TY - THES A1 - Blum, Monika T1 - Electronic and Chemical Properties of Liquids and Solutions T1 - Elektronische und Chemische Eigenschaften von Flüssigkeiten und Lösungen N2 - Die hier vorgelegte Doktorarbeit wurde der Untersuchung der elektronischen und chemischen Eigenschaften von Flüssigkeiten und Lösungen mittels weicher Röntgenstrahlen gewidmet. Die verwendeten Photonen-rein-Photonen-raus Methoden, namentlich Röntgenabsorptionsspektroskopie (XAS), Röntgenemissionsspektroskopie (XES) und resonante inelatische Röntgenstreuung (RIXS) stellten sich als exzellente Methoden heraus, diese Systeme zu untersuchen. Im Rahmen dieser Arbeit wurde eine experimentelle Anlage gebaut, welche notwendig ist um die genannten Messmethoden zur Untersuchung von Flüssigkeiten zu nutzen. Zentraler Teil dieser Anlage ist eine neuartige Durchflussnasszelle, die die Handhabung der Messungen im Vergleich zu älteren Nasszellen vereinfacht. Dabei ist sie variabel genug, um sie zur Messung von Gasen oder Flüssig-Fest-Grenzflächen anzupassen. Mit der Zelle ist es möglich, die zu untersuchenden Flüssigkeiten unter gut kontrollierten Bedingungen (Temperatur und Durchfluss) zu untersuchen. Die Durch-flussnasszelle ist Teil einer neuen Synchrotronendstation (SALSA). Für die Messungen stehen dabei ein Elektronenanalysator und ein neuartiges hochauflösendes, hocheffizientes Weichröntgenspektrometer zur Verfügung. Mit diesem Spektrometer ist es möglich, zweidimensionale RIXS Karten in sehr kurzer Zeit (wenige Minuten) aufzunehmen, welche die vollständige Information von Röntgenabsorption und Röntgenemission beinhalten. Mit Hilfe der neu entwickelten Instrumentierung war es möglich, eine Reihe unterschiedlicher Flüssigkeiten und Lösungen zu untersuchen. Als erstes System wur-den wässrige NaOH bzw. NaOD Lösungen erforscht. Die nicht-resonanten Emissionsspektren sind stark von dem genutzten Lösungsmittel dominiert und haben daher Ähnlichkeit mit den Spektren von Wasser und schwerem Wasser. Es war möglich, eine Abhängigkeit der Spektren von der Ionenkonzentration festzustellen. Trotz der Ähnlichkeit der Spektren zu Wasserspektren war es aufgrund eines OH- / OD- spezifischen Charakteristikums an der Absorptionskante möglich, resonante Spektren von OH-/OD- ohne Beitrag des Spektrums von Wasser zu erhalten. Diese Spektren zeigten Anzei-chen für Protonendynamik auf der Zeitskala der Rumpflochlebensdauer. Für die Emissionsspektren von NaOH im festen Zustand konnten an der hochenergetischen Hauptline eine niederenergetische und hochenergetische Schulter festgestellt werden. Diese Schultern sind das Ergebnis des Eigendissoziationsprozesses von OH- Ionen, bei welchem O2- Ionen und H2O gebildet werden. Weiterhin waren die Untersuchungen an Natronlauge von Interesse für die folgenden Aminosäurenmessungen, da Natronlauge genutzt wurde, um die gewünschten pH-Wert Änderungen zu erreichen. Die zweite Gruppe von Flüssigkeiten, die in dieser Arbeit untersucht wurde, sind Aminosäuren. Aminosäuren sind die Bausteine für Peptide und Proteine und da-mit sehr wichtig für alle Biowissenschaften. Als Vertreter der Aminosäuren wurden Glycin – die kleinste Aminosäure, und Lysin – eine Aminosäure mit zwei Amingruppen – untersucht. Beide Aminosäuren reagieren sensibel auf Änderungen des pH-Wertes mit einer Deprotonierung/Protonierung der Amingruppe (NH2 ↔ NH3+). In den experimentellen Spektren konnte ein deutlicher Einfluss dieser Prozesse gefunden werden. Die gemessenen Spektren der protonierten Aminosäuren zeigen deutliche An-zeichen für Dissoziationsprozesse. Erste DFT Rechnungen bestätigten diese Anzeichen und unterstützen das Dissoziationsmodell der Aminosäuren. Qualitativ lässt sich sagen, dass sich die hochenergetische Linie in den N K XES Spektren auf die unprotonierten Amingruppen bezieht und der niederenergetische Bereich im Spektrum den protonierten Gruppen zugeordnet werden kann. Neben Aminosäuren sind auch Alkohole und organische Säuren von Bedeutung für biologische Prozesse. Daher wurden als Vertreter aus diesen Gruppen der einfachste Alkohol (Methanol) und die einfachste Säure (Essigsäure) untersucht. Die O K und C K XES Spektren von flüssigem Methanol stimmen hervorragend mit