TY - THES A1 - Scherdel, Christian T1 - Kohlenstoffmaterialien mit nanoskaliger Morphologie - Entwicklung neuartiger Syntheserouten T1 - Carbon material featuring nanoscale morphology - Development of novel synthesis routes N2 - Hochporöse Kohlenstoffaerogele, die über den Sol-Gel-Prozeß auf der Basis von Resorzin und Formaldehyd hergestellt werden, sind Werkstoffe mit beeindruckenden physikalischen Eigenschaften. Leider werden bisher nur geringe Mengen an Kohlenstoffaerogelen produziert und aus Kostengründen auf günstigere Materialien mit vergleichsweise schlechteren Eigenschaften zurückgegriffen. Um diesen Nachteil zu nivellieren lag die Motivation der vorliegenden Arbeit in der Entwicklung neuer Syntheserouten für Kohlenstoffmaterialien mit nanoskaliger Morphologie, wobei insbesondere auf kostengünstige Edukte und/oder einfache Prozessierung zurückgegriffen werden sollte. Als in Frage kommende Eduktsysteme wurden Zucker, sowie Hydroxybenzol-Formaldehyd-Derivate ausgewählt. Die hergestellten Kohlenstoffe wurden hauptsächlich mit Elektronenmikroskopie, Gassorption und Röntgenkleinwinkelstreuung (SAXS) charakterisiert. Um Fehlinterpretationen der experimentellen Daten für das neue Materialsystem zu vermeiden, war ein umfangreiches Wissen zu den Charakterisierungsmethoden und den diesen zugrundeliegenden physikalischen Prinzipien notwendig. Kohlenstoffpulver basierend auf sphärischen Resorzin-Formaldehyd Suspensionen und Sedimenten bilden eine völlig neue Möglichkeit zur Erzeugung von Kohlenstoffnanokugeln. Im Rahmen dieser Arbeit wurde deshalb systematisch der Bereich der Syntheseparameter im RF-System zu den nicht-monolithischen Parametersätzen hin vervollständigt. Anhand der bestimmten Daten konnte diese Stoffklasse umfassend und detailliert charakterisiert und interpretiert werden. Die Partikelgröße hängt im Wesentlichen von der Katalysatorkonzentration und in geringerem Maße von der Eduktmenge in der Startlösung ab. Die ermittelte untere Grenze der Partikelgröße aus stabilen kolloidalen Dispersionen beträgt ca. 30 nm. Größere Partikel als 5 µm konnten trotz Modifikation der Syntheseroute nicht erzeugt werden. Eine Abschätzung über den Aggregationsgrad der Kohlenstoffpulver wurde durchgeführt. Eine Beimischung von Phenol verringert in diesem System zum einen die Partikelgröße und erzeugt zunehmend nicht-sphärische Strukturen. Die aus Gassorption, SAXS und dynamischer Lichtstreuung (DLS) ermittelten Partikelgrößen stimmen gut überein. Bei der Pyrolyse schrumpfen die Partikel auf 84% des Ausgangswerts (Partikeldurchmesser). Ein Fokus dieser Arbeit lag in der Herstellung poröser Kohlenstoffe mit Phenol und Formaldehyd (PF) als Eduktbasis und unterkritischer Trocknung (Kohlenstoffxerogele). Um die Bandbreite der Eigenschaften der resultierenden Kohlenstoffxerogele zu erweitern, wurden zahlreiche Modifikationen der Syntheseparameter und im Herstellungsprozeß durchgeführt. Die Ergebnisse zeigen, daß im Eduktsystem Phenol-Formaldehyd in wäßriger Lösung mit Na2CO3 als basischem Katalysator prinzipiell poröse Xerogele herstellbar sind; allerdings verhindert eine ungewöhnliche Gelierkinetik (Flockenbildung statt Sol-Gel-Übergang) eine umfassende Interpretation des Systems, da die Reproduzierbarkeit der Ergebnisse nicht gewährleistet ist. Bei Phenol-Formaldehyd in wäßriger Lösung und NaOH als Katalysator kommt es meist zu einem Kollabieren des Gelnetzwerks während der Trocknung. Lediglich bei hohem Formaldehydüberschuß zeigt sich ein enger Bereich, in dem Xerogele mit geringer Dichte (rhomin = 0,22 g/cm3) und relevantem Mesoporenvolumen von bis zu 0,59 cm3/g synthetisierbar sind. Die interessanteste Kombination im PF-System ergibt sich mit HCl als Katalysator und n-Propanol als Lösungsmittel. Hier sind hochporöse Kohlenstoffxerogele mit geringen Dichten (rhomin = 0,23 g/cm3) und für Xerogele sehr hoher Mesoporosität von bis zu Vmeso = 0,85 cm3/g möglich. Damit ist es im Rahmen dieser Arbeit erstmals gelungen über konvektive Trocknung homogene hochporöse Xerogel-Formkörper auf PF-Basis zu synthetisieren. Aus der Überwachung des Sol-Gel-Prozesses mit Detektion der Soltemperatur konnten wichtige Erkenntnisse über exo- und endotherme Vorgänge gewonnen werden. Zudem zeigt die Zeitabhängigkeit der Soltemperatur Gemeinsamkeiten für alle untersuchten Hydroxybenzol-Formaldehyd-Systeme. So kann der Gelpunkt der Ansätze zuverlässig und auch reproduzierbar anhand eines zweiten lokalen Temperaturmaximums ermittelt werden, welches mit einer Gelpunktsenthalpie korreliert wird. Damit ist auch eine Prozeßkontrolle, z.B. für die Kombination mit Partikeltechnologien, möglich. Die zugrundeliegenden Strukturbildungsmechanismen, Sol-Gel-Prozeß einerseits und Trocknung andererseits, wurden in-situ mittels SAXS beobachtet und anhand der gewonnenen Daten diskutiert und bewertet. Eine vollständige Adaption des etablierten und akzeptierten Bildungsmechanismus von RF basierten Aerogelen (Partikelbildung aus Kondensationskeimen und Partikelwachstum) für das PF-System wird ausgeschlossen. Vielmehr scheint bei den untersuchten PF-Systemen auch eine Mikrophasenseparation als konkurrierender Prozeß zur Partikelbildung von Relevanz zu sein. N2 - Highly porous carbon aerogels derived via the sol-gel-process based on the precursors resorcinol and formaldehyde are materials with impressive physical properties. In principle, they are suited for many applications (e.g. thermal insulations, components in electrochemical devices). Unfortunately, up to now, there are only small amounts of carbon aerogels available. Due to cost efficiency, cheaper materials with less favourable properties compared to carbon aerogels are used. To compensate for this disadvantage, the motivation for this work was the development of new synthesis routes for carbon materials with nanostructured morphology, applying in particular cheap precursors and/or simple processing. As precursor systems, sugar as well as hydroxybenzene-formaldehyde-derivatives were chosen. The produced carbons were characterised in particular by electron microscopy, gas sorption and small-angle X-ray scattering (SAXS). To avoid misinterpretation of the experimental data of the new materials system, extensive knowledge concerning the characterization methods and their underlying physical principles are essential. Carbon powders based on spherical particles derived from suspensions and sediments of resorcinol-formaldehyde (RF) solutions establish a completely new possibility to generate carbon nanospheres. Within the framework of this thesis the range of the synthesis parameters of the RF-system towards the non-monolithic parameter sets was therefore systematically completed. These materials were characterized and interpreted extensively and in detail by using the derived experimental data. The particle size depends essentially on the catalyst concentration rather than on the amount of precursors in the initial solution. The lower limit particle size derived from stable colloidal suspensions is about 30 nm. Larger particles than 5 µm could not be synthesized, even when modifying the synthesis route. An estimate for the level of aggregation of the carbon powders was determined. Admixing of phenol decreases the particle size in this system and generates increasingly non-spherical structures. The evaluated particle sizes derived from gas sorption, SAXS and dynamic light scattering (DLS) are in good agreement with each other. During pyrolysis, the particles shrink to 84% of the initial value (particle size). One goal of this work was the synthesis of porous carbons with phenol and formaldehyde (PF) as precursors and subcritical drying (carbon xerogels). To extend the possible properties of the resulting carbon xerogels, several modifications of the synthesis parameters as well as in the production process were conducted. The results show, that with the precursors phenol-formaldehyde in aqueous solution using Na2CO3 as catalyst, porous xerogels can in principle be synthesized. However, the unusual gelation kinetics (flake forming instead of sol-gel-transition) prevents a detailed interpretation of this system, because the reproducibility of the results can not be ensured. With the system phenol and formaldehyde in aqueous solution using NaOH as catalyst, the gel network mostly collapses during drying. Only with excess formaldehyde a range in the synthesis parameters exists, where xerogels with low density (rhomin = 0,22 g/cm3) and relevant mesopore volume of up to 0,59 cm3/g can be synthesized. The most interesting combination of PF is with HCl as catalyst and n-propanol as solvent. With this system, highly porous carbon xerogels with low densities (rhomin = 0,23 g/cm3) and for xerogels high mesoporosity of up to Vmeso = 0,85 cm3/g can be synthesized. Hence, within the framework of this thesis highly porous monolithic xerogels based on PF as precursors in combination with subcritical drying have been successfully synthesiszed for the first time. Monitoring of the sol-gel-process by detection of the sol temperature provided important information about exo- and endothermal reactions. Moreover, the temperature dependence of the sol shows similarities for all investigated hydroxybenzene-formaldehyde combinations. The gelling point of the precursor systems can be reproduced reliably by determining a second local maximum of the sol temperature, which can be correlated with an enthalpy of gelation (second order process). By this way, a process control is possible, e.g. for the combination with particle technologies. The basic mechanisms of structure formation, i.e. the sol-gel-process on the one hand and the subcritical drying on the other hand were monitored in-situ by SAXS and discussed on the base of the obtained data. A complete adaptation of the established and accepted structure formation mechanism of RF based aerogels (forming and growing of particles by) can be ruled out for the PF-system. Moreover, microphase separation seems to be a relevant competing process for the particle forming in the PF-system. KW - Sol-Gel-Verfahren KW - Kohlenstoff KW - Aerogel KW - Xerogel KW - Phenol-Formaldehyd-Kondensationsprodukt KW - Nanopartikel KW - Adsorption KW - Röntgen-Kleinwinkelstreuung KW - sol-gel-technology KW - xerogel KW - phenolic resin KW - carbon KW - nanoparticle Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-45325 ER - TY - THES A1 - Wiener, Matthias T1 - Synthese und Charakterisierung Sol-Gel-basierter