einer beliebigen Basis sparse sein. Dies ist für viele verschiedene Anwendungen in der MRT der Fall. Drittens muss für CS Rekonstruktionen die Datenakquisition im k-Raum einem inkohärenten Muster fol- gen. Diese wichtige Voraussetzung ist in der zweidimensionalen Bildgebung mit konventionellen kartesischen und nicht-kartesischen Abtastschemata nur schwer zu erreichen. Deshalb wird für CS Rekonstruktionen häufig eine radiale Trajektorie eingesetzt, trotz der kohärenten streaking- Artefakte in unterabgetasteten Bildern. MOET verwendet daher eine Kombination von radialen Projektionen zusammen mit oszillierenden Gradienten auf der zur Ausleserichtung orthogonalen Achse. So erhält man inkohärente Aliasing-Artefakte und bewahrt gleichzeitig die Vorteile der radialen Bildgebung für die dynamische MRT. Die Überlegenheit von MOET gegenüber radi- aler Bildgebung für CS Rekonstruktionen konnte in Simulationen sowie in der Herzbildgebung aufgezeigt werden. Dies gilt insbesondere für CS Rekonstruktionen direkt im Bildraum, wo MOET gute Resultate liefert während die kohärenten Artefakte bei radialer Bildgebung eine genaue Bildwiederherstellung verhindert. Bei Rekonstruktionen dynamischer Daten, wo Sparsität im xf-Raum ausgenutzt wird, ist der Vorteil von MOET weniger ausgeprägt, da hier bere- its die zeitliche Anordnung der Projektionen einen wesentlichen Beitrag zur Charakteristik der Aliasingartefakte liefert. Wie in Simulationen und für die in vivo Herzbildgebung gezeigt werden konnte, erlaubt die zusätzliche räumliche Inkohärenz von MOET jedoch auch in diesem Fall eine höhere Genauigkeit sowie Rekonstruktionen von Daten höherer Beschleunigung. KW - Kernspintomografie KW - Parallele Bildgebung KW - nichtkarthesische Bildgebung KW - Turbo Spin-Echos KW - Compressed Sensing KW - Parallel Imaging KW - non-Cartesian Imaging KW - Compressed Sensing KW - MRI KW - MRT KW - NMR-Tomographie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-108165 ER - TY - THES A1 - Sauer, Christoph T1 - Accessing molecule-metal and hetero-molecular interfaces with direct and resonant photoelectron spectroscopy T1 - Untersuchung von Molekül/Metall- und heteromolekularen Grenzflächen mittels direkter und resonanter Photoelektronenspektroskopie N2 - This thesis consists of two parts of original experimental work, its evaluation, and in- terpretation. Its final goal is to investigate dynamical charge transfer (CT) at a hetero- molecular interface with resonant photoelectron spectroscopy (RPES). In order to achieve this goal preliminary studies have been necessary. First two hetero-molecular inter- faces that exhibit adequate structural properties as well as an appropriate photoelec- tron spectroscopy (PES) spectrum of the valence regime have been identified. The de- sired CT analysis with RPES of these hetero-molecular systems is then conducted on the basis of the knowledge gained by previous RPES studies of homo-molecular sys- tems. The characterization of hetero-molecular films on single crystal Ag surfaces in the first part of this thesis is performed with high resolution core level PES and valence PES. The reproduction of the core level PES data with reference spectra of homo-molecular films allows me to determine which molecule is in direct contact to the Ag surface and which one is situated in higher layers (not the first one). Due to the direct correspon- dence of core level and valence PES the assignment of features in the spectra of the latter technique can be achieved with the identification of the contributions extracted from the evaluation of the data of the former technique. It is found that the systems PTCDA on one monolayer (ML) of SnPc on Ag(111) and CuPc/1 ML PTCDA/Ag(111) are stable at 300 K which means that no significant layer exchange occurs for these systems. In contrast a vertical exchange of CuPc and PTCDA molecules is observed for PTCDA de- posited on top of 1 ML CuPc/Ag(111). Up to a coverage of approximately 0.5 ML of PTCDA molecules these diffuse into the first layer, replace CuPc molecules, and con- sequently force them into higher layers. Above a coverage of approximately 0.5 ML of PTCDA molecules these are also found in higher layers. The search for a promising system for the intended RPES study then leads to an investigation of hetero-molecular films with a combination of F4TCNQ and PTCDA molecules on Ag(110) within the same approach. Depositing F4TCNQ molecules onto a 1 ML PTCDA/Ag(110) film in the herringbone phase at 300 K results in an instable hetero-organic system which un- dergoes a layer exchange. Hereby PTCDA molecules in the first layer are replaced by F4TCNQ molecules similar to the behavior of the system PTCDA/1 ML CuPc/Ag(111). Switching the order of the preparation steps leads to a stable film of PTCDA/1.0 ML F4TCNQ/Ag(110) at 300 K. Among the stable hetero-molecular films only the system CuPc/1 ML PTCDA/Ag(111) exhibits the required wetting growth of the first two layers at 300 K and a valence PES spectrum with energetically separable molecular orbital signals in the same intensity range. Thus this system is identified to be appropriate for a detailed analysis with RPES. The unexpected findings of vertical exchanges in the hetero-molecular films at 300 K motivate a study of the behavior at elevated temperatures for all systems investigated before. Therein it is revealed that annealing 1.5 ML SnPc/1 ML PTCDA/Ag(111) and 1.0 ML PTCDA/1 ML SnPc/Ag(111) to a temperature above the desorption temperature of molecules not in direct contact to the Ag(111) surface results in a 1 ML SnPc/Ag(111) film in both cases. Hence at elevated temperatures (approximately above 420 K) SnPc molecules replace PTCDA molecules in the first layer on Ag(111). At higher temper- atures (approximately above 470 K) PTCDA molecules and SnPc molecules situated above the first layer then desorb from the 1 ML SnPc/Ag(111) sample. Annealing all hetero-molecular films with CuPc and PTCDA molecules on Ag(111) to 570 K leads to a sample with CuPc and PTCDA molecules in the first and only layer. Depending on the initial CuPc coverage different ratios of both molecules are obtained. With a CuPc coverage of exactly 1 ML, or above, films with PTCDA coverages of approxi- mately 0.1–0.2 ML are produced. So at elevated temperatures CuPc molecules replace PTCDA molecules in the first layer of the system CuPc/1 ML PTCDA/Ag(111). Anal- ogously the layer exchange at 300 K for the system PTCDA/1 ML CuPc/Ag(111) is reversed at elevated temperatures. In the case of SnPc and CuPc coverages below 1 ML annealing vertical hetero-molecular systems with PTCDA on Ag(111) up to 570 K re- sults in a single layer of mixed hetero-molecular films with lateral long range order. In this way the system CuPc + PTCDA/Ag(111) is prepared and then characterized as a proper system for a detailed analysis with RPES. Additional annealing experiments of hetero-organic films consisting of F4TCNQ and PTCDA molecules on Ag(110) with an F4TCNQ coverage of 1.0 ML (and above) end in a submonolayer (sub-ML) film of F4TCNQ/Ag(110) that exhibits a contribution of amorphous carbon. Consequently, it can be concluded that at elevated temperatures part of the F4TCNQ molecules decom- pose. In the second part of this thesis homo-molecular multilayer samples and (sub-)ML films on single crystalline metal surfaces are investigated with RPES in order to enable the final RPES study of vertical and lateral