Gasphasen DFT Rechnungen überein. Dies lässt den Schluss zu, dass der Einfluss der Umgebung (Wasserstoffbrückenbindungen) auf die Spektren gering ist. Durch resonante Anregung in geeignete unbesetzte Orbitale war es möglich, die zwei unterschiedlichen Sauerstoffatome der Essigsäure zu unterscheiden und auch einen Anhaltspunkt für die Carboxylgruppen-spezifischen C K XES Spektren zu bekommen. An der Kohlenstoffkante zeigten die XAS Spektren große Unterschiede zu Gasphasenmessungen, was ein Hinweis auf den Einfluss der Wasserstoffbrückenbindungen ist. Die Untersuchung der elektronischen und chemischen Eigenschaften von Flüssigkeiten und Lösungen ist immer noch ein sehr junges Forschungsgebiet. Die Ergebnisse dieser Doktorarbeit zeigen, welch interessantes Forschungsgebiet dies ist. Die vorgestellten Ergebnisse können als die grundlegende Basis für alle weiteren Untersuchungen in diesem Forschungsfeld angesehen werden. N2 - This thesis was dedicated to the studies of the electronic and chemical properties of liquids and solutions using soft x-ray spectroscopies. The used photon-in-photon-out methods namely x-ray absorption spectroscopy (XAS), x-ray emission spectroscopy (XES), and resonant inelastic x-ray scattering (RIXS) appeared to be an excellent choice for these studies. In the framework of this thesis, the necessary experimental setup for using the above mentioned experimental techniques on liquids was developed. Hereby, a new flow-through liquid cell was introduced which simplifies the studies of liquids and solutions. The cell design is very flexible and thus can be modified for gases and liquid/solid interfaces. With this cell it is possible to study the samples under well-controlled conditions (temperature and flow rate). The novel flow-through liquid cell is part of the new SALSA synchrotron endstation including an electron analyzer and a novel high-resolution, high-transmission soft x-ray spectrometer. The latter makes it possible to measure two-dimensional RIXS maps in a very short time, which include the full excitation and emission information in one plot. Making use of the new instrumentation, a variety of different liquids and solutions were investigated. As first system, aqueous solutions of sodium hydroxide (NaOH) and sodium deuteroxide (NaOD) were investigated. In the XAS as well as in the XES spectra a pronounced concentration dependence was found. At non-resonant energies, the spectra are dominated by the solvent and thus look similar to water. Making use of the pre-pre-edge in the absorption spectra which can exclusively be attributed to OH- / OD- it was possible to extract the resonant emission spectra of the ions which show an indication for proton dynamics during the core-hole lifetime. For the solid state NaOH XES spectra it was possible to reveal a high energetic shoulder and a low energetic shoulder at the high energy emission feature. These shoulders can be assigned to self-dissociation processes where OH- forms O2- ions and H2O. The study of NaOH was also of interest for the studies of the amino acids, which were in the focus of the next part, since the pH-values of the respective solutions were controlled by NaOH. In the next part of this thesis, amino acid solutions were investigated. Amino acids are the building blocks of peptides and proteins and thus important for life science. The investigated representatives were glycine, the simplest amino acid, and lysine, an amino acid with two amine groups. Both amino acids react on pH-value changes at the amine group where the local environment at the nitrogen atom changes (NH2 ↔ NH3+). A strong change of the spectra induced by this protonation/deprotonation could be found. Furthermore, for low pH-values (protonated amine groups) the amine groups are influenced by strong proton dynamics. First DFT calculations confirm the dissociation model of the amino acids. Qualitatively the high energy peak in the N K XES spectra can be attributed to the deprotonated amine group and the low energy area for the protonated amine group. Besides amino acids, alcohols and acids are important in biological processes. Therefore, the smallest alcohol (methanol) and the smallest