Kohlenstoff-Materialien für die Hochtemperatur-Wärmedämmung T1 - Synthesis and Characterisation Sol-Gel-based Carbon-Materials for High Temperature Thermal Insulation N2 - Gegenstand der vorliegenden Arbeit ist die Synthese, Charakterisierung und Optimierung von Kohlenstoff-Aerogelen (C-Aerogele) für den Einsatz als Hochtemperaturwärmedämmung (> 1000°C). C-Aerogele sind offenporöse monolithische Festkörper, die durch Pyrolyse von organischen Aerogelen entstehen. Die Synthese dieser organischen Vorstufen erfolgt über das Sol-Gel-Verfahren. Zur Charakterisierung der Morphologie wurde die innere Struktur der Aerogele mittels Raster- und Transmissionselektronenmikroskopie, Röntgendiffraktometrie (XRD), Raman-Spektroskopie, Stickstoffsorption und Röntgenkleinwinkelstreuung (SAXS) untersucht. Die thermischen Eigenschaften der Aerogele wurden mit Hilfe von Laser-Flash Messungen, dynamischer Differenzkalorimetrie (DSC), thermographischen und infrarot-optischen (IR) Messungen quantifiziert. Die innere Struktur von Aerogelen besteht aus einem dreidimensionalen Gerüst von Primärpartikeln, die während der Sol-Gel Synthese ohne jede Ordnung aneinander wachsen. Die zwischen den Partikeln befindlichen Hohlräume bilden die Poren. Die mittlere Partikel- und Porengröße eines Aerogels kann durch die Konzentration der Ausgangslösung und der Katalysatorkonzentration einerseits und durch die Synthesetemperatur und –dauer andererseits eingestellt werden. Der Bereich der mittleren Partikel- und Porengröße, der in dieser Arbeit synthetisierten Aerogele, erstreckt sich von einigen 10 Nanometern bis zu einigen Mikrometern. Die Dichten der Proben wurden im Bereich von 225 kg/m3 bis 635 kg/m3 variiert. Die Auswirkungen der Pyrolysetemperatur auf die Struktur und die thermischen Eigenschaften der C-Aerogele wurden anhand einer Probenserie erstmalig systematisch untersucht. Die Proben wurden dazu bei Temperaturen von 800°C bis 2500°C pyrolysiert bzw. temperaturbehandelt (geglüht). Um die einzelnen Beiträge zur Wärmeleitfähigkeit trennen und minimieren zu können, wurden die synthetisierten Aerogele thermisch mit mehreren Meßmethoden unter unterschiedlichen Bedingungen charakterisiert. Temperaturabhängige Messungen der spezifischen Wärmekapazität cp im Bereich von 32°C bis 1500°C ergaben für C-Aerogele verglichen mit den Literaturdaten von Graphit einen ähnlichen Verlauf. Allerdings steigt cp etwas schneller mit der Temperatur an, was auf eine „weichere“ Struktur hindeutet. Die maximale Abweichung beträgt etwa 11%. Messungen an einer Serie morphologisch identischer Aerogelproben, die im Temperaturbereich zwischen 800°C und 2500°C pyrolysiert bzw. geglüht wurden, ergeben eine Zunahme der Festkörperwärmeleitfähigkeit mit der Behandlungstemperatur um etwa einen Faktor 8. Stickstoffsorptions-, XRD-, Raman- und SAXS-Messungen an diesen Proben zeigen, dass dieser Effekt wesentlich durch das Wachstum der graphitischen Bereiche (Mikrokristallite) innerhalb der Primärpartikel des Aerogels bestimmt wird. Berechnungen auf Basis von Messungen der Temperaturleitfähigkeit weisen außerdem auch auf Veränderungen der Mikrokristallite hin. Gasdruckabhängige Messungen der Wärmeleitfähigkeit und der Vergleich zwischen Messungen unter Vakuum und unter Normaldruck an verschiedenen Aerogelmorphologien liefern Aussagen über den Gasanteil der Wärmeleitfähigkeit. Dabei zeigt sich, dass sich der Gasanteil der Wärmeleitfähigkeit in den Poren des Aerogels verglichen mit dem freien Gas durch die geeignete mittlere Porengröße erwartungsgemäß erheblich verringern lässt. Diese Ergebnisse stimmen in Rahmen der Messunsicherheit mit der Theorie überein. Durch infrarot-optische Messungen an C-Aerogelen konnte der Extinktionskoeffizient bestimmt und daraus der entsprechende Beitrag der Wärmestrahlung zur Wärmeleitfähigkeit berechnet werden. Temperaturabhängige Messungen der thermischen Diffusivität erlaubten mit der zur Verfügung stehenden Laser-Flash Apparatur die Bestimmung der Wärmeleitfähigkeit bis zu Temperaturen von 1500°C. Die Temperaturabhängigkeit der Wärmeleitfähigkeit der C-Aerogele zeigt eine Charakteristik, die mit den separat gemessenen bzw. berechneten Beiträgen zur Wärmeleitfähigkeit und der Theorie im Rahmen der Messunsicherheit gut übereinstimmen. Auf der Basis der gewonnenen Messdaten ist es möglich, die Wärmeleitfähigkeit von Aerogelen für Anwendungen über die maximale Messtemperatur von 1500°C durch Extrapolation vorherzusagen. Die niedrigste Wärmeleitfähigkeit der im Rahmen dieser Arbeit synthetisierten C-Aerogele beträgt danach etwa 0,17 W/(m•K) bei 2500°C unter Argonatmosphäre. Kommerziell erhältliche Hochtemperatur-Wärmedämmstoffe, wie z. B. Kohlefaserfilze oder Kohlenstoffschäume weisen Wärmeleitfähigkeiten im Bereich von etwa 0,7 bis 0,9 W/(m•K) bei einer Temperatur von 2000°C auf. Die Messungen zeigen, dass die vergleichsweise niedrigen Wärmeleitfähigkeiten von C-Aerogelen bei hohen Temperaturen durch die Unterdrückung des Gas- und Strahlungsbeitrags der Wärmeleitfähigkeit bedingt sind. N2 - The scope of the present work is the synthesis, the characterisation and the optimisation of carbon (c-) aerogels as high temperature insulation (> 1000°C). Carbon aerogels are open porous monolithic solids which are produced by pyrolysis of organic aerogels. These organic precursors are synthesized via the sol-gel route. For the structural characterisation of the aerogels the samples were investigated by scanning electron microscopy, transmission electron microscopy, X-ray diffraction (XRD), Raman spectroscopy, nitrogen sorption measurements and small angle X-ray scattering (SAXS). The thermal properties of the aerogels were quantified by laser flash measurements, differential scanning calorimetry (DSC), thermographic and infrared optical measurements. The inner structure of the aerogels consists of a three dimensional skeleton of primary particles which grow during the sol-gel synthesis and are connected to each other without any orientation. The voids between the particles are the pores. The mean particle and pore size of the aerogel can be tailored specifically via the concentration of the catalyst and the degree of dilution of the educt solution on the one hand and the synthesis time and -temperature on the other hand. The range of the mean particle and pore sizes of the aerogels synthesized within this work extends from some tens of nanometers to some microns. The density of the samples was varied in the range from 225 kg/m3 to 635 kg/m3. The impact of pyrolysis and annealing temperature on the morphology and the thermal properties of carbon aerogels was investigated for the first time systematically on one series of samples. For that purpose the samples were pyrolysed and annealed in the range of 800 to 2500°C. To separate and minimize the individual contributions, the thermal conductivity of the synthesized c-aerogels were thermally characterized by different measuring methods under various conditions. The measurements of the specific heat in the range of 32 to 1500°C yield values similar to the literature data of graphite; however slightly systematic higher values of up to 11% were observed as expected for “softer” solids with high interfacial surface areas. Measurements of a series of carbon aerogels with identical morphology, however different annealing temperatures, show an increase of the solid thermal conductivity with increasing annealing temperature of up to a factor of about 8 for temperatures between 800°C and 2500°C. Nitrogen sorption-, XRD-, Raman-, and SAXS-measurements reveal that this effect is dominated by the growth of graphitic domains (microcrystallites) within the primary particles of the aerogel. In addition calculations based on measurements of the thermal diffusivity indicate changes of the microcrystallites. Measurements of the thermal conductivity of aerogels with different morphologies as a function of gas pressure and the comparison of the data taken under vacuum and normal pressure yield informations about the gaseous contribution to the thermal conductivity. As expected, the gaseous thermal conductivity within the pores of the aerogel can be reduced compared to the free gas when the pore size is in the range of the mean free path of the gas molecules or smaller. The results agree with the theory within the measuremental uncertainties. Infrared optical measurements provide the extinction coefficient of carbon aerogels, from which the radiative contribution to the thermal conductivity could be determined. The laser flash equipment available at the ZAE Bayern allows measurements of the thermal diffusivity up to 1500°C from which the thermal conductivity can be determined. The thermal conductivity of carbon aerogels as a function of temperature is well described by a superposition of the single contributions determined separately and the theoretical predictions within the uncertainties. Based on the experimental data it is possible to extrapolate the thermal conductivity of carbon aerogels for applications beyond the maximum temperature investigated (1500°C). Thus the lowest thermal conductivity of the carbon aerogels synthesized in the scope of this work is about 0,17 W/(m•K) at 2500°C in argon atmosphere. This value is about a factor 4 lower than for the best commercially available insulation material. KW - Hochtemperatur KW - Aerogel KW - Hochtemperatur KW - Kohlenstoff KW - Wärmeisolierstoff KW - Sol-Gel-Verfahren KW - Bayerisches Zentrum für Angewandte Energieforschung / Abteilung Wärmedämmung und Wärmetransport KW - thermal insulation KW - carbon KW - aerogel KW - high temperature KW - nano Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-44245 ER - TY - THES A1 - Holch, Florian T1 - Investigation of Intermolecular Interaction in Organic Thin Films by means of NEXAFS Spectroscopy T1 - Untersuchung der Intermolekularen Wechselwirkung in Organischen Dünnschichten mittels NEXAFS Spektroskopie N2 - The present work reports on the electron–vibron coupling in large organic molecules and particularly on the intermolecular interaction in molecular condensates. The optical and electrical properties of these organic systems are in the focus of attention due to their crucial importance for the development of (hybrid) organic electronic devices. In particular, the charge transport mechanism and hence the interaction between condensed molecules is a matter of debate [1–4]. In order to shed light on this interaction, the spectroscopic signatures of isolated molecules in the gas phase and their condensed counterparts have been studied. The applied technique, near–edge x–ray absorption fine structure (NEXAFS) spectroscopy, is a local probe with high chemical selectivity, well suited for the investigation of the electronic structure of molecular valence levels [5]. In the experimental part, the experimental set–up developed in this work is described with special attention to the characteristic issues of gas phase measurements, energy calibration and the subsequent data evaluation. The high quality gas phase and solid state NEXAFS spectra are analysed with respect to energy positions, shape and intensity of the sharp pi*–resonances characteristic for these aromatic molecules. Where applicable, a detailed Franck–Condon (FC) analysis of the vibronic fine structure has been performed, yielding additional information on the changes that occur upon solid state formation. Together with former results on vibrational features in large organic molecules, this information has been used to investigate the correlation of vibrational energies in the ground and electronically excited state. We find a relatively good agreement with other empirical studies on vibronic structures in photoelectron spectroscopy (PES) spectra of small molecules [6]. The molecular compounds investigated are in general believed to interact via weak van–der–Waals forces only. The present results however reveal distinct differences between the spectra of the gas and solid phase that can not be explained within the context of a mere interaction by dispersive forces. In detail, differential red–shifts of 0.1 to 0.3eV of transitions assigned to the aromatic system have been observed in the C–K spectra of benzene–tetracarboxylic acid dianhydride (BTCDA), 1,4,5,8–naphthalene–tetracarboxylic acid dianhydride (NTCDA), and 3,4,9,10–perylene–tetracarboxylic acid dianhydride (PTCDA) upon solid state formation. From BTCDA to PTCDA the shift increases, indicating an improving intermolecular interaction with molecular size or a closer molecular packing. In contrast, all transitions assigned to the anhydride carbon atom (C1) do not show any shift. For the O–K spectra, small changes in relative intensity have been observed for BTCDA and NTCDA. In case of PTCDA, a blue–shift of up to 0.2eV is evident for the OB 1sLEMO+1 transition. Theoretical models for the intermolecular interaction have been proposed in this work, based on a change of molecular geometry and interaction of adjacent molecules in the ground and excited state, respectively. While an interaction of adjacent molecular orbitals may explain the experimental findings for one particular molecule, this model falls short for a comprehensive explanation of all three dianhydrides. For an interaction in the excited state, the excitonic coupling with the neighbours attached at an angle, quantum chemical calculations yield no significant change in peak positions for NTCDA. Unfortunately, results for the stacked neighbours as well as the larger compound PTCDA are still lacking. For tris (8–quinolinol) aluminum (Alq3), the observed peak–shifts are restricted to just one unoccupied orbital, the LEMO+2, which is mainly localised at the phenoxide side of the quinolinol ligands. Although the shifts differ for the individual edges, the main interaction can therefore be assigned to this orbital. In summary, NEXAFS spectroscopy, if performed with great care in terms of experimental details and data analysis especially for the gas phase data, provides very detailed and highly interesting data on the changes of the electronic structure of organic molecules upon condensation. The present data can be applied as a reference for further experimental and (highly desired) theoretical investigations, which are needed for a comprehensive understanding of the complex interaction mechanisms between organic molecules. N2 - Die vorliegende Arbeit beschäftigt sich mit der Kopplung vibronischer und elektronischer Anregungen in großen organischen Molekülen. Die Mechanismen des Ladungstransportes und damit auch die zu Grunde liegende Wechselwirkung dieser Moleküle im Festkörper sind immer noch Gegenstand aktueller Diskussionen [1–4]. Mit der Untersuchung der spektroskopischen Eigenschaften von einerseits freien, also gasförmigen Molekülen, andererseits von (stark) wechselwirkenden Molekülen im Festkörper soll mit der vorliegenden Arbeit ein Beitrag zum besseren Verständnis der intermolekularen Wechselwirkung geleistet werden. Als Methode wurde die Röntgen–Nahkanten–Spektroskopie (NEXAFS) angewandt, die durch ihre chemische Selektivität lokale Informationen über die elektronische Struktur der Valenzzustände der untersuchten organischen Moleküle liefern kann [5]. Im experimentellen Teil wird eine Apparatur zur Untersuchung der organischen Moleküle in der Gasphase, die im Rahmen dieser Arbeit entwickelt wurde, vorgestellt. Das Hauptaugenmerk liegt dabei auf den Besonderheiten der Gasphasenmessungen sowie der Energiekalibrierung und anschließenden Datenauswertung. Die qualitativ hochwertigen Spektren werden nach Gesichtspunkten der energieposition, Form und Intensität der für die organischen Moleküle typischer Weise sehr scharfen pi* Resonanzen ausgewertet. Für Spektren mit gut aufgelöster Feinstruktur wurde die darunter liegende Schwingungsstruktur mit Hilfe einer Franck–Condon Auswertung untersucht, woraus sich weitere Informationen über die Einflüsse im Festkörper gewinnen ließen. Die dabei gesammelten Daten wurden zusammen mit den Ergebnissen früherer Untersuchungen der Schwingungsfeinstruktur organischer Moleküle herangezogen, um den Zusammenhang zwischen den Schwingungsenergien im elektronisch angeregten und im Grundzustand zu bestimmen. Dabei ergab sich eine gute Übereinstimmung mit empirischen Untersuchungen der Schwingungsstruktur kleiner Moleküle anhand von Photoelektronenspektroskopie (PES) [6]. Die vorliegenden Ergebnisse zeigen ausgeprägte Unterschiede in den Spektren der verschiedenen Phasen, die sichnicht im Rahmen einer Wechselwirkung durch rein dispersive Kräfte erklären lassen. Im Einzelnen traten zwischen den Gasphasen– und Festkörperspektren der C–K Kanten von 1,2,4,5–Benzoltetracarbonsäuredianhydrid BTCDA, 1,4,5,8–Naphthalintetracarbonsäuredianhydrid NTCDA und 3,4,9,10–Perylentetracarbonsäuredianhydrid PTCDA Rotverschiebungen von 0,1 bis 0,3eV auf. Die entsprechenden elektronischen Übergänge sind jeweils dem aromatischen System zugeordnet und zeigen in der Reihe von BTCDA zu PTCDA eine zunehmende Verschiebung. Dies deutet auf eine verstärkte Wechselwirkung bei größeren Molekülen, beziehungsweise bei einer dichteren Packung hin. Übergänge die dem Anhydrid Kohlenstoff (C1) zugeordnet sind, zeigen jedoch keinerlei Verschiebung. Die Spektren der O–K Kanten von BTCDA und NTCDA weisen lediglich eine leichte Veränderung der relativen Intensitäten auf. Im Falle von PTCDA wurde eine Blauverschiebung von bis zu 0,2eV für den OB 1s LEMO+1 Übergang beobachtet. In dieser Arbeit werden einige theoretische Modelle vorgeschlagen, die auf einer Änderung der Molekülgeometrie bzw. einer Wechselwirkung der Molekülorbitale sowohl im Grund– als auch im angeregten Zustand basieren. Betrachtet man lediglich eine einzelne Molekülsorte, so liefert z.B. eine Wechselwirkung der Orbitale benachbarter Moleküle eine zufriedenstellende Erklärung für die beobachteten Änderungen. Bei einer umfassenden Betrachtung aller Moleküle der Dianhydrid Gruppe scheitert dieses Modell jedoch. Erste quantenchemische Berechnungen der Wechselwirkung mittels einer exzitonischen Kopplung der NTCDA Moleküle mit ihren gewinkelten Nachbarn lieferten keine nennenswerten Verschiebungen der Resonanzenergien. Weiterführende Rechnungen dieser Art stehen jedoch für die gestapelten Nachbarn sowie für das größere PTCDA noch aus. Bei dem Molekül Tris(8-chinolinol)aluminium Alq3 lassen sich alle beobachteten Verschiebungen einem Orbital, dem LEMO+2 zuordnen. Obwohl die Verschiebungen für die verschiedenen Absorptionskanten unterschiedlich sind, lässt sich die Wechselwirkung des Moleküls somit diesem Orbital, das an der Phenolat Seite des Liganden lokalisiert ist, zuordnen. Zusammenfassend lässt sich sagen, dass die Röntgen–Nahkanten Spektroskopie hochinteressante und sehr genaue Informationen über die Änderung der elektronischen Struktur organischer Moleküle beim Übergang in die kondensierte Phase liefern kann. Die Ergebnisse dieser Arbeit können als eine Referenz für zukünftige experimentelle und theoretische Untersuchungen betrachtet werden. Für ein umfassendes Verständnis der komplexen Wechselwirkung zwischen organischen Molekülen sind diese weiteren Untersuchungen unabdingbar. KW - Organisches Molekül KW - NEXAFS KW - Zwischenmolekulare Kraft KW - Dünne Schicht KW - NEXAFS KW - gas phase KW - organic molecule KW - intermolecular interaction Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-43630 ER - TY - THES A1 - Blum, Monika T1 - Electronic and Chemical Properties of Liquids and Solutions T1 - Elektronische und Chemische Eigenschaften von Flüssigkeiten und Lösungen N2 - Die hier vorgelegte Doktorarbeit wurde der Untersuchung der elektronischen und chemischen Eigenschaften von Flüssigkeiten und Lösungen mittels weicher Röntgenstrahlen gewidmet. Die verwendeten Photonen-rein-Photonen-raus Methoden, namentlich Röntgenabsorptionsspektroskopie (XAS), Röntgenemissionsspektroskopie (XES) und resonante inelatische Röntgenstreuung (RIXS) stellten sich als exzellente Methoden heraus, diese Systeme zu untersuchen. Im Rahmen dieser Arbeit wurde eine experimentelle Anlage gebaut, welche notwendig ist um die genannten Messmethoden zur Untersuchung von Flüssigkeiten zu nutzen. Zentraler Teil dieser Anlage ist eine neuartige Durchflussnasszelle, die die Handhabung der Messungen im Vergleich zu älteren Nasszellen vereinfacht. Dabei ist sie variabel genug, um sie zur Messung von Gasen oder Flüssig-Fest-Grenzflächen anzupassen. Mit der Zelle ist es möglich, die zu untersuchenden Flüssigkeiten unter gut kontrollierten Bedingungen (Temperatur und Durchfluss) zu untersuchen. Die Durch-flussnasszelle ist Teil einer neuen Synchrotronendstation (SALSA). Für die Messungen stehen dabei ein Elektronenanalysator und ein neuartiges hochauflösendes, hocheffizientes Weichröntgenspektrometer zur Verfügung. Mit diesem Spektrometer ist es möglich, zweidimensionale RIXS Karten in sehr kurzer Zeit (wenige Minuten) aufzunehmen, welche die vollständige Information von Röntgenabsorption und Röntgenemission beinhalten. Mit Hilfe der neu entwickelten Instrumentierung war es möglich, eine Reihe unterschiedlicher Flüssigkeiten und Lösungen zu untersuchen. Als erstes System wur-den wässrige NaOH bzw. NaOD Lösungen erforscht. Die nicht-resonanten Emissionsspektren sind stark von dem genutzten Lösungsmittel dominiert und haben daher Ähnlichkeit mit den Spektren von Wasser und schwerem Wasser. Es war möglich, eine Abhängigkeit der Spektren von der Ionenkonzentration festzustellen. Trotz der Ähnlichkeit der Spektren zu Wasserspektren war es aufgrund eines OH- / OD- spezifischen Charakteristikums an der Absorptionskante möglich, resonante Spektren von OH-/OD- ohne Beitrag des Spektrums von Wasser zu erhalten. Diese Spektren zeigten Anzei-chen für Protonendynamik auf der Zeitskala der Rumpflochlebensdauer. Für die Emissionsspektren von NaOH im festen Zustand konnten an der hochenergetischen Hauptline eine niederenergetische und hochenergetische Schulter festgestellt werden. Diese Schultern sind das Ergebnis des Eigendissoziationsprozesses von OH- Ionen, bei welchem O2- Ionen und H2O gebildet werden. Weiterhin waren die Untersuchungen an Natronlauge von Interesse für die folgenden Aminosäurenmessungen, da Natronlauge genutzt wurde, um die gewünschten pH-Wert Änderungen zu erreichen. Die zweite Gruppe von Flüssigkeiten, die in dieser Arbeit untersucht wurde, sind Aminosäuren. Aminosäuren sind die Bausteine für Peptide und Proteine und da-mit sehr wichtig für alle Biowissenschaften. Als Vertreter der Aminosäuren wurden Glycin – die kleinste Aminosäure, und Lysin – eine Aminosäure mit zwei Amingruppen – untersucht. Beide Aminosäuren reagieren sensibel auf Änderungen des pH-Wertes mit einer Deprotonierung/Protonierung der Amingruppe (NH2 ↔ NH3+). In den experimentellen Spektren konnte ein deutlicher Einfluss dieser Prozesse gefunden werden. Die gemessenen Spektren der protonierten Aminosäuren zeigen deutliche An-zeichen für Dissoziationsprozesse. Erste DFT Rechnungen bestätigten diese Anzeichen und unterstützen das Dissoziationsmodell der Aminosäuren. Qualitativ lässt sich sagen, dass sich die hochenergetische Linie in den N K XES Spektren auf die unprotonierten Amingruppen bezieht und der niederenergetische Bereich im Spektrum den protonierten Gruppen zugeordnet werden kann. Neben Aminosäuren sind auch Alkohole und organische Säuren von Bedeutung für biologische Prozesse. Daher wurden als Vertreter aus diesen Gruppen der einfachste Alkohol (Methanol) und die einfachste Säure (Essigsäure) untersucht. Die O K und C K XES Spektren von flüssigem Methanol stimmen hervorragend mit Gasphasen DFT Rechnungen überein. Dies lässt den Schluss zu, dass der Einfluss der Umgebung (Wasserstoffbrückenbindungen) auf die Spektren gering ist. Durch resonante Anregung in geeignete unbesetzte Orbitale war es möglich, die zwei unterschiedlichen Sauerstoffatome der Essigsäure zu unterscheiden und auch einen Anhaltspunkt für die Carboxylgruppen-spezifischen C K XES Spektren zu bekommen. An der Kohlenstoffkante zeigten die XAS Spektren große Unterschiede zu Gasphasenmessungen, was ein Hinweis auf den Einfluss der Wasserstoffbrückenbindungen ist. Die Untersuchung der elektronischen und chemischen Eigenschaften von Flüssigkeiten und Lösungen ist immer noch ein sehr junges Forschungsgebiet. Die Ergebnisse dieser Doktorarbeit zeigen, welch interessantes Forschungsgebiet dies ist. Die vorgestellten Ergebnisse können als die grundlegende Basis für alle weiteren Untersuchungen in diesem Forschungsfeld angesehen werden. N2 - This thesis was dedicated to the studies of the electronic and chemical properties of liquids and solutions using soft x-ray spectroscopies. The used photon-in-photon-out methods namely x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), and resonant inelastic x-ray scattering (RIXS) appeared to be an excellent choice for these studies. In the framework of this thesis, the necessary experimental setup for using the above mentioned experimental techniques on liquids was developed. Hereby, a new flow-through liquid cell was introduced which simplifies the studies of liquids and solutions. The cell design is very flexible and thus can be modified for gases and liquid/solid interfaces. With this cell it is possible to study the samples under well-controlled conditions (temperature and flow rate). The novel flow-through liquid cell is part of the new SALSA synchrotron endstation including an electron analyzer and a novel high-resolution, high-transmission soft x-ray spectrometer. The latter makes it possible to measure two-dimensional RIXS maps in a very short time, which include the full excitation and emission information in one plot. Making use of the new instrumentation, a variety of different liquids and solutions were investigated. As first system, aqueous solutions of sodium hydroxide (NaOH) and sodium deuteroxide (NaOD) were investigated. In the XAS as well as in the XES spectra a pronounced concentration dependence was found. At non-resonant energies, the spectra are dominated by the solvent and thus look similar to water. Making use of the pre-pre-edge in the absorption spectra which can exclusively be attributed to OH- / OD- it was possible to extract the resonant emission spectra of the ions which show an indication for proton dynamics during the core-hole lifetime. For the solid state NaOH XES spectra it was possible to reveal a high energetic shoulder and a low energetic shoulder at the high energy emission feature. These shoulders can be assigned to self-dissociation processes where OH- forms O2- ions and H2O. The study of NaOH was also of interest for the studies of the amino acids, which were in the focus of the next part, since the pH-values of the respective solutions were controlled by NaOH. In the next part of this thesis, amino acid solutions were investigated. Amino acids are the building blocks of peptides and proteins and thus important for life science. The investigated representatives were glycine, the simplest amino acid, and lysine, an amino acid with two amine groups. Both amino acids react on pH-value changes at the amine group where the local environment at the nitrogen atom changes (NH2 ↔ NH3+). A strong change of the spectra induced by this protonation/deprotonation could be found. Furthermore, for low pH-values (protonated amine groups) the amine groups are influenced by strong proton dynamics. First DFT calculations confirm the dissociation model of the amino acids. Qualitatively the high energy peak in the N K XES spectra can be attributed to the deprotonated amine group and the low energy area for the protonated amine group. Besides amino acids, alcohols and acids are important in biological processes. Therefore, the smallest alcohol (methanol) and the smallest carboxylic acid (acetic acid) were under investigation. For the liquid methanol XES spectra a very good agreement with DFT calculations of gas phase methanol could be found. This observation suggests that the influence of the environment (hydrogen bonding) on the spectra is small. The achieved spectra are in good agreement with DFT calculations found in literature. It was possible to selectively excite the two non-equivalent oxygen atoms in acetic acid and to reveal the carboxyl specific C K XES. The carbon XAS spectra showed strong differences compared to gas phase measurements which might be a hint for the influence of the hydrogen bond network. The investigation of the electronic and chemical properties of liquids and solutions is a very young field of research and the results presented in this thesis show that it is a very interesting topic. The presented results can be seen as the fundamental frame work for all following studies. With the understanding of basic, i.e., simple, systems as shown in this work it will be possible to understand complex biological systems in their native environment, e.g., peptides and proteins, which are the building blocks of life. KW - Röntgenspektroskopie KW - Natriumhydroxid KW - Elektronische Eigenschaft KW - Röntgenstrahlung KW - Röntgenabsorptionsspektroskopie KW - Aminosäuren KW - RIXS KW - XES KW - XAS KW - amino acids KW - liquid cell Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-43732 ER - TY - THES A1 - Kießling, Tobias T1 - Symmetry and Optical Anisotropy in CdSe/ZnSe Quantum Dots N2 - Halbleiter Quantenpunkte (QDs) erregen immenses Interesse sowohl in der Grundlagen- als auch der anwendungsorientierten Forschung, was sich maßgeblich aus ihrer möglichen Nutzung als Fundamentalbausteine in neuartigen, physikalisch nicht-klassischen Bauelementen ergibt, darunter die Nutzung von QDs als gezielt ansteuerbare Lichtquellen zur Erzeugung einzelner Paare polarisationsverschränkter Photonen, was einen Kernbaustein in den intensiv erforschten optischen Quantenkryptographiekonzepten darstellt. Ein goßes Hindernis stellen hierbei die in allen aktuell verfügbaren QDs intrinsisch vorhandenen, ausgeprägten Asymmetrien dar. Diese sind eine Begleiterscheinung der selbstorganisierten Wachstumsmethoden der QDs und sie treten in verschiedenen Gestalten, wie Formasymmetrie oder inhomogenen Verspannungsverhältnissen innerhalb der QDs, auf. Im Gegenzug verursachen jene Asymmetrien deutliche Anisotropien in den optischen Eigenschaften der QDs, wodurch das optische Ansprechverhalten klassisch beschreibbar wird. Aus Sicht der anwendungsorientierten Forschung stehen Asymmetrien daher im Ruf ungewollte Nebeneffekte zu sein und es wird mit großem Aufwand daran geforscht, diese unter Kontrolle zu bringen. Für die Grundlagenforschung sind anisotrope QDs jedoch ein interessantes Modellsystem, da an ihnen fundamentale Quantenphysik beobachtbar ist, wobei anders als in Atomen die einschnürenden Potentiale nicht zwangsläufig zentralsymmetrisch sein müssen. Auf der Basis winkel- und polarisationsaufgelöster Photolumineszenzuntersuchungen (PL) wird die Anisotropie des linearen Polarisationsgrades in der Lumineszenzstrahlung (kurz: optische Anisotropie) der an CdSe/ZnSe-QDs gebundenen Exzitonen untersucht. Es wird gezeigt, dass die Elektron-Loch Austauschwechselwirkung in asymmetrischen QDs zu einer effektiven Umwandlung linearer in zirkulare Polarisationsanteile und umgekehrt führt. Die experimentellen Befunde lassen sich erfolgreich im Rahmen eines Exziton-Pseudospinformalismus, der auf der durch die Austauschwechselwirkung induzierten Feinstruktur der hellen Exzitonzustände basiert, beschreiben. Dies legt nahe, dass QDs funktionelle Bauelemente in hochintegrierten rein optischen Architekturen jenseits der viel diskutierten nichtklassischen Konzepte darstellen können, insbesondere als optische Polarisationskonverter und/oder -modulatoren. Weiterhin wird der Exziton-Pseudospinformalismus in Untersuchungen zur optischen Ausrichtung in QDs genutzt und gezeigt, wie so die anders nicht direkt messbare Symmetrieverteilung eines Ensembles von QDs detektiert werden kann. Diese Messungen stellen ein wertvolles Bindeglied zwischen optischen und strukturellen Untersuchungen dar, da sie einen direkten experimentellen Zugang zum mit topologischen Methoden nicht einsehbaren Anordnungsverhalten eingekapselter QDs liefern. Abschließend wird die optische Anisotropie unter Anlegung eines Magnetfeldes in der QD-Ebene untersucht. Dabei wird beobachtet, dass die Achse der linearen Polarisation der Lumineszenzstrahlung entweder entgegengesetzt zur Magnetfeldrichtung in der Probenebene rotiert oder fest entlang einer gegebenen kristallographischen Achse orientiert ist. Eine qualitative Auswertung der Ergebnisse auf der Basis des exzitonischen Pseudospin-Hamiltonian belegt, dass diese Polarisationsanteile durch isotrope und anisotrope Beiträge des Schwerloch Zeeman Terms begründet werden, wobei die anisotropen Anteile für ein kritisches Magnetfeld von B=0, 4 T gerade die forminduzierten uni-axialen Polarisationsanteile kompensieren, so dass ein optisches Verhalten resultiert, das man für hochsymmetrische QDs erwarten würde. Zur quantitativen Beschreibung wurde der vollständige k.p-Hamiltonianin der Basis der Schwerlochexzitonzustände numerisch ausgewertet und damit die optische Polarisation als Funktion der Magnetfeldstärke und -orientierung berechnet. Die Modellrechnungen stimmen mit die gemessenen Daten im Rahmen der experimentellen Unsicherheit mit einem jeweils probenspezifischen Parametersatz quantitativ überein. Dabei wird gezeigt, dass ein Ensemble von QDs ein optisches Signal, das man für hochsymmetrisches QDs erwarten würde, erzeugen kann ohne dass eine Symmetrisierung der hellen Exzitonzustände stattfindet, wie sie für nicht-klassische Anwednungen notwendig ist. Daraus ergibt sich, dass Konzepte, die Magnetfelder in der Probenebene zur Symmetrisierung des optischen Signals nutzen, mindestens die vier stark durchmischten Schwerlochexzitonzusände berücksichtigen müssen und eine Beschreibung, die nur die beiden hellen Exzitonzustände in Abwesenheit magnetischer Felder beinhaltet, zu kurz greift. Für die kontrovers geführte Diskussion bezüglich aktueller experimenteller Studien zur Erzeugung polarisationsverschränkter Photonen in asymmetrischen QDs ist daher zu verstehen, dass von solch einer vereinfachten Beschreibung nicht a priori erwartet werden kann, verlässliche Ergebnisse in Bezug auf exzitonische Bellzustände zu erzeugen. N2 - Semiconductor Quantum Dots (QDs) have been attracting immense interest over the last decade from both basic and application-orientated research because of their envisioned use as fundamental building blocks in non-classical device architectures. Their presumable ease of integration into existing semiconductor technology has bought them the reputation of being cost-efficiently scalable and renders them a place among the top candidates in a wide range of proposed quantum logic and quantum information processing schemes. These include the highly acclaimed use of QD as triggered sources of single pairs of entangled photons, which is a key ingredient of most of the intensivly investigated optical quantum cryptography operations. A big obstacle towards these goals are the pronounced asymmetries that are intrinsically present in all currently availabe semiconductor QD systems. They are a natural by-product that stems from the employed self-assembled growth methods and manifest in various forms such as shape-asymmetry, inhomogeneous strain distribution within the QD and concomittant piezo-elecric fields. These asymmetries in return give rise to distinct anisotropies in the optical properties of QDs, which in fact render their optical response classic. For device oriented research these anisotropies are therefore typically considered unwanted and actively researched to be controlled. They are, however, interesting from a fundamental point of view, as anisotropic QDs basically provide a testbed system for fundamental atom-like quantum physics with non-centrosymmetric potentials. As shall be shown in the current work, this gives rise to novel and interesting physics in its own right. Employing photoluminescence spectroscopy (PL) we investigate the optical anisotropy of the radiative recombination of excitons confined to CdSe/ZnSe QDs. This is done by angle-dependent polarization-resolved PL. We demonstrate experimentally that the electron-hole exchange interaction in asymmetric QDs gives rise to an effective conversion of the optical polarization from linear to circular and vice versa. The experiment is succesfully modeled in the frame of an exciton pseudospin-formalism that is based on the exchange induced finestructure splitting of the radiative excitonic states and unambiguously proves that the observed polarization conversion is the continuous-wave equivalent to quantum beats between the exchange split states in the time domain. These results indicate that QDs may offer extended functionality beyond non-classical light sources in highly integrated all-optical device schemes, such as polarization converters or modulators. In a further extension we apply the exciton pseudospin-formalism to optical alignment studies and demonstrate how these can be used to directly measure the otherwise hidden symmetry distribution over an ensemble of QDs. This kind of measurement may be used on future optical studies in order to link optical data more directly to structural investigations, as it yields valuable information on capped QDs that cannot be looked at directly by topological methods. In the last part of this work we study the influence of an in-plane magnetic field on the optical anisotropy. We find that the optical axis of the linear polarization component of the photoluminescence signal either rotates in the opposite direction to that of the magnetic field or remains fixed to a given crystalline direction. A qualitative theoretical analysis based on the exciton pseudospin Hamiltonian unambiguously demonstrates that these effects are induced by isotropic and anisotropic contributions to the heavy-hole Zeeman term, respectively. The latter is shown to be compensated by a built-in uniaxial anisotropy in a magnetic field B=0.4 T, resulting in an optical response that would be expected for highly symmetric QDs. For a comprehensive quantitative analysis the full heavy-hole exciton k.p-Hamiltonian is numerically calculated and the resulting optical polarization is modeled. The model is able to quantitatively describe all experimental results using a single set of parameters. From this model it is explicitly seen that a optical response characteristic for high symmetry QDs may be obtained from an ensemble of asymmetric QDs without a crossing of the zero-field bright exciton states, which was required for application of QDs in non-classical light sources. It is clearly demonstrated that any scheme using in-plane magnetic fields to symmetrize the optical response has to take into account at least four optically active states instead of the two observed in the absence of magnetic fields. These findings may explain some of the major disagreement on recent entanglement studies in asymmetric QDs, as models that do not take the above result into account cannot be a priori expected to provide reliable results on excitonic Bell states. KW - Quantenpunkt KW - Cadmiumselenid KW - Wide-gap-Halbleiter KW - Zinkselenid KW - Optische Anisotropie KW - Symmetrie KW - Optik KW - Austauschaufspaltung KW - optical polarization conversion Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40683 ER - TY - THES A1 - Krause, Stefan T1 - Determination of the transport levels in thin films of organic semiconductors T1 - Bestimmung der Tranportniveaus in organischen Dünnschichten N2 - The approach of using the combination of Ultraviolet (UPS) and Inverse Photoemission (IPS) to determine the transport levels in thin films of organic semiconductors is the scope of this work. For this matter all influences on the peak position and width in Photoelectron Spectroscopy are discussed with a special focus on organic semiconductors. Many of these influences are shown with experimental results of the investigation of diindenoperylene on Ag(111). These findings are applied to inorganic semiconductors silicon in order to establish the use of UPS and IPS on a well-understood system. Finally, the method is used to determine the transport level of several organic semiconductors (PTCDA, Alq3, CuPc, DIP, PBI-H4) and the corresponding exciton binding energies are calculated by comparison to optical absorption data. N2 - Das Ziel dieser Arbeit ist mit Hilfe von Ultravioletter (UPS) und Inverser Photoelektronenspektroskopie (IPS) die Transportniveaus in organischen Dünnschichten zu bestimmen. Um dies zu erreichen, werden zunächst alle Einflüsse auf die Signalposition und -breite in der Photoelektronenspektroskopie mit besonderem Augenmerk auf die organischen Halbleiter diskutiert. Viele dieser Einflüsse werden anhand von experimentelle Daten der Untersuchung von Diindenoperylene auf Ag(111) gezeigt. Basierend auf dieser Diskussion wird die Verwendung von UPS und IPS an dem anorganischen und gut verstandenem Halbleiter Silizium etabliert. Zuletzt wird die nun etablierte Methode auf organische Halbleiter (PTCDA, Alq3, CuPc, DIP, PBI-H4) angewandt und die Lage deren Transportniveaus bestimmt. Durch den Vergleich mit optischen Absorptionsdaten können darüber hinaus auch Exzitonenbindungsenergien in diesen Materialien berechnet werden. KW - Organischer Halbleiter KW - Dünne Schicht KW - Transportprozess KW - Photoelektronenspektroskopie KW - Energielücke KW - Halbleiterschicht KW - Siliciumhalbleiter KW - Metall-Halbleiter-Kontakt KW - Ultraviolett-Photoelektronenspektroskopie KW - Inverse Photoemissions KW - transport gap KW - organic semiconductors KW - UPS KW - IPES KW - exciton binding energy Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40470 ER - TY - THES A1 - Balla, Dávid Zsolt T1 - Intermolecular zero-quantum coherence detection for in vivo MR spectroscopy T1 - In vivo MR Spektroskopie mittels intermolekularen Nullquantenkohärenzen N2 - Nuclear magnetic resonance has numerous applications for in vivo diagnostics. However, methods requiring homogeneous magnetic fields, particularly magnetic resonance spectroscopy (MRS) techniques, have limited applicability in regions near or on anatomical boundaries that cause strong inhomogeneities. In cases where the shim system can not or just partly correct for these inhomogeneities, methods based on intermolecular multiple quantum coherence (iMQC) detection can provide an alternative solution for in vivo MRS. This dissertation presented the development, validation and application potential of a novel MRS pulse sequence detecting intermolecular zero-quantum coherences (iZQC) with special emphasis on in vivo experiments. In addition, the detection limit and spectral behaviour of iZQC-MRS under modelled realistic conditions were systematically approached for the first time. Based on the original sequence used to detect two dimensional (2D) iZQC-spectra, dubbed HOMOGENIZED, methodological development led to increased sensitivity and water suppression, and decreased T2-relaxation effects through the application of a frequency selective 90° RF-pulse in place of a non selective beta-pulse. Best water suppression was achieved by placing a pair of selective refocusing units immediately prior to the acquisition window. The same placement was found to be optimal also for single voxel localization units based on slice selective spin echo refocusing. By voxel selection before the iZQC-MRS sequence, the chemical shift artefact could be avoided. However, this led to significant residual signal from outside the voxel. Analytical derivations of signal evolution for several sequences presented in this dissertation provide useful additions to the iZQC MRS theory. In vivo applications of the developed sequence provided high quality spectra in the central nervous system of the rat, the mouse brain and in subcutaneous xenograft tumor grown on the thigh of the mouse. In all these 2D spectra, the limiting factor of the resolution in the indirect dimension was the digital sampling rate, rather than inhomogeneous line broadening. Nevertheless, linewidths of the cross-peaks were similar or narrower than along the direct axis, where the sampling rate was about ten times higher. The first MR spectroscopic investigation of the rat spinal cord at 17.6 T was performed. Through its insensitivity to macroscopic field inhomogeneities, the localized iZQC method allowed for the selection of larger voxels than conventional methods and still provided the same spectral resolution. This property was used also in tumor tissue to propel the relative signal to noise (SNR) efficiency of the iZQC spectroscopy for the first time above the SNR efficiency of a conventional sequence. Future applications for fast metabolite count in large inhomogeneous organs, like a tumor, are thinkable. Extensive simulations and phantom experiments assessed the limit of iZQC cross-peak detection in presence of local field distortions. The order of maximum volume ratio between dipole source and voxel was found to be between 0.1 % and 1 %. It is an essential conclusion of this study that the dominant effect of microscopic to mesoscopic inhomogeneities on iZQC spectra under general in vivo conditions, like for voxels greater than (1 mm)³ and metabolite concentrations in the millimolar range, is a cross-peak intensity reduction and not line broadening. The iZQC method provided resolution enhancement in comparison to conventional MRS even in the presence of clustered paramagnetic microparticles. However, the vision of iZQC spectroscopy in green leafs or the lung epithelium has to be, unfortunately, abandoned, because cross-peaks can be observed until the volume of the separating medium is much larger than the volume of local dipole sources. Intermolecular zero-quantum coherence spectroscopy remains an exciting field in NMR research on living organisms. It provides access to the monitoring of relative metabolite concentration changes in the presence of microscopic iron particles, which raises realistic hopes for new applications in studies using stained stem cells. N2 - Magnetische Kernresonanz (NMR) hat viele diagnostische in vivo Anwendungen. Trotzdem können einige Methoden, wie die NMR-Spektroskopie (MRS), nur in Magnetfeldern mit hervorragender Homogenität angewendet werden. Das ist eine Voraussetzung, die in der Nähe von anatomischen Grenzregionen aufgrund der starken Suszeptibilitätsgradienten nicht erfüllt ist. NMR Forschungstomographen sind in der Regel mit zusätzlichen Shim-Spulen aufgerüstet, die Feldschwankungen kompensieren sollen. Wenn die durch ein Shim-System erreichte Homogenität immer noch nicht genügt, können alternative NMR-Methoden, wie etwa die Messung intermolekularer Mehrquantenkohärenzen (iMQC) die Lösung bereitstellen. Die hier vorgelegte Dissertation zeigt die Entwicklung und Validierung, sowie das Anwendungspotenzial einer neuen MRS-Pulssequenz, die intermolekulare Nullquantenkohärenzen (iZQC) detektiert und für in vivo Experimente besonders geeignet ist. Des Weiteren wurden Detektionsgrenze und spektrale Änderungen in iZQC-MRS unter simulierten realistischen Bedingungen zum ersten Mal analysiert. Ausgangspunkt der methodischen Entwicklung war die Originalsequenz für die Aufnahme zweidimensionaler iZQC-Spektren, genannt HOMOGENIZED. Die Verwendung eines frequenzselektiven 90° Pulses anstelle des beta–Pulses in HOMOGENIZED bewirkt eine Verbesserung in Sensitivität und in der Effizienz der Wasserunterdrückung, sowie eine Verminderung der T2-Relaxationseffekte. Die Wasserunterdrückung wurde durch Einfügung zweier wasserfrequenzselektiver Refokusierungspulse unmittelbar vor der Akquisition weiter optimiert. Dieselbe Position erwies sich als optimal für die „single voxel“ Lokalisierungseinheiten. Andererseits vermeidet die Durchführung der Lokalisation vor der iZQC-MRS Sequenz „chemical shift“ Artefakte auf Kosten der Lokalisierungseffizienz. Die zahlreichen analytischen Berechnungen im methodischen Teil dieser Doktorarbeit stellen wichtige Erweiterungen der iZQC MRS Theorie dar. In vivo Anwendungen der entwickelten Sequenz im zentralen Nervensystem der Ratte, im Gehirn der Maus, sowie im subkutanen Tumor am Oberschenkel der Maus, resultierten in hochwertigen Spektren. Limitierender Faktor für die spektrale Auflösung in der indirekten Dimension in diesen 2D Spektren war die digitale Akquisitionsrate und nicht der, für konventionelle MRS typische, inhomogene Linienverbreiterungseffekt. Trotz der zehnfachen Akquisitionsrate in der direkten Dimension waren die Cross-peaks in der indirekten Dimension immer schmaler. Im Rahmen dieser Doktorarbeit wurde die erste MR spektroskopische Studie im Rückenmark der Ratte bei 17.6 Tesla durchgeführt. Durch die Unempfindlichkeit gegenüber makroskopischen Feldinhomogenitäten war die Selektion größerer Voxel als mit konventionellen Techniken, ohne Verlust an spektraler Auflösung, möglich. Dies wurde auch im Tumorgewebe verwendet, um die relative Signal-zu-Rausch (SNR) Effizienz der neuen iZQC-Methode zum ersten Mal über die SNR-Effizienz einer konventionellen Technik zu treiben. Es besteht die Aussicht auf zukünftige Anwendungen für schnelle Metabolitendetektion in großen Organen und Tumoren. Die Detektionsgrenze der iZQC-Methoden in der Nähe von lokalen Dipolfeldern wurde mit aufwendigen Simulationen und Experimenten am Phantom abgeschätzt. Um einen Cross-peak zu detektieren darf der eigentliche Dipol nicht mehr als 0.1 % bis 1 % des Voxelvolums belegen. Eine wichtige Folgerung dieser Studie ist, dass unter üblichen in vivo Bedingungen, wie Voxel mit einer Größe von (1 mm)³ oder mehr und Metabolitenkonzentrationen im Millimolarbereich, mikroskopische und mesoskopische Inhomogenitäten vielmehr eine Abnahme der Cross-peak Intensität als eine Linienverbreiterung verursachen. Diese Folgerung wurde auch dadurch bestätigt, dass die iZQC-Sequenz sogar in der Gegenwart von gebündelten paramagnetischen Mikropartikeln hochwertige Spektren lieferte. Leider folgt daraus aber auch, dass die Vorstellung von iZQC-MRS in grünen Blättern oder im Epithel der Lunge verworfen werden muss. Intermolekulare Nullquantenkohärenzspektroskopie bleibt für zukünftige Entwicklungen und Anwendungen ein sehr interessanter Bereich der NMR-Forschung an lebenden Organismen. Sie ermöglicht die Beobachtung von relativen Metabolitkonzentrationen auch etwa in Proben die Eisenpartikeln enthalten. Dies weckt realistische Hoffnungen für neue MRS Studien auch bei Untersuchungen mit markierten Stammzellen. KW - NMR-Spektroskopie KW - in vivo MR-Spektroscopy KW - intermolecular zero-quantum coherence KW - distant dipolar field KW - resolution enhancement KW - HOMOGENIZED Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-40282 ER - TY - THES A1 - Müller, Christian Robert T1 - Nanoelektronische Feldeffekt-Transistoren und Quantenpunktspeicher auf der Basis von modulationsdotierten GaAs/AlGaAs Heterostrukturen T1 - Nanoelectronic field-effect transistors and quantum-dot-flash memories based on modulation-doped GaAs/AlGaAs heterostructures N2 - Diese Arbeit beschäftigt sich mit Elektronentransport in nanostrukturierten Bauelementen auf Halbleiterbasis, wobei im Speziellen deren Transistor- und Speichereigenschaften untersucht werden. Grundlage für die Bauelemente stellt eine modulationsdotierte GaAs/AlGaAs Heterostruktur dar, die mittels Elektronenstrahllithographie und nasschemischen Ätzverfahren strukturiert wird. Auf Grund der Bandverbiegung bildet sich in der Nähe des Heteroübergangs ein zweidimensionales Elektronengas (2DEG) aus, das als leitfähige Schicht in den Strukturen dient. Im Rahmen der Arbeit werden die Transporteigenschaften für unterschiedliche Bauelementdesigns untersucht, wobei die laterale Ausdehnung der Bauelemente wenige 10 nm beträgt. Die Charakterisierung des Elektronentransports erfolgt sowohl im linearen als auch nichtlinearen Transportregime für tiefe Temperaturen (T = 4.2 K) bis hin zu Raumtemperatur. Das erste experimentelle Kapitel beschäftigt sich mit dem Entwurf und der Charakterisierung von statischen Speicherzellen mit integriertem Floating Gate. Bei den hierfür hergestellten Bauelementen befindet sich eine Schicht selbstorganisierter Quantenpunkte (QDs) in direkter Nähe zum 2DEG. Der Abstand zwischen 2DEG und QDs ist kleiner als die Abschirmlänge im Halbleitermaterial, wodurch die QDs als Floating Gate dienen und Informationen elektrisch gespeichert werden können. Die Speicherzellen wurden in Form von Quantendraht-Transistoren (QWTs) und Y-Schaltern (YBSs) realisiert und bezüglich der Speicherfähigkeit der QDs sowohl bei tiefen Temperaturen als auch bei Raumtemperatur untersucht. Im zweiten experimentellen Kapitel dieser Arbeit wird ein neues, auf dem Feldeffekt beruhendes, Transistordesign vorgestellt. Die hierfür hergestellten Heterostrukturen besitzen ein 2DEG, das sich zwischen 33 nm und 80 nm unterhalb der Oberfläche der Heterostruktur befindet. Mittels in die Oberfläche der Heterostruktur geätzter Gräben wird eine Isolation zwischen den leitfähigen Regionen der Bauelemente geschaffen. Das einfache Design der sogenannten Three-Terminal Junctions (TTJs), in Verbindung mit dem oberflächennahen 2DEG, ermöglicht die monolithische Realisierung von integrierten logischen Gattern. Durch eine ausführliche Betrachtung des Transistorverhaltens der TTJs können sowohl Subthreshold Swings kleiner als das thermische Limit klassischer Feldeffekt-Transistoren als auch Hochfrequenzfunktionalität demonstriert werden. N2 - In this thesis, electron transport in nano-structured, semiconductor devices is investigated with focus on transistor characteristics and memory effects. The investigated devices are based on a modulation-doped GaAs/AlGaAs heterostructure and are structured by electron-beam lithography and wet-chemical etching. Close to the heterointerface, a two-dimensional electron gas (2DEG) is formed and serves as conducting layer for the electron transport. Different devices with lateral dimensions of a few 10 nm are fabricated and are characterized in the linear and nonlinear transport regime at low temperatures, i.e. T = 4.2 K, as well as at room temperature. The first chapter is dedicated to the experimental results on the design and characterization of memory devices with a floating gate. The devices are based on a modulation-doped heterostructure with a layer of self-assembled quantum dots (QDs) in close vicinity to the conducting layer. The distance between QDs and 2DEG is less than the screening length and, therefore, the QDs serve as floating gate on the 2DEG. Hence, information can be stored electrically. For the memory devices, quantum-wire transistors (QWTs) and electron Y-branch switches (YBSs) are used and characterized, with respect to the floating-gate function of the QDs, at low temperatures and up to room temperature. In the second chapter of this thesis, a novel transistor design based on the field effect is presented. For this purpose, the 2DEG is situated between 33 and 80 nm below the surface of the heterostructure. The conducting parts of the devices are insulated from each other by etched insulation trenches. Due to the monolithic design of the three-terminal junctions (TTJs) with a shallow 2DEG, an integrated logic gate is realized. By analyzing the switching properties of the TTJs in detail, subthreshold swings below the thermal limit and high frequency functionality are demonstrated. KW - Galliumarsenid KW - Aluminiumarsenid KW - Heterostruktur-Bauelement KW - HEMT KW - SET-Transistor KW - Quantenpunkt KW - Nanodot-Speicher KW - Flash-Speicher KW - HEMT KW - field-effect transistor KW - quantum dot KW - flash memory KW - rectification Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39948 ER - TY - THES A1 - Wilhelm, Thomas T1 - Konzeption und Evaluation eines Kinematik/Dynamik-Lehrgangs zur Veränderung von Schülervorstellungen mit Hilfe dynamisch ikonischer Repräsentationen und graphischer Modellbildung T1 - Conception and evaluation of a kinematics/dynamics course to change students' conceptions with the aid of dynamic-iconic representations and graphic modelling N2 - Auch nach dem herkömmlichen Mechanikunterricht in der Oberstufe verfügen viele Schüler nicht über angemessene physikalische Vorstellungen über die verwendeten physikalischen Begriffe und deren Zusammenhänge. Einführend wurden in dieser Arbeit allgemeine Aspekte zu Schülervorstellungen (Kapitel 2.1) sowie konkrete Schülervorstellungen zur Mechanik (Kapitel 2.2) und relevante Lehrervorstellungen (Kapitel 2.3) dargelegt. Ein Ziel dieser Arbeit war, ein Gesamtkonzept für einen veränderten Kinematik- und Dynamikunterricht ein- und zweidimensionaler Bewegungen in der Jahrgangsstufe 11 des Gymnasiums zu entwickeln, das möglichst vielen Schülern hilft, möglichst viele Fehlvorstellungen zur Mechanik aufzuarbeiten. Dazu wurden u.a. computergestützte Experimente und die Visualisierung der physikalischen Größen mit dynamisch ikonischen Repräsentationen (siehe Kapitel 3.2) eingesetzt, was neue Elementarisierungen und neue Unterrichtsstrategien ermöglichte (siehe Kapitel 8.2 oder Kapitel 5). Um gute Chancen zu haben, dass dieses Konzept den Schulalltag erreicht, wurde es lehrplankonform zum bayerischen Lehrplan konzipiert. Eine erste Zielsetzung der summativen Evaluation war festzustellen, inwieweit das gesamte Unterrichtskonzept von verschiedenen Lehrern durchführbar ist und wie diese es einschätzen (siehe Kapitel 8.4 oder Kapitel 6.3). Ein wichtiges Ziel war dann, mit Hilfe von Tests festzustellen, inwieweit es Veränderungen in den Schülervorstellungen gab (Vor-/Nachtest-Design) und diese Veränderungen mit konventionell unterrichteten Klassen zu vergleichen (Trainings-/Kontrollgruppen-Design) (konventionelle Klassen: Kapitel 8.1; Vergleich: Kapitel 8.5; Kapitel 6.4 + 6.5). Dazu wurden hauptsächlich bereits vorliegende paper-pencil-Tests verwendet, da eine Testneuentwicklung im Rahmen der Arbeit nicht möglich gewesen wäre. Da diese Tests verschiedene Schwächen haben, wurden mehrere verschiedene Tests gleichzeitig eingesetzt, die sich gegenseitig ergänzen. Die graphische Modellbildung in Verbindung mit Animationen ist ein fakultativer Teil dieses Unterrichtskonzeptes. Hierzu wurde zusätzlich eine eigene Interventionsstudie durchgeführt (siehe Kapitel 8.3 und Kapitel 4). Ergebnisse: Dynamisch ikonische Repräsentationen können dem Lehrer neue unterrichtliche Möglichkeiten geben und somit dem Schüler helfen, physikalische Konzepte angemessener zu verstehen. Die Einführung kinematischer Größen anhand zweidimensionaler Bewegungen, die nur mit ikonischen Repräsentationen in Form von Vektorpfeilen sinnvoll ist (geeignete Elementarisierung), führt zu einem physikalischeren Verständnis des Beschleunigungsbegriffes und vermeidet Fehlvorstellungen durch eine ungeeignete Reduktion auf den Spezialfall eindimensionaler Bewegungen. Mehr Schüler konzeptualisieren Beschleunigung wie in der Physik als gerichtete Größe anstelle einer Größe, die die Änderung des Geschwindigkeitsbetrages angibt und allenfalls tangentiale Richtung haben kann. Auch in der Dynamik sind dadurch hilfreiche Darstellungen und so sinnvolle Veränderungen des Unterrichts möglich. Um wesentliche Strukturen aufzuzeigen, werden komplexere Versuche mit mehreren Kräften und Reibung eingesetzt, was erst durch eine rechnerunterstützte Aufbereitung mit dynamisch ikonischen Repräsentationen ermöglicht wird. Diese Darstellungen ermöglichen auch eine aktive Auseinandersetzung der Schüler mit den Themen, indem von ihnen häufig Vorhersagen gefordert werden (geeignete Unterrichtsstrategie). Graphische Modellbildung als weiterer Einsatz bildlicher Darstellungen kann ebenso eine weitere Verständnishilfe sein. Schüler, die nach dem vorgelegten Unterrichtskonzept unterrichtet wurden, zeigten mehr Verständnis für den newtonschen Kraftbegriff. Da die entwickelten Ideen tatsächlich im Unterricht ankamen und dort Veränderungen bewirkten, kann von einer effektiven Lehrerfortbildung mit Transferwirkung gesprochen werden. N2 - Even after the traditional mechanics instruction in the senior classes, many students do not have any adequate physical conceptions of the physical terms and definitions used, as well as of their coherencies. This study therefore commences with a presentation of general aspects of students’ conceptions (chapter 2.1) as well as precise students' conceptions on mechanics (chapter 2.2) and relevant teachers’ conceptions (chapter 2.3). An objective of this study was to develop an overall concept for modified kinematics and dynamics instruction of motions in one and two dimensions in grade 11 of grammar school, aiming at helping as many students as possible to clear as many misconceptions on mechanics as possible. In order to achieve this goal, computer-aided experiments and the visualisation of physical quantities with dynamic-iconic representations (see chapter 3.2) were used, among other things, thus enabling new elementarizations as well as new teaching strategies (see chapter 9.2 or chapter 5). In order to have good chances that this concept reaches the school everyday life, it was conceived curriculum-conformal to the Bavarian curriculum. The first goal of the summative evaluation was to determine to what extent the entire teaching concept can be implemented by different teachers, and how they assess said concept (see chapter 9.4 or chapter 6.3). Subsequently, an important objective was to ascertain, by means of tests, to which extent the students’ conceptions had changed (pre-/post-testing design), and to compare these changes with conventionally taught classes (treatment-/control-group design) (conventional classes: chapter 9.1; comparison: chapter 9.5; chapters 6.4 + 6.5). For that purpose, already existing paper-pencil-tests were mainly used, as a new development of tests would not have been possible in the course of the study. These tests have various shortcomings, so several tests were used at the same time, complementing each other. Graphic modelling in combination with animations is part of this teaching concept. Additionally, an own intervention study was carried out in this context (see chapter 9.3 and chapter 4). Results: Dynamic-iconic representations can provide teachers with new teaching possibilities and thus help students to adequately understand physical concepts. An introduction of kinematic quantities with the aid of two-dimensional motions, which makes only sense with iconic representations in the form of vector arrows (suitable elementarization), leads to a more physical understanding of the acceleration concept and avoids misconceptions due to an inept reduction to the special case of motions in one dimension. More students conceptualize acceleration – like in physics – as a directed quantity instead of a quantity indicating the change of the magnitude of velocity and having at best tangential direction. This renders possible helpful representations for and thus reasonable changes of dynamics instruction as well: In order to illustrate essential structures, more complex experiments with several forces and friction are used, which is only feasible because of a computer-aided preparation with dynamic-iconic representations. These representations also allow for the students to actively deal with the subject by often asking them to make predictions (suitable teaching strategy). Graphic modelling as another application of iconic representations can also further understanding. Students who were instructed pursuant to the teaching concept on hand showed a greater understanding of Newton's concept of force. As the developed ideas were in fact well received in class and caused changes there, it can be called an effective further teacher training with a transfer effect. KW - Physikunterricht KW - Modellierung KW - Physikdidaktik KW - Kinematik KW - Dynamik KW - Modellbildung KW - Schülervorstellungen KW - physics education KW - kinematics KW - dynamics KW - modelling KW - students' conceptions Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39554 N1 - Das Buch mit CD-ROM kann unter der ISBN 978-3-8325-1046-6 auch online oder über den Buchhandel beim Logos-Verlag Berlin bestellt werden. Siehe auch http://www.logos-verlag.de/cgi-bin/buch?isbn=1046 ER - TY - THES A1 - Langhojer, Florian T1 - New techniques in liquid-phase ultrafast spectroscopy T1 - Neue Techniken der Ultrakurzzeitspektroskopie in der flüssigen Phase N2 - Contents List of Publications 1 Introduction 2 Basic concepts and instrumentation 2.1 Mathematical description of femtosecond laser pulses 2.2 Optical quantities and measurements 2.2.1 Intensity 2.2.2 Absorbance and Beer-Lambert law 2.3 Laser system 2.4 General software framework for scientific data acquisition and simulation 2.4.1 Core components 2.4.2 Program for executing a single measurement sequence 2.4.3 Scan program 2.4.4 Evolutionary algorithm optimization program 2.4.5 Applications of the software framework 2.5 Summary 3 Generation of ultrabroadband femtosecond pulses in the visible 3.1 Nonlinear optics 3.1.1 Nonlinear polarization and frequency conversion 3.1.2 Phase matching 3.2 Optical parametric amplification 3.3 Noncollinear optical parametric amplifier 3.4 Considerations and experimental design of NOPA 3.4.1 Options for broadening the NOPA bandwidth 3.4.2 Experimental setup 3.5 NOPA pulse characterization 3.5.1 Second harmonic generation frequency-resolved optical gating 3.5.2 Transient grating frequency-resolved optical gating 3.6 Compression and shaping methods for NOPA pulses 3.6.1 Grating compressor 3.6.2 Prism compressor 3.6.3 Chirped mirrors 3.6.4 Detuned zero dispersion compressor 3.6.5 Deformable mirror pulse shaper 3.6.6 Liquid crystal pulse shaper 3.7 Liquid crystal pulse shaper 3.7.1 Femtosecond pulse shapers 3.7.2 Experimental design and parameters 3.7.3 Optical setup of the LC pulse shaper 3.7.4 Calibrations of the pulse shaper 3.8 Adaptive pulse compression 3.8.1 Closed loop pulse compression 3.8.2 Open loop pulse compression 3.9 Conclusions 4 Coherent optical two-dimensional spectroscopy 4.1 Introduction 4.2 Theory of third order nonlinear optical spectroscopies 4.2.1 Response function, electric fields, and signal field 4.2.2 Signal detection with spectral interferometry 4.2.3 Evaluation of two-dimensional spectra and phasing 4.2.4 Selection and classification of terms in induced nonlinear polarization 4.2.5 Oscillatory character of measured signal 4.3 Previous experimental implementations 4.4 Inherently phase-stable setup using conventional optics only 4.4.1 Manipulation of pulse pairs as a basis for stability 4.4.2 Experimental setup 4.4.3 Measurement procedure 4.4.4 Data evaluation 4.5 First experimental results 4.5.1 Demonstration of phase stability 4.5.2 2D spectrum of Nile Blue at room temperature 4.6 Summary and outlook 5 Product accumulation for ultrasensitive femtochemistry 5.1 The problem of sensitivity in femtochemistry 5.2 Accumulation for increased sensitivity 5.2.1 Comparison of conventional and accumulative sensitivity 5.2.2 Schematics and illustrative example 5.3 Experimental setup 5.4 Calibration and modeling of accumulation 5.5 Experiments on indocyanine green 5.5.1 Calibration of the setup 5.5.2 Chirped pulse excitation 5.5.3 Adaptive pulse shaping 5.6 Conclusions 6 Ultrafast photoconversion of the green fluorescent protein 6.1 Green fluorescent protein 6.2 Experimental setup for photoconversion of GFP 6.3 Calibration of the setup for GFP 6.3.1 Model for concentration dynamics of involved GFP species 6.3.2 Estimate of sensitivity 6.4 Excitation power study 6.5 Time-resolved two-color experiment 6.6 Time-delayed unshaped 400 nm – shaped 800 nm pulse excitation 6.6.1 Inducing photoconversion with chirped pulses 6.6.2 Photoconversion using third order phase pulses 6.7 Conclusions 7 Applications of the accumulative method to chiral systems 7.1 Introduction 7.2 Chiral asymmetric photochemistry 7.2.1 Continuous-wave circularly polarized light 7.2.2 Controlled asymmetric photochemistry using femtosecond laser pulses 7.3 Sensitive and fast polarimeter 7.3.1 Polarimeter setup 7.3.2 Detected signal I(t) 7.3.3 Angular amplification 7.3.4 Performance of the polarimeter 7.4 Molecular systems and mechanisms for enantioselective quantum control 7.4.1 Binaphthalene derivatives 7.4.2 Photochemical helicene formation 7.4.3 Spiropyran/merocyanine chiroptical molecular switches 7.5 Summary 8 Summary Zusammenfassung Bibliography Acknowledgements N2 - Inhalt Liste der Veröffentlichungen 1 Einleitung 2 Grundlegende Konzepte und Instrumente 2.1 Mathematische Beschreibung von Femtosekundenlaserpulsen 2.2 Optische Größen und Messungen 2.2.1 Intensität 2.2.2 Absorbanz und Lambert- Beer Gesetz 2.3 Lasersystem 2.4 Allgemeines Softwareframework zur wissenschaftlichen Datenaufnahme und Simulation 2.4.1 Kernkomponenten 2.4.2 Programm zur Aufnahme einer einzelnen Messsequenz 2.4.3 Scanprogramm 2.4.4 Evolutionärer Algorithmus 2.4.5 Anwendungen des Softwareframeworks 2.5 Zusammenfassung 3 Erzeugung ultrabreitbandiger Femtosekundenlaserpulse im sichtbaren Spektralbereich 3.1 Nichtlineare Optik 3.1.1 Nichtlineare Polarisation und Frequenzkonversion 3.1.2 Phasenanpassung 3.2 Optisch-parametrische Verstärkung 3.3 Nichtkollinearer optisch-parametrischer Verstärker 3.4 Erwägungen und experimenteller Entwurf 3.4.1 Optionen zur Verbreiterung der Bandbreite des NOPA 3.4.2 Experimenteller Aufbau 3.5 NOPA Pulscharacterisierung 3.5.1 Second harmonic generation frequency-resolved optical gating 3.5.2 Transient grating frequency-resolved optical gating 3.6 Kompressions- und Formungsmethoden für NOPA Pulse 3.6.1 Gitterkompressor 3.6.2 Prismenkompressor 3.6.3 Chirped mirrors 3.6.4 Verstimmter Nulldispersionskompressor 3.6.5 Pulsformer auf Basis eines verformbaren Spiegels 3.6.6 Flüssigkristallpulsformer 3.7 Flüssigkristallpulsformer 3.7.1 Femtosekundenpulsformer 3.7.2 Experimenteller Entwurf und experimentelle Parameter 3.7.3 Optischer Aufbau des Flüssigkristallformers 3.7.4 Kalibrationen des Formers 3.8 Adaptive Pulskompression 3.8.1 Pulskompression in einer geschlossenen Schleife 3.8.2 Pulskompression in einer offenen Schleife 3.9 Zusammenfassung 4 Kohärente optische, zweidimensionale Spektroskopie 4.1 Einleitung 4.2 Theorie der Spektroskopien dritter Ordnung 4.2.1 Antwortfunktion, elektrische Felder und Signalfeld 4.2.2 Signalmessung mittels spektraler Interferometrie 4.2.3 Auswertung der zweidimensionalen Spektren und Phasieren 4.2.4 Auswahl und Klassifikation von Termen der induzierten nichtlinearen Polarisation 4.2.5 Oszillatorisches Verhalten des Messignals 4.3 Bisherige experimentelle Realisierungen 4.4 Inhärent phasenstabiler Aufbau auf Basis von nur konventionellen Optiken 4.4.1 Manipulation von Pulspaaren als Grundlage der Stabilität 4.4.2 Experimenteller Aufbau 4.4.3 Messprozedur 4.4.4 Datenauswertung 4.5 Erste experimentelle Ergebnisse 4.5.1 Demonstration der Phasenstabilität 4.5.2 2D Spektrum von Nilblau bei Raumtemperatur 4.6 Zusammenfassung und Ausblick 5 Akkumulation von Photoprodukten zur ultrasensitiven Messung von Femtochemie 5.1 Das Problem der Sensitivität in der Femtochemie 5.2 Akkumulation zur Erhöhung der Sensitivität 5.2.1 Vergleich Sensitivität der konventionellen und akkumulativen Methoden 5.2.2 Schema und illustratives Beispiel 5.3 Experimenteller Aufbau 5.4 Kalibration und Modellierung der Akkumulation 5.5 Experimente am Farbstoff Indocyanin Grün 5.5.1 Kalibration des Aufbaus 5.5.2 Anregung mit gechirpten Pulsen 5.5.3 Adaptive Pulsformung 5.6 Zusammenfassung 6 Ultraschnelle Photokonversion des grün fluoreszierenden Proteins 6.1 Grün fluoreszierendes Protein 6.2 Experimenter Aufbau zur Photokonversion von GFP 6.3 Kalibration des Aufbaus für GFP 6.3.1 Modell der Konzentrationsdynamiken der beteiligten GFP Spezies 6.3.2 Abschätzung der Sensitivität 6.4 Variation der Anregungsleistung 6.5 Zeitaufgelöstes Zweifarbexperiment 6.6 Anregung mit zeitverzögerten ungeformte 400 nm und geformten 800 nm Laserpulsen 6.6.1 Induktion der Photokonversion mit gechirpten Pulsen 6.6.2 Photokonversion mit Pulsen mit dritter Ordnung Phase 6.7 Zusammenfassung 7 Anwendungen der akkumulativen Methode auf chirale Systeme 7.1 Einleitung 7.2 Chirale asymmetrische Photochemie 7.2.1 Zirkular polarisiertes Dauerstrichlicht 7.2.2 Kontrollierte asymmetrische Photochemie mit Femtosekundenlaserpulsen 7.3 Sensitives und schnelles Polarimeter 7.3.1 Polarimeteraufbau 7.3.2 Messsignal I(t) 7.3.3 Winkelverstärkung 7.3.4 Leistung des Polarimeters 7.4 Molekulare Systeme und Mechanismen für enantioselektive Quantenkontrolle 7.4.1 Binaphthalinderivate 7.4.2 Photochemische Helicenbildung 7.4.3 Spiropyran/Merocyanin als chiral-optischer Schalter 7.5 Zusammenfassung 8 Zusammenfassung (englisch) Zusammenfassung (deutsch) Literaturverzeichnis Danksagungen KW - Ultrakurzzeitspektroskopie KW - Optische Spektroskopie KW - VIS-Spektroskopie KW - UV-VIS-Spektroskopie KW - Spektroskopie KW - Nichtlineare Spektroskopie KW - Fourier-Spektroskopie KW - ultrafast spectroscopy KW - two-dimensional spectroscopy KW - four-wave mixing KW - vis spectroscopy Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-39337 ER -