hetero-molecular interface systems. First a pho- ton energy (hν) dependent intensity variation of (groups of) molecular orbital signals of exemplary multilayer films (NTCDA and coronene) is studied and explained on the basis of the local character of the electronic transitions in near edge x-ray absorption fine structure (NEXAFS) spectroscopy in combination with the real space probability den- sity of the contributing molecular orbitals. This simple approach is found to be able to correctly describe relative intensity variations by orders of magnitude while it fails for hν dependent relative intensity changes in the same order of magnitude. After that the hν dependent line-shape evolution of an energetically separated molecular orbital signal of a CuPc multilayer is discussed in relation to small molecules in the gas phase and explained with an effect of electron vibration coupling. Through a comparison of the hν dependent line-shape evolution of the highest occupied molecular orbital (HOMO) of a CuPc with a SnPc multilayer the molecule specific character of this effect is identified. Then the same effect with either two (or more) electronic transitions or multiple coupling vibrational modes is observed for a coronene multilayer. Thereafter the influence of the adsorption on metal surfaces on this effect is studied and discussed with special emphasis on a possible contribution by features which are related to dynamical interface CT. For a sub-ML of SnPc/Au(111) no variation with respect to a SnPc multilayer film is detected while for a sub-ML of CuPc/Au(111) less intensity is distributed into the high binding energy (EB) part of the HOMO signal with respect to the corresponding multilayer film. In the RPES data of a sub-ML of coronene/Ag(111) a resonance specific variation of the hν dependent line-shape evolution of the HOMO signal is found by the revelation of a change of this effect with respect to the coronene multilayer data in only one of the two NEXAFS resonances. All these findings are consistently explained within one effect and a common set of parameters, namely all quantities that characterize the potential energy surfaces involved in the RPES process. Through that an alternative explanation that re- lies on dynamical CT can be excluded which influences the following CT analysis with RPES. Three criteria for such an analysis of dynamical interface CT with RPES are identified. In the system coronene on Ag(111) a low EB feature is related to metal-molecule inter- face CT through the assignment of a particular final state and hence named CT state. In the EB region of the frontier molecular orbital signals of the molecule-metal inter- face systems with a signal from the lowest unoccupied molecular orbital (LUMO) in direct valence PES a broad line-shape is measured in RPES. This finding is related to interface CT by a possible explanation that emerges through the comparison to the line- shape of the CT state. The constant kinetic energy (EK ) features detected for several molecule-metal interfaces constitute the third criterion for a CT analysis with RPES. For the molecule-metal interface systems without a LUMO signal in direct valence PES the energy of these features can be calculated with the assignment of the responsible decay channel in combination with explicitly given simplifying assumptions. Through that the involvement of metal-molecule interface CT in the generation of these constant EK fea- tures is demonstrated. The RPES data of the lateral and the vertical hetero-molecular interface, identified in the first part, is then scanned for these three CT criteria. Thereby neither for the lateral hetero-molecular system CuPc + PTCDA/Ag(111) nor for the verti- cal hetero-molecular system CuPc/1 ML PTCDA/Ag(111) dynamical hetero-molecular interface CT can be confirmed. In the former system the molecule-metal interface in- teraction is found to dominate the physics of the system in RPES while in the latter system no hints for a significant hybridization at the CuPc-PTCDA interface can be revealed N2 - Diese Dissertation besteht aus zwei Hauptteilen, in denen neue experimentelle Ergeb- nisse präsentiert, ausgewertet und interpretiert werden. Das Ziel dieser Arbeit ist es, dynamischen Ladungstransfer an einer Heteroorganikgrenzfläche mit resonanter Pho- toelektronenspektroskopie (RPES) zu untersuchen. Um dies zu ermöglichen, musste erst eine solche Heteroorganikgrenzfläche, mit den geforderten strukturellen Eigenschaften, gefunden werden, die außerdem noch ein geeignetes Spektrum des Valenzbereichs in direkter Photoelektronenspektroskopie (PES) aufweist. Zusätzlich erforderte die ange- strebte Ladungstransferanalyse mit RPES vorausgehende RPES Messungen an homo- molekularen Systemen. Das dadurch erlangte Wissen konnte dann für die Interpretation von RPES Messungen heteromolekularer Grenzflächenschichten benutzt werden. Der erste Teil dieser Arbeit befasst sich mit der Charakterisierung von heteromolekularen Filmen auf Silbereinkristalloberflächen durch hochauflösende PES der Rumpfzustände und PES der Valenzzustände. Die Reproduktion der Spektren der Rumpfzustände mit PES Referenzspektren homomolekularer Filme ermöglicht es herauszufinden welches Molekül direkt auf der Silberoberfläche liegt und welches in höheren Lagen (nicht der ersten) adsorbiert ist. Außerdem können dadurch Signale in PES Spektren des Valenzbe- reiches gewissen Zuständen zugeordnet werden, da ein direkter Zusammenhang von PES der Rumpfzustände und der Valenzzustände existiert. Dieser wiederum ermöglicht es, durch die Analyse der Daten der Rumpfzustände, herauszufinden, welche Beiträge im Spektrum des Valenzbereichs enthalten sein müssen. Mit der Analyse der PES Spektren der Rumpfzustände wird gezeigt, dass die Systeme PTCDA auf einer Monolage (ML) SnPc auf Ag(111) und CuPc/1 ML PTCDA/Ag(111) bei 300 K stabil sind. Somit kann ein signifikanter Austausch von Molekülen zwischen den beiden Lagen dieser vertikalen Heteroschichten ausgeschossen werden. Dampft man hingegen PTCDA Moleküle auf eine 1 ML CuPc/Ag(111) Schicht auf, so wird ein Austausch von CuPc Molekülen mit PTCDA Molekülen beobachtet. Für eine PTCDA Bedeckung von bis zu 0.5 ML diffundieren alle PTCDA Moleküle in die erste Lage, ersetzen die dort befindlichen CuPc Moleküle und zwingen diese in höhere Lagen. Oberhalb einer PTCDA Bedeckung von 0.5 ML adsorbieren diese Moleküle auch in höheren Lagen. Um weitere Systeme zu finden, die für die geplanten RPES Messungen geeignet sind, werden anschließend ebenfalls heteromolekulare Filme, bestehend aus F4TCNQ und PTCDA Molekülen auf Ag(110), mit der gleichen Methode untersucht. Ähnlich dem Verhalten des Systems PTCDA/1 ML CuPc/Ag(111) wird hierbei ein Austausch von PTCDA Molekülen durch F4TCNQ Moleküle in der ersten Lage des Systems F4TCNQ/1 ML PTCDA/Ag(110) beobachtet. Kehrt man die Präparationsreihenfolge hingegen um, kann bei 300 K ein sta- biler Film von PTCDA/1.0 ML F4TCNQ/Ag(110) erzeugt werden. Das System CuPc auf 1 ML PTCDA/Ag(111) wird als einziges stabiles heteromolekulares System identifiziert, welches sowohl bei 300 K das benötigte benetzende Wachstum der ersten beiden Lagen, als auch ein PES Spektrum des Valenzbereichs mit energetisch trennbaren Molekülor- bitalsignalen im gleichen Intensitätsbereich aufweist. Somit ist gezeigt, dass dieses Sys- tem für eine detaillierte Analyse mit RPES geeignet ist. Der unerwartete Befund, dass bei einigen heteromolekularen Filmen ein vertikaler Aus- tausch stattfindet, motiviert eine Studie des Verhaltens aller heteromolekularen Filme bei höheren Temperaturen. Dabei wird gezeigt, dass ein 1 ML SnPc/Ag(111) Film entsteht, wenn eine 1.5 ML SnPc/1 ML PTCDA/Ag(111) und eine 1.0 ML PTCDA/1 ML SnPc/Ag(111) Probe auf eine Temperatur erhitzt werden, bei der Moleküle, welche nicht direkt auf der Ag(111) Oberfläche adsorbiert sind, desorbieren. Bei erhöhter Tempera- tur (oberhalb ca. 420 K) verdrängen also SnPc Moleküle PTCDA Moleküle aus der ersten Lage auf der Ag(111) Oberfläche. Wird die Temperatur weiter erhöht (ober- halb ca. 470 K), so desorbieren PTCDA und SnPc Moleküle, welche sich nicht in der ersten Lage befinden, von dem entstandenen 1 ML SnPc/Ag(111) Film. Das Er- hitzen aller heteromolekularen Filme, die aus PTCDA und CuPc Molekülen bestehen, auf eine Endtemperatur von 570 K resultiert in einer Probe, bei der sowohl CuPc als auch PTCDA Moleküle in der ersten, und einzigen Lage, adsorbiert sind. Abhängig von der anfänglichen CuPc Bedeckung entstehen verschiedene Verhältnisse der bei- den Moleküle. Eine anfängliche CuPc Bedeckung von genau einer ML, oder darüber, führt zu einem Film mit einer PTCDA Bedeckung von ca. 0.1–0.2 ML. Aus den Heiz- experimenten am System CuPc/1 ML PTCDA/Ag(111) folgt also, dass bei erhöhten Temperaturen CuPc Moleküle den Platz von PTCDA Molekülen in der ersten Lage einnehmen. Gleichermaßen wird der Austausch, der für das System PTCDA/1 ML CuPc/Ag(111) bei 300 K erfolgt ist, wieder rückgängig gemacht. Das Erhitzen einer heteromolekularen Probe mit PTCDA Molekülen und SnPc bzw. CuPc Bedeckungen unterhalb einer ML auf 570 K resultiert in einer gemischten heteromolekularen ML, die eine langreichweitige laterale Ordnung besitzt. Auf diese Art und Weise kann das System CuPc + PTCDA/Ag(111) präpariert werden. Die Charakterisierung dieses Systems zeigt, dass es sich für eine detaillierte Analyse mit RPES eignet. In weiteren Experimenten werden heteromolekulare Filme, bestehend aus F4TCNQ und PTCDA Molekülen auf Ag(110) mit einer F4TCNQ Bedeckung von 1.0 ML, und darüber, erhitzt. Hierbei wer- den Submonolagenfilme von F4TCNQ auf Ag(110) erzeugt, die zusätzlich noch amor- phen Kohlenstoff enthalten. Daraus lässt sich schließen, dass ein Teil der F4TCNQ Moleküle beim Erhitzen auf diese Temperaturen zersetzt werden. Im zweiten Teil dieser Arbeit werden homomolekulare Multilagen-, Monolagen und Submololagenfilme auf einkristallinen Metalloberflächen mit RPES untersucht, um die dadurch erlangten Ergebnisse auf RPES Messungen an heteromolekularen Filmen anzu- wenden. Als erstes wird anhand von Messungen an Multilagenfilmen zweier Modell- moleküle (NTCDA und Coronen) die Abhängigkeit der Intensitätsvariation (einer Grup- pe) von Molekülorbitalsignalen von der Photonenenergie (hν) untersucht. Die gewon- nenen Daten werden durch den lokalen Charakter der elektronischen Übergänge in der Nahkantenröntgenabsorptionsfeinstrukturspektroskopie (NEXAFS) und der Realraum- wahrscheinlichkeitsdichte der beitragenden Molekülorbitale erklärt. Mit diesem ver- einfachten Denkansatz können relative Intensitätsvariationen über Größenordnungen be-schrieben werden, bei relativen Veränderungen der Intensität innerhalb der selben Grö- ßenordnung versagt diese Erklärung allerdings. Daraufhin wird die hν Abhängigkeit der Linienformentwicklung von einem energetisch trennbaren Molekülorbitalsignal einer CuPc Multilage im Vergleich zu kleinen Molekülen in der Gasphase diskutiert und auf einen Effekt der Kopplung von Vibrationen an elektronische Übergänge zurückgeführt. Ein anschließender Vergleich dieser hν Abhängigkeit der Linienformentwicklung des höchsten besetzten Molekülorbitals (HOMO) von CuPc und SnPc Multilagen offen- bart den molekülspezifischen Charakter dieses Effekts. Danach wird gezeigt, dass für eine Multilage Coronen der selbe Effekt, allerdings mit der Beteiligung zweier (oder mehrerer) elektronischer Übergänge oder aneinander koppelnder Vibrationsmoden, zu sehen ist. Im Anschluss wird der Einfluss durch die Adsorption auf einer Metallober- fläche auf diesen Effekt untersucht und im Hinblick auf eine mögliche Beteiligung von Signalen diskutiert, in deren Entstehung Ladungstransfer beteiligt ist. Der Vergleich der RPES Messung eines Submonolagenfilms von SnPc auf Au(111) und den entsprechen- den Daten einer SnPc Multilage zeigt keinerlei sichtbare Veränderung. Demgegenüber wird für eine Submonolage CuPc auf Au(111) eine verminderte Intensitätsumverteilung in den Teil größerer Bindungsenergie (EB) des HOMO, im Vergleich zur einer CuPc Multilage, festgestellt. Vergleicht man die RPES Daten von einer Submonolage Coro- nen/Ag(111) mit denen des entsprechenden Multilagenfilms, erkennt man eine reso- nanzspezifische Veränderung der hν Abhängigkeit der Linienformentwicklung, da sich nur in einer der beiden NEXAFS Resonanzen eine Veränderung dieses Effekts zwischen dem Submonolagen- und dem Multilagenfilm zeigt. Alle diese experimentellen Be- funde können mit einem einzigen Effekt und einem gemeinsamen Parametersatz erklärt werden. Dies sind alle Parameter, die benötigt werden, um die Potentialenergieober- flächen zu beschreiben, welche im RPES Prozess involviert sind. Dadurch kann eine Alternativerklärung, die auf dynamischem Ladungstransfer beruht, ausgeschlossen wer- den, was wiederum die folgende Ladungstransferanalyse mit RPES entscheidend beein- flusst. Eine solche Ladungstransferanalyse mit RPES kann durch den Nachweis von drei ver- schiedenen mit dynamischem Ladungstransfer assoziierten Signalen durchgeführt wer- den. Ein in den RPES Daten von einer Submonolage Coronen/Ag(111) detektiertes Sig- nal bei niedriger EB kann, durch die Zuordnung eines spezifischen Endzustandes, mit Ladungstransfer über die Grenzfläche zwischen Molekül und Metall hinweg in Verbin- dung gebracht werden. Folglich wird dieses Signal Ladungstransferzustand genannt. Im EB Bereich der am schwächsten gebundenen Molekülorbitalsignale zeigen RPES Messungen eine verbreiterte Linienform für diejenigen Molekülmetallgrenzflächensys- teme, welche ein Signal des niedrigsten unbesetzten Molekülorbitals (LUMO) in di- rekter PES aufweisen. Durch den Vergleich mit der Linienform des Ladungstransfer- zustandes kann eine mögliche Erklärung für diesen experimentellen Befund entwickelt werden, die diesen mit Ladungstransfer in Verbindung bringt. Als drittes Signal, das für eine Ladungstransferanalyse mit RPES herangezogen werden kann, dienen Signale konstanter kinetische Energie (EK ), welche sich in den RPES Daten einiger Molekül- metallgrenzflächensysteme zeigen. Die gemessene Energie dieser Signale kann für die Molekülmetallgrenzflächensysteme, welche kein Signal des LUMO in direkter PES auf- weisen, durch die Zuordnung des verantwortlichen Zerfallskanals und explizit ange- führte Vereinfachungen erfolgreich berechnet werden. Dadurch wird die Beteiligung von Ladungstransfer über die Grenzfläche zwischen Molekül und Metall im Erzeugungspro- zess dieser Signale konstanter EK gezeigt. In den RPES Daten der lateralen und ver- tikalen heteromolekularen Grenzflächensysteme, die im ersten Teil dieser Arbeit identi- fiziert wurden, wird dann letztendlich nach einem Beitrag dieser drei mit Ladungstrans- fer assoziierten Signale gesucht. Weder für das laterale heteromolekulare System CuPc + PTCDA/Ag(111) noch für das vertikale heteromolekulare System CuPc auf 1 ML PTCDA/Ag(111) kann, durch die Detektion eines dieser Signale, Ladungstransfer ent- lang der heteromolekularen Grenzfläche bestätigt werden. Als entscheidender Faktor für die physikalische Beschreibung von RPES am ersten System wird die Wechselwirkung zwischen Molekül und Metall identifiziert. Das zentrale Ergebnis für das zweite Sys- tem ist, dass keine Hinweise auf eine signifikante Hybridisierung an der Grenzfläche zwischen CuPc und PTCDA entdeckt werden können. KW - Organisches Molekül KW - resonant photoelectron spectroscopy KW - molecule-metal interfaces KW - heteromolecular interfaces KW - photoelectron spectroscopy KW - Adsorptionsschicht KW - Photoelektronenspektroskopie KW - Röntgen-Photoelektronenspektroskopie Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-107928 ER - TY - THES A1 - Heindel, Tobias T1 - Elektrisch gepumpte Quantenpunkt-Einzelphotonenquellen für die Quantenkommunikation T1 - Electrically Pumped Quantum-Dot Single-Photon Sources for Quantum Communication N2 - Als erste kommerziell verfügbare Technologie der Quanteninformation ermöglicht die Quanten-Schlüsselverteilung eine sichere Datenübertragung indem einzelne Photonen oder quantenmechanisch verschränkte Photonenpaare zur Erzeugung eines Schlüssels verwendet werden. Die hierfür benötigten nicht-klassischen Photonen-Zustände können durch Halbleiter-Quantenpunkte erzeugt werden. Im Gegensatz zu anderen Quanten-Emittern wie isolierten Atomen, organischen Molekülen oder Fehlstellen in Diamantnanokristallen bieten diese zudem den Vorteil, direkt in komplexe Halbleiter-Mikrostrukturen integriert werden zu können. Quantenpunkte sind somit prädestiniert für die Entwicklung neuartiger optoelektronischer Bauelemente auf einer skalierbaren Technologieplattform. Vor diesem Hintergrund werden in der vorliegenden Arbeit die Eigenschaften elektrisch gepumpter Quantenpunkt-Mikrostrukturen untersucht. Als optisch aktives Medium dienen dabei selbstorganisierte InAs/GaAs-Quantenpunkte. Die Zielsetzung ist die Erzeugung nicht-klassischen Lichts für Anwendungen in der Quantenkommunikation, wobei ein besonderer Fokus auf dem elektrischen Betrieb der entsprechenden Quantenlichtquellen liegt. Dabei werden sowohl ausgeprägte Resonatoreffekte im Regime der schwachen Licht-Materie-Wechselwirkung ausgenutzt, um helle Einzelphotonenquellen zu realisieren, als auch die Eigenschaften korrelierter Photonenpaare zweier spektral separierter Quantenpunkt-Zustände analysiert. Als Untersuchungsmethode wird in erster Linie die spektral und zeitlich hochauflösende Mikro-Lumineszenz-Spektroskopie bei kryogenen Temperaturen eingesetzt. Zudem erfolgen Experimente zur Photonenstatistik anhand von Messungen der Auto- sowie Kreuzkorrelationsfunktion zweiter Ordnung. Wie im Folgenden aufgeführt, gelingt dabei der Bogenschlag von grundlegenden Untersuchungen an Quantenpunkt-Mikrostrukturen bis hin zur erstmaligen Implementierung elektrisch getriggerter Quantenpunkt-Einzelphotonenquellen in realistischen Experimenten zur Quanten-Schlüsselverteilung außerhalb einer geschützten Laborumgebung. Elektrisch getriggerte Einzelphotonenquellen: Für die Erzeugung elektrisch getriggerter, einzelner Photonen wurden Quantenpunkte in Mikroresonatoren eingebettet. Diese basieren auf dotierten, zylindrischen Fabry-Pérot Mikrosäulenresonatoren, deren Design bezüglich der Photonen-Auskoppeleffizienz optimiert wurde. […] Anhand von Messungen zur Photonenstatistik konnte für diese spektral resonant gekoppelten Quantenpunkt-Mikroresonatorsysteme sowohl unter kontinuierlicher- als auch unter gepulst-elektrischer Anregung Einzelphotonen-Emission nachgewiesen werden. […] Anhand einer eingehenden Analyse der Emissionsraten sowie der elektrischen Injektionseffizienzen bei Anregungs-Repetitionsraten von bis zu 220 MHz konnte gezeigt werden, dass die untersuchten Mikroresonatoren zudem als äußerst effiziente, elektrisch getriggerte Einzelphotonenquellen eingesetzt werden können. Sowohl bezüglich der Einzelphotonen-Emissionsraten von bis zu (47,0+/-6,9) MHz als auch der Gesamteffizienz der Bauteile bis hin zu (34+/-7) % konnten dabei Rekordwerte erzielt werden. Korrelierte Photonenpaare elektrisch gepumpter Quantenpunkte: […] Quanten-Schlüsselverteilung mit elektrisch getriggerten Einzelphotonenquellen: Ausgehend von den grundlegenden Untersuchungen dieser Arbeit, erfolgte die erstmalige Implementierung elektrisch getriggerter Quantenpunkt-Einzelphotonenquellen in Experimenten zur Quanten-Schlüsselverteilung. Basierend auf den eingehend analysierten Quantenpunkt-Mikroresonatoren, wurden dabei zwei Experimente in Freistrahloptik mit unterschiedlichen Übertragungsdistanzen durchgeführt. In beiden Fällen wurde ein BB84-Protokoll nachgeahmt, indem auf die einzelnen Photonen eine feststehende Abfolge von vier unterschiedlichen Polarisationszuständen aufmoduliert wurde. Das erste Experiment, durchgeführt im Labormaßstab in Würzburg, basierte auf einem Quantenkanal mit einer Länge von etwa 40 cm und arbeitete bei einer Taktrate von 183 MHz. Die höchste dabei erzielte ausgesiebte Schlüsselrate (engl. sifted-key rate) betrug 35,4 kbit/s bei einem Quanten-Bitfehlerverhältnis (QBER) von 3,8 %. Der Einzelphotonen-Charakter der Emission innerhalb des Quantenkanals konnte jeweils eindeutig nachgewiesen werden […]. Das zweite Experiment zur Quanten-Schlüsselverteilung wurde mittels zweier Teleskope über eine Distanz von 500 m in der Münchner Innenstadt zwischen den Dächern zweier Gebäude der Ludwig-Maximilians-Universität realisiert. […] Bei einer Taktrate von 125 MHz konnte mit diesem System im Einzelphotonen-Regime eine maximale sifted-key rate von 11,6 kbit/s bei einem QBER von 6,2 % erzielt werden. Diese erstmalige Implementierung elektrisch betriebener, nicht-klassischer Lichtquellen in Experimenten zur Quanten-Schlüsselverteilung stellt einen wichtigen Schritt hinsichtlich der Realisierung effizienter und praktikabler Systeme für die Quantenkommunikation dar. N2 - Quantum key distribution is the first commercially available technology of quantum information and allows for secure data communication by utilizing single-photons or entangled photon-pairs for key generation. The required non-classical light states can be produced by semiconductor quantum dots. Compared to other quantum emitters, such as isolated atoms, organic molecules or vacancy centers in diamond nanocrystals, they offer the advantage of being capable for the integration into complex semiconductor microstructures. Therefore quantum dots are predestinated for the development of novel optoelectronic devices on a scalable technology platform. In this context, the work at hand explores the properties of electrically-pumped quantum dot microstructures. Thereby selforganized InAs/GaAs quantum dots serve as optically active medium. Aim of this work is the generation of non-classical light for applications in quantum communication, at which the study focuses specifically on electrical operation of the respective quantum light sources. In this framework pronounced cavity effects in the weak coupling regime of light-matter interaction will be employed to realize bright single-photon sources. Furthermore the properties of correlated photon-pairs from two spectrally-seperated quantum dot states will be analyzed. The structures were investigated by means of microluminescence spectroscopy with high spatial and temporal resolution. Moreover, experiments on the photon statistics were performed by measurements of the second-order auto- and cross-correlationfunction. As specified below, achievements within this study range from fundamental investigations on quantum dot microstructures to the first implementation of electrically-triggered quantum dot single-photon sources in realistic quantum key distribution experiments outside a shielded lab environment. Electrically-Triggered Single-Photon Sources: For the generation of electrically-triggered single-photons quantum dots were embedded in microcavities. The latter ones are based on doped Fabry-Pérot micropillar resonators featuring a design that was optimized for enhanced photon-exctraction effiency. […] Photon statistic measurements on these resonantly-coupled quantum dot micropillar systems prooved single-photon emission under continuous electrical as well as pulsed electrical excitation. […] A detailed investigation of the photon emission rates and carrier injection efficincies at excitation repetition rates of up to 220 MHz showed, that the micropillar cavities can be used as extremely efficient single-photon sources. Record high values for single-photon emission rates of up to (47.0+/-6.9) MHz as well as overall efficiencies of up to (34+/-7) % were achieved for these devices. Correlated Photon-Pairs of Electrically Pumped Quantum Dots: […] Quantum Key Distribution Using Electrically Triggered Single-Photon Sources: Based on the fundamental investigations in this work, the first implementation of electrically driven quantum dot single-photon sources into quantum key distribution experiments was carried out. Utilizing the investigated quantum dot micropillar cavities, two free space experiments were performed with different transmission distances. In both cases a BB84-protocoll was emulated by modulating the single-photons with a fixed pattern of four different polarization settings. The first experiment, performed on a lab-scale in Würzburg, is based on a 40 cm quantum channel and worked at a clock rate of 183 MHz. Sifted-key rates of up to 35.4 kbit/s with a quantum bit error ratio (QBER) of 3.8 % were achieved. Single-photon emission within the quantum channel was proven unambiguously […]. The second quantum key distribution experiment was realized over a distance of 500 m in downtown Munich, connecting two buildings of the Ludwig-Maximilians-Universität via telescopes on the rooftops. […] Using this system at a clock rate of 125 MHz, a maximum sifted-key rate of 11.6 kbit/s at a QBER of 6.2 % was achieved in the single-photon regime. This first implementation of an electrically-driven non-classical light source in quantum key distribution experiments can be considered as a major step toward the realization of efficient and practical quantum communication systems. KW - Quantenpunkt KW - Lumineszenzdiode KW - Einzelphotonenemission KW - semiconductor quantum dot KW - single photon emission KW - non-classical light KW - electrically triggered KW - quantum key distribution KW - quantum information technology KW - Quantenkryptologie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105778 ER - TY - THES A1 - Bollmann, Stefan T1 - Structural Dynamics of Oligopeptides determined by Fluorescence Quenching of Organic Dyes T1 - Bestimmung struktureller Dynamiken von Oligopeptiden mittels Fluoreszenzlöschung von organischen Fluorophoren N2 - For determination of structures and structural dynamics of proteins organic fluorophores are a standard instrument. Intra- and intermolecular contact of biomolecular structures are determined in time-resolved and stationary fluorescence microscopy experiments by quenching of organic fluorophores due to Photoinduced Electron Transfer (PET) and dimerization interactions. Using PET we show in this work that end-to-end contact dynamics of serine-glycine peptides are slowed down by glycosylation. This slow down is due to a change in reaction enthalpy for end-to-end contact and is partly compensated by entropic effects. In a second step we test how dimerization of MR121 fluorophore pairs reports on end-to-end contact dynamics. We show that in aqueous solutions containing strong denaturants MR121 dimerization reports advantageously on contact dynamics for glycine-serine oligopeptides compared to the previously used MR121/tryptophane PET reporters. Then we analyze dimer interactions and quenching properties of different commercially available fluorophores being standards in Förster Resonance Energy Transfer (FRET) measurements. Distances in biomolecules are determinable using FRET, but for very flexible biomolecules the analysis of masurement data can be distorted if contact of the two FRET fluorophores is likely. We quantify how strong the quenching of fluorophore pairs with two different or two identical fluorophores is. Dimer spectra and association constants are quantified to estimate if fluophores are applicable in various applications, e.g. in FRET measurements with unstructured peptides and proteins. N2 - Zur Charakterisierung von Proteinen werden in der fluoreszenzbasierten Mikroskopie organische Farbstoffe benutzt, um strukturelle Informationen bzw. Informationen über dynamische Prozesse zu gewinnen. In der zeitaufgelösten und stationären Fluoreszenzmikroskopie können hiermit Kontaktprozesse durch photoinduzierten Elektronentransfer und auch Dimerisierung der Fluorophore analysiert werden. In dieser Arbeit wird mittels photoinduziertem Elektronentransfer PET gezeigt, dass Glykosylierung End-zu-End Kontaktkinetiken verändert. Sehr flexible Serin-Glycin Peptide zeigen glykosyliert langsamere Kinetiken durch Veränderung der Reaktionsenthalpie der Kontaktreaktion beider Peptidenden verglichen zu unglykosylierten. Diese enthalpischen Beiträge werden zum Teil von entropischen Beiträgen kompensiert. Außerdem wird gezeigt, dass Glycin-Serin Peptiddynamiken auch mittels Farbstoffpaaren gemessen werden können, die auf Löschwechselwirkungen durch Dimerisierung beruhen. Die Stärke dieser Löschwechselwirkungen hängt vom Farbstoffpaar ab. In Lösungen mit Denaturierungsmitteln können Farbstoffpaare des Fluoreszenzfarbstoffes MR121 vorteilhaft für Messungen von Dynamiken von Glycin-Serin Peptiden genutzt werden. Die Dimerwechselwirkungen können bei sehr flexiblen Biomolekülen und möglichem Kontakt von Fluorophoren die konventionelle Analyse von Förster Resonanz Energie Transfer (FRET) Messungen erschweren. Wir untersuchen an Glycin-Serin Oligopeptiden das Dimerisierungsverhalten kommerziell erhältlicher Fluorophore, die in FRET Messungen verwendet werden. Für gleiche und verschiedene Fluorophore wird die Löschung durch Dimerwechselwirkungen quantifiziert. Dabei werden Dimerspektren und Assoziationskonstanten für Dimerisierungsreaktionen bestimmt. Letztere helfen bei der Abschätzung, ob Fluorophorpaare für verschiedene Anwendungen geeignet sind, zum Beispiel in FRET-Messungen in unstrukturierten Peptiden und Proteinen. KW - Fluorophore KW - Fluoreszenzlöschung KW - h-dimerization KW - Lumineszenzlöschung KW - Fluoreszenzkorrelationsspektroskopie KW - Glykosylierung KW - Dimerisierung Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-92191 ER - TY - THES A1 - Samiepour, Marjan T1 - Fabrication and characterization of CPP-GMR and spin-transfer torque induced magnetic switching T1 - Herstellung und Charakterisierung von CPP-GMR und Spin-Transfer-Drehmoment induzierten magnetisches Schalten N2 - Even though the unique magnetic behavior for ferromagnets has been known for thousands of years, explaining this interesting phenomenon only occurred in the 20th century. It was in 1920, with the discovery of electron spin, that a clear explanation of how ferromagnets achieve their unique magnetic properties came to light. The electron carries an intrinsic electric charge and intrinsic angular momentum. Use of this property in a device was achieved in 1998 when Fert and Gru¨nberg independently found that the resistance of FM/NM/FM trilayer depended on the angle between the magnetization of the two layers. This phenomena which is called giant magnetoresistance (GMR) brought spin transfer into mainstream. This new discovery created a brand new research fi called “spintronics” or “spin based electronics” which exploits the intrinsic spin of electron. As expected spintronics delivered a new generation of magnetic devices which are currently used in magnetic disk drives and magnetic random access memories (MRAM). The potential advantages of spintronics devices are non-volatility, higher speed, increased data density and low power consumption. GMR devices are already used in industry as magnetic memories and read heads. The quality of GMR devices can be increased by developing new magnetic materials and also by going down to nanoscale. The desired characteristic properties of these new materials are higher spin polarization, higher curie temperature and better spin filtering. Half-metals are a good candidate for these devices since they are expected to have high polarization. Some examples of half-metals are Half-Heusler alloy, full Heusler alloy and Perovskite or double Perovskite oxides. The devices discussed in this thesis have NiMnSb half-Heusler alloy and permalloy as the ferromagnetic layers separated by Cu as the nonmagnetic layer. This dissertation includes mainly two parts, fabrication and characterization of nan- opillars. The layer stack used for the fabrication is Ru/Py/Cu/NiMnSb which is grown on an InP substrate with an (In,Ga)As buff by molecule beam epitaxy (MBE). A new method of fabrication using metal mask which has a higher yield of working samples over the previous method (using the resist mask) used in our group is discussed in detail. Also, the advantages of this new method and draw backs of the old method are explained thoroughly (in chapter 3). The second part (chapters 4 and 5) is focused on electrical measurements and charac- terization of the nanopillar, specially with regard to GMR and spin-transfer torque (STT) measurements. In chapter 4, the results of current perpendicular the plane giant mag- netoresistance (CPP-GMR) measurements at various temperatures and in-plane magnetic fi are presented. The dependence of CPP-GMR on bias current and shape anisotropy of the device are investigated. Results of these measurements show that the device has strong shape anisotropy. The following chapter deals with spin-transfer torque induced magnetic switching measurements done on the device. Critical current densities are on the order of 106 A/cm2, which is one order of magnitude smaller than the current industry standards. Our results show that the two possible magnetic configurations of the nanopillar (parallel and anti-parallel) have a strong dependence on the applied in-plane magnetic fi Fi- nally, four magnetic fi regimes based on the stability of the magnetic configuration (P stable, AP stable, both P and AP stable, both P and AP unstable) are identified. N2 - Obwohl das einzigartige ferromagnetische Verhalten seit Tausenden Jahren bekannt ist, traten Erklärungen zu diesem interessanten Phänomen erst im 20. Jahrhundert auf. Erst im Jahr 1920, mit der Entdeckung des Elekronenspin, gab es eine Vorstellung davon, wie die Ferromagnetika ihre einzigartigen magnetischen Eigenschaften erhalten. Die Elektronen sind sowohl Träger einer intrinsischen Ladung als auch eines intrinsichen Drehimpulses. Die Nutzung dieser Eigenschaften in Bauteilen wurde 1998 erreicht, als Fert und Grünberg unabhängig voneinander die Entdeckung machten, dass der Widerstand eines Dreischichtsystems bestehend aus FM/NM/FM abha¨ngig vom Winkel der Magnetisierung in den zwei ferromagnetischen Schichten ist. Dieses Phänomen, welches als Riesenmagnetwiderstand (GMR, Giant Magnetoresistance) bekannt ist, führte dazu, dass sich der Spintransport zu einem Mainstream entwickelte. Diese neuartige Entdeckung brachte ein ganz neues Forschungsgebiet hervor, das als sogenannte Spintronik oder auch spinbasierte Elektronik bekannt ist, welche den intrinsischen Spin der Elektronen nutzt. Wie erwartet lieferte die Spintronik eine neue Generation von magnetischen Bauelementen, welche in Festplatten und magnetoresistiven RAM-Speichern (MRAM, magnetic random access memory) zu fi sind. Die großen Vorteile der spintronischen Bauelemente sind die Nichtvolalität, die höheren Geschwindigkeiten, die verbesserte Datendichte und der geringerer Energieverbrauch. GMR-Bauteile werden bereits in der Industrie als magnetische Speicher und Leseköpfe verwendet. Die Qualität der GMR-Bauteile kann durch die Entwicklung von neuen magnetischen Materialien aber auch durch Verkleinerung, also Nutzung der Nanoskala verbessert wer- den. Zu den gewünschten charakteristischen Eigenschaften dieser neuen Materialien zählen eine höhere Spinpolarisation, höher erreichbare Curie-Temperaturen und eine verbesserte Spinfi tion. Halbmetalle, wie z.B., Heusler-Legierungen, Perovskite oder auch doppeloxide sind hierfür gute Kandidaten, weil von ihnen eine hohe Polarisierbarkeit erwartet wird. Die Bauteile, die in dieser Arbeit diskutiert werden, bestehen aus einer NiMnSb-Heusler-Legierung und Permalloy als ferromagnetische Schichten getrennt durch Cu als nichtmagnetische Schicht. Die Dissertation beinhaltet hauptsächlich zwei Aspekte nämlich die Herstellung und Charakterisierung von Nanosäulen. Die benutzte Schichtung zur Herstellung ist Ru/Py/Cu /NiMnSb, welche mittels MBE (molecular beam epitaxy) auf einem InP-Substrat mit einem (In,Ga)As-Puff gewachsen ist. Eine neue Herstellungsmethode, welche Metallmasken gegenüber der früher in unserer Arbeitsgruppe gängigen Methode (Verwendung von Resistmasken) nutzt, um eine erhöhte Probenfunktionalität zu erreichen, wird im Detail diskutiert. Ebenso werden die Vorteile dieser neuen Methode und das Detail der alten Methode vollständig in Kapitel 3 erläutert. Im Fokus des zweiten Teils (Kapitel 4 und 5) stehen elektrische Messungen und Charakterisierung der Nanos¨aulen im Hinblick auf den GMR und den Spintransfer-Moment-Messungen (SST). In Kapitel 4 werden die Ergebnisse der Strommessungen, die senkrecht zur GMR-Ebene (CPP-GMR) bei verschiedenen Temperaturen und eines in der Ebene angelegten Magnetfeldes durchgeführt wurden vorgestellt zudem wird die Abhängigkeit des CPP-GMR von Bias-Strömen und von der Formanisotropy der Bauteile untersucht. Ergebnisse dieser Messungen zeigen, dass die Bauteile eine groe Formanisotropy aufweisen. In den darauffolgenden Kapiteln werden Spintransfer-Moment Messungen, die durch magnetisches Schalten in den Bauteilen hervorgerufen wurden besprochen. Kritische Stromdichten liegen in der Größenordnung 106 A/cm2, welche eine Größenordnung kleiner ist als der aktuelle Industriestandard. Unsere Ergebnisse zeigen eine starke Abhängigkeit der zwei magnetischen Konfigurationsmöglichkeiten der Nanosäulen (parallel und anti- parallel) von dem in-plane Magnetfeld. Schließlich wurden vier magnetische Feldbereiche, basierend auf der Stabilität der magnetischen Konfiguration (P stabil, AP stabil, P und AP stabil, P und AP instabil) identifiziert. KW - Giantmagnetoresistance KW - spin-transfer torque KW - Heusler KW - CPP-GMR KW - Spin-Transfer-Drehmoment KW - Heusler KW - Riesenmagnetowiderstand KW - Spintronik Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-102226 ER - TY - THES A1 - Michalska, Marta T1 - Molecular Imaging of atherosclerosis T1 - Molekulare Bildgebung der Atherosklerose N2 - Atherosklerose ist eine aktive und progressive Erkrankung, bei der vaskuläre Adhäsionsmoleküle wie VCAM-1 eine entscheidende Rolle durch Steuerung der Rekrutierung von Immunzellen in den frühen und fortgeschrittenen Plaques spielen. Ein zielgerichteter Einsatz von VCAM-1-Molekülen mit spezifischen Kontrastmitteln ist daher eine Möglichkeit, die VCAM-1-Expression zu kontrollieren, Plaquewachstum ab einem frühen Zeitpunkt zu visualisieren und eine frühe Prävention von Atherosklerose vor Beginn der Thrombusbildung zu etablieren. Des Weiteren bietet die nichtinvasive Magnetresonanz (MR)-Bildgebung den Vorteil der Kombination molekularer und morphologischer Daten. Sie ermöglicht, mithilfe von entwickelten VCAM-1-markierten Eisenoxidpartikeln, den spezifischen Nachweis entzündlicher Prozesse während der Atherosklerose. Diese Arbeit belegt, dass mit dem VCAM-1-Konzept eine vielversprechende Herangehensweise gefunden wurde und dass das, mit spezifischen superparamagnetischen Eisenoxid (USPIO) konjugierte VCAM-1-Peptid, gegenüber unspezifischer USPIOs ein erhöhtes Potenzial bei der Untersuchung der Atherosklerose in sich trägt. Im ersten Teil der Arbeit konnte im Mausmodell gezeigt werden, dass gerade das VCAM-1-Molekül ein sinnvoller Ansatzpunkt zur Darstellung und Bildgebung von Atherosklerose ist, da in der frühen Phase der Entzündung die vaskulären Zelladhäsionsmoleküle überexprimiert und auch kontinuierlich, während der fortschreitenden Plaquebildung, hochreguliert werden. Weiterhin beschreibt diese Arbeit die Funktionstüchtigkeit und das Vermögen des neu gestalteten USPIO Kontrastmittels mit dem zyklischen Peptid, in seiner Spezialisierung auf die VCAM-1 Erkennung. Experimentelle Studien mit ultra-Hochfeld-MRT ermöglichten weitere ex vivo und in vivo Nachweise der eingesetzten USPIO-VCAM-1-Partikel innerhalb der Region um die Aortenwurzel in frühen und fortgeschrittenen atherosklerotischen Plaques von 12 und 30 Wochen alten Apolipoprotein E-defizienten (ApoE-/-) Mäusen. Mit ihrer Kombination aus Histologie und Elektronenmikroskopie zeigt diese Studie zum ersten Mal die Verteilung von VCAM-1-markierten USPIO Partikeln nicht nur in luminalem Bereich der Plaques, sondern auch in tieferen Bereichen der medialen Muskelzellen. Dieser spezifische und sensitive Nachweis der frühen und fortgeschrittenen Stadien der Plaquebildung bringt auf molekularer Ebene neue Möglichkeiten zur Früherkennung von atherosklerotischen Plaques vor dem Entstehen von 8 Rupturen. Im Gegensatz zum USPIO-VCAM-1-Kontrastmittel scheiterten unspezifische USPIO Partikel an der Identifikation früher Plaqueformen und begrenzten die Visualisierung von Atherosklerose auf fortgeschrittene Stadien in ApoE-/- Mäusen. N2 - Atherosclerosis is an active and progressive condition where the vascular cell adhesion molecules as VCAM-1 play a vital role controlling the recruitment of immune cells within the early and advanced plaques. Therefore targeting of VCAM-1 molecules with specific contrast agent bears the possibility to monitor the VCAM-1 expression, visualize the plaque progression starting at the early alterations, and help to establish early prevention of atherosclerosis before the origin of the thrombus formation, of which late recognition leads to myocardial infarction. Furthermore noninvasive magnetic resonance imaging (MRI) offers the benefit of combining the molecular and anatomic data and would thus enable specific detection of VCAM-1 targeted iron oxide contrast agent within inflammatory process of atherosclerosis. This thesis exactly presents the VCAM-1 concept as a suitable molecular approach and the potential of specific ultrasmall superparamagnetic iron oxide (USPIO) conjugated to the VCAM-1 binding peptide over unspecific non-targeted USPIO particles for evaluation of atherosclerosis. This work firstly demonstrated that selection of VCAM-1 molecules offers a good and potential strategy for imaging of atherosclerosis, as these vascular cell adhesion molecules are highly expressed in the early phase of inflammation and also continuously up-regulated within the advanced plaques. Secondly, this thesis showed the proof of principle and capability of the newly designed USPIO contrast agent conjugated to the specific cyclic peptide for VCAM-1 recognition. The experimental studies including ultra-high field MRI enabled further ex vivo and in vivo detection of applied USPIO-VCAM-1 particles within the aortic root region of early and advanced atherosclerotic plaques of 12 and 30 week old apolipoprotein E deficient (ApoE-/-) mice. Using a combination of histology and electron microscopy, this study for the first time pointed to distribution of targeted USPIO-VCAM-1 particles within plaque cells expressing VCAM-1 not only in luminal regions but also in deeper medial smooth muscle cell areas. Hence functionalized USPIO particles targeting VCAM-1 molecules allow specific and sensitive detection of early and advanced plaques at the molecular level, giving the new possibilities for early recognition of atherosclerotic plaques before the appearance of advanced and prone to rupture lesions. In contrast to the functionalized USPIO-VCAM-1, utilized non-targeted USPIO particles did not succeed in early plaque 6 identification limiting visualization of atherosclerosis to advanced forms in atherosclerotic ApoE-/- mice. KW - VCAM KW - Arteriosklerose KW - Superparamagnetische Eisenoxid Kontrastmittel KW - vaskuläre Adhäsionsmoleküle KW - Atherosklerose KW - superparamagnetische Eisenoxid Kontrastmittel KW - vascular cell adhesion molecules KW - atherosclerosis KW - iron oxide contrast agent KW - Kontrastmittel Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-73243 ER - TY - THES A1 - Gieseking, Björn T1 - Excitation Dynamics and Charge Carrier Generation in Organic Semiconductors T1 - Anregungsdynamik und Ladungsträgergenerierung in organischen Halbleitern N2 - The transport of optically excited states, called excitons, as well as their conversion into charges define the two major steps allowing for the operation of organic photovoltaic (OPV) devices. Hence, a deep understanding of these processes, the involved mechanisms as well as possible loss channels is crucial for further improving the efficiency of organic solar cells. For studying the aforementioned processes spectroscopic methods like absorption and emission measurements are useful tools. As many of the processes take place on a sub-nanosecond (ns) timescale ultrafast spectroscopic methods are required. Due to this reason two experiments based on a femtosecond laser system were built and employed in this work, namely picosecond (ps) time-resolved photoluminescence (PL) and transient absorption (TA) spectroscopy. By analyzing the PL decay dynamics in the prototypical organic semiconductor rubrene, the feasibility of a new approach for improving the efficiency of organic solar cells by harvesting triplet excitons generated by singlet fission was examined. Singlet fission describes a process where two triplet excitons are generated via a photoexcited singlet exciton precursor state if the energy of the two triplets is comparable with the energy of the singlet. For this purpose the influence of characteristic length scales on the exciton dynamics in different rubrene morphologies exhibiting an increasing degree of confinement was analyzed. The results show that the quenching at interfacial states efficiently suppresses the desired fission process if these states are reached by excitons during migration. Since interfacial states are expected to play a significant role in thin film solar cells and are easily accessible for the migrating excitons, the results have to be considered for triplet-based OPV. While the aforementioned approach is only investigated for model systems so far, the efficiency of disordered organic bulk heterojunction (BHJ) solar cells could be significantly enhanced in the last couple of years by employing new and more complex copolymer donor materials. However, little is known about the photophysics and in particular the excitation dynamics of these systems. By carrying out a systematic optical study on the prominent copolymer PCDTBT and its building blocks we were able to identify the nature of the two characteristic absorption bands and the coupling mechanism between these levels. The latter mechanism is based on an intrachain partial charge transfer between two functional subunits and our time-resolved measurements indicate that this coupling governs the photophysical properties of solar cells based on these copolymers. The efficient coupling of functional subunits can be seen as a key aspect that guarantees for the success of the copolymer approach. Another important issue concerns the optimization of the morphology of BHJ solar cells. It arises from the discrepancy between the exciton diffusion length \mbox{($\approx$ 10 nm)} and the absorption length of solar irradiation ($\approx$ 100 nm). Due to this reason, even for devices based on new copolymer materials, processing parameters affecting the morphology like annealing or employing processing additives are of major importance. In our combined optical, electrical and morphological study for solar cells based on the high-efficient copolymer PBDTTT-C we find a direct correlation between additive content and intermixing of the active layer. The observed maximum in device efficiency can be attributed to a morphology guaranteeing for an optimized balance between charge generation and transport. Our results highlight the importance of understanding the influence of processing parameters on the morphology of the BHJ and thus on the efficiency of the device. N2 - Der Transport optischer Anregungen, genannt Exzitonen, sowie deren Umwandlung in Ladungsträger stellen die beiden wesentlichen Mechanismen dar, welche die Funktion von organischer Photovoltaik (OPV) erst ermöglichen. Daher ist ein genaues Verständnis dieser Prozesse, der beteiligten Mechanismen sowie möglicher Verlustkanäle von essentieller Bedeutung, um die Effizienz organischer Solarzellen weiter zu steigern. Für die Untersuchung der genannten Vorgänge bieten sich grundsätzlich spektroskopische Methoden, wie etwa die Untersuchung der Absorptions- und Emissioncharakteristiken, an. Da sich viele der erwähnten Prozesse auf der sub-Nanosekunden (ns) Zeitskala abspielen, werden für deren Unteruchung hoch-zeitaufgelöste Messmethoden benötigt. Aus diesem Grund wurden im Rahmen dieser Arbeit zwei Messmethoden, basierend auf einem Femtosekunden-Lasersystem aufgebaut und verwendet. Hierbei handelt es sich um die Picosekunden (ps) zeitaufgelöste Photolumineszenz-Spektroskopie (PL) und die transiente Absorptionsspektroskopie (TA). Anhand des prototypischen organischen Halbleiters Rubren habe ich mich mit der Fragestellung beschäftigt, inwieweit ein alternativer Ansatz zur Erhöhung der Effizienz von organischen Solarzellen, basierend auf der Nutzung von Triplet Exzitonen, welche durch Singlet Fission generiert wurden, genutzt werden könnte. Bei der Singlet Fission werden aus einem optisch angeregten Singlet Exziton zwei Triplet Exzitonen erzeugt, unter der Voraussetzung, dass die Summe der Energien der beiden Triplets in etwa der Energie des Singlet Exzitons entspricht. Hierfür wurde der Einfluss von charakteristischen Längenskalen auf die Exzitonendynamik in verschiedenen Rubren-Morphologien, die ein zunehmend begrenztes Anregungsvolumen aufweisen, untersucht. Dabei zeigt sich, dass durch den Einfluss von Grenzflächenzuständen der erwünschte Singlet Fission Prozess effizient unterdrückt wird, sollten diese Zustände von Exzitonen während ihrer Migration erreicht werden. Dieser Sachverhalt ist bei einer möglichen Realisierung von Triplet-basierter OPV zu berücksichtigen, da in Dünnschicht-Solarzellen solche Grenzflächenzustände eine relevante Rolle spielen und für Exzitonen gut zugänglich sind. Während der oben genannte Ansatz bis jetzt nur für Modellsysteme untersucht wird, konnte die Effizienz ungeordneter organischer ''bulk heterojunction'' (heterogemisch, BHJ) Solarzellen in den vergangenen Jahren durch die Verwendung neuer, komplexerer Donormaterialen signifikant gesteigert werden. Allerdings war eine genaue Kenntnis der dahinter stehenden Photophysik und insbesondere der Anregungsdynamik dieser Systeme nicht vorhanden. Anhand einer systematischen optischen Studie am prominenten Copolymer PCDTBT und seiner Bausteine konnte die Natur der angeregten Zustände und deren Kopplungsmechanismus, basierend auf einem teilweisen Ladungsübertrag zwischen zwei funktionalen Gruppen des Copolymers identifiziert werden. Die Ergebnisse der zeitaufgelösten Messungen deuten darauf hin, dass dieser interne Kopplungsmechanismus die Photophysik von organischen Solarzellen, basierend auf diesen Copolymeren bestimmt. Diese effiziente Kopplung ist ein wesentlicher Grund für den Erfolg des Copolymerkonzeptes. Ein weiterer wichtiger Aspekt betrifft die Optimierung der Morphologie der aktiven Schicht von BHJ Solarzellen, welcher sich aus der Diskrepanz zwischen Exzitonendiffusionslänge ($\approx$ 10 nm) und Absorptionslänge des Sonnenlichts \mbox{($\approx$ 100 nm)} ergibt. Aus diesem Grund sind auch bei BHJ Zellen, basierend auf neuartigen Copolymeren die Prozessparameter, welche die Morphologie beeinflussen --- wie das Ausheizen der Zelle oder die Zugabe von Additiven --- von großer Bedeutung. Unsere kombinierte optische, elektrische und morphologische Studie an Solarzellen, basierend auf dem hocheffizienten Copolymer PBDTTT-C zeigt dabei einen direkten Zusammenhang von Additivkonzentration und Durchmischungsgrad der aktiven Schicht. Das beobachtete Effizienzmaximum ergibt sich dabei für diejenige Morphologie, welche ein optimiertes Gleichgewicht zwischen Erzeugung und Transport von Ladungsträgern aufweist. Die Ergebnisse verdeutlichen, wie wichtig das Verständnis der Auswirkungen einzelner Prozessparameter auf die Morphologie und damit die Effizienz von BHJ Solarzellen ist. KW - Organische Solarzelle KW - Photovoltaik KW - Organischer Halbleiter KW - Charge Carrier Generation KW - Singlet Fission KW - Experimental Physics KW - Ultrafast Spectroscopy KW - Organic Semiconductors KW - Organic Photovoltaics KW - Excitons Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-101625 ER -