carboxylic acid (acetic acid) were under investigation. For the liquid methanol XES spectra a very good agreement with DFT calculations of gas phase methanol could be found. This observation suggests that the influence of the environment (hydrogen bonding) on the spectra is small. The achieved spectra are in good agreement with DFT calculations found in literature. It was possible to selectively excite the two non-equivalent oxygen atoms in acetic acid and to reveal the carboxyl specific C K XES. The carbon XAS spectra showed strong differences compared to gas phase measurements which might be a hint for the influence of the hydrogen bond network. The investigation of the electronic and chemical properties of liquids and solutions is a very young field of research and the results presented in this thesis show that it is a very interesting topic. The presented results can be seen as the fundamental frame work for all following studies. With the understanding of basic, i.e., simple, systems as shown in this work it will be possible to understand complex biological systems in their native environment, e.g., peptides and proteins, which are the building blocks of life. KW - Röntgenspektroskopie KW - Natriumhydroxid KW - Elektronische Eigenschaft KW - Röntgenstrahlung KW - Röntgenabsorptionsspektroskopie KW - Aminosäuren KW - RIXS KW - XES KW - XAS KW - amino acids KW - liquid cell Y1 - 2009 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-43732 ER - TY - THES A1 - Adler, Florian Rudolf T1 - Electronic Correlations in Two-dimensional Triangular Adatom Lattices T1 - Elektronische Korrelationen in zweidimensionalen Adatom-Dreiecksgittern N2 - Two-dimensional triangular lattices of group IV adatoms on semiconductor substrates provide a rich playground for the investigation of Mott-Hubbard physics. The possibility to combine various types of adatoms and substrates makes members of this material class versatile model systems to study the influence of correlation strength, band filling and spin-orbit coupling on the electronic structure - both experimentally and with dedicated many-body calculation techniques. The latter predict exotic ground states such as chiral superconductivity or spin liquid behavior for these frustrated lattices, however, experimental confirmation is still lacking. In this work, three different systems, namely the \(\alpha\)-phases of Sn/SiC(0001), Pb/Si(111), and potassium-doped Sn/Si(111) are investigated with scanning tunneling microscopy and photoemission spectroscopy in this regard. The results are potentially relevant for spintronic applications or quantum computing. For the novel group IV triangular lattice Sn/SiC(0001), a combined experimental and theoretical study reveals that the system features surprisingly strong electronic correlations because they are boosted by the substrate through its partly ionic character and weak screening capabilities. Interestingly, the spectral function, measured for the first time via angle-resolved photoemission, does not show any additional superstructure beyond the intrinsic \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) reconstruction, thereby raising curiosity regarding the ground-state spin pattern. For Pb/Si(111), preceding studies have noted a phase transition of the surface reconstruction from \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) to \(3 \times 3\) at 86 K. In this thesis, investigations of the low-temperature phase with high-resolution scanning tunneling microscopy and spectroscopy unveil the formation of a charge-ordered ground state. It is disentangled from a concomitant structural rearrangement which is found to be 2-up/1-down, in contrast to previous predictions. Applying an extended variational cluster approach, a phase diagram of local and nonlocal Coulomb interactions is mapped out. Based on a comparison of theoretical spectral functions with scattering vectors found via quasiparticle interference, Pb/Si(111) is placed in said phase diagram and electronic correlations are found to be the driving force of the charge-ordered state. In order to realize a doped Mott insulator in a frustrated geometry, potassium was evaporated onto the well-known correlated Sn/Si(111) system. Instead of the expected insulator-to-metal transition, scanning tunneling spectroscopy data indicates that the electronic structure of Sn/Si(111) is only affected locally around potassium atoms while a metallization is suppressed. The potassium atoms were found to be adsorbed on empty \(T_4\) sites of the substrate which eventually leads to the formation of two types of K-Sn alloys with a relative potassium content of 1/3 and 1/2, respectively. Complementary measurements of the spectral function via angle-resolved photoemission reveal that the lower Hubbard band of Sn/Si(111) gradually changes its shape upon potassium deposition. Once the tin and potassium portion on the surface are equal, this evolution is complete and the system can be described as a band insulator without the need to include Coulomb interactions. N2 - Zweidimensionale Dreiecksgitter aus Adatomen der vierten Hauptgruppe auf Halbleitersubstraten bieten eine reichhaltige Spielwiese für die Untersuchung von Mott-Hubbard-Physik. Die Möglichkeit, verschiedene Adatomsorten und Substrate zu kombinieren, macht die Mitglieder dieser Materialklasse zu vielseitigen Modellsystemen, um den Einfluss von Korrelationsstärke, Bandfüllung und Spin-Bahn-Kopplung auf die elektronische Struktur zu untersuchen - sowohl im Experiment als auch mit Vielkörper-Rechnungen. Letztere prognostizieren exotische Grundzustände, wie z.B. chirale Supraleitung oder eine Spin-Flüssigkeit, wobei eine experimentelle Bestätigung jeweils noch aussteht. In dieser Dissertation werden drei derartige Systeme, nämlich die \(\alpha\)-Phasen von Sn/SiC(0001), Pb/Si(111) und kaliumdotiertem Sn/Si(111) mittels Rastertunnelmikroskopie und Photoemissionsspektroskopie diesbezüglich untersucht. Die Resultate sind potentiell relevant für Anwendungen im Bereich der Spintronik oder Quantencomputer. Für das erst kürzlich realisierte Gruppe-IV-Dreiecksgitter Sn/SiC(0001) zeigt diese Studie, bei der experimentelle und theoretische Methoden kombiniert werden, dass das System unerwartet starke Korrelationen aufweist, weil sie durch den teilweise ionischen Charakter und das geringe Abschirmungsvermögen des Substrats verstärkt werden. Die Spektralfunktion, die erstmals mit winkelaufgelöster Photoemission gemessen wird, zeigt keine überstruktur außer der intrinsischen \(\sqrt{3} \times \sqrt{3} R30^{\circ}\) Rekonstruktion des Gitters, was die Frage nach der Anordnung der Spins im Grundzustand aufwirft. Bei Pb/Si(111) haben bereits frühere Veröffentlichungen einen Phasenübergang bei der Oberflächenrekonstruktion von \(\sqrt{3}\times\sqrt{3}R30^{\circ}\) auf \(3 \times 3\) bei 86 K festgestellt. In dieser Arbeit zeigen Untersuchungen der Niedrigtemperaturphase mit hochaufgelöster Rastertunnelmikroskopie und -spektroskopie die Entstehung eines ladungsgeordneten Zustands. Dieser wird von der begleitend auftretenden strukturellen Neuordnung getrennt, welche entgegen bisheriger Voraussagen eine 2-hoch/1-tief-Anordnung aufweist. Mit Hilfe einer neu entwickelten Cluster-Rechenmethode wird ein Phasendiagramm erstellt, in dem die lokale und nichtlokale Coulomb-Wechselwirkung gegeneinander aufgetragen sind. Durch einen Vergleich zwischen theoretischen Spektralfunktionen mit Streuvektoren, die mittels Quasiteilchen-Interferenz bestimmt werden, kann Pb/Si(111) in besagtem Phasendiagramm platziert werden. Dadurch stellt sich heraus, dass elektronische Korrelationen die treibende Kraft für den ladungsgeordneten Zustand in Pb/Si(111) sind. Um einen dotierten Mott-Isolator in einem frustrierten System zu verwirklichen, wird Kalium auf das bekannte, korrelierte System Sn/Si(111) aufgebracht. Statt des erwarteten Isolator-Metall übergangs zeigen Messungen mit Rastertunnelspektroskopie, dass die elektronische Struktur von Sn/Si(111) nur lokal in der unmittelbaren Umgebung der Kaliumatome beeinflusst wird, ohne dass das System metallisch wird. Die Kaliumatome werden auf freien \(T_4\)-Plätzen des Substrats adsorbiert, was letztendlich zur Ausbildung von zwei unterschiedlichen Kalium-Zinn-Legierungen mit einem Kaliumanteil von 1/3 bzw. 1/2 führt. Komplementäre Messungen der Spektralfunktion mit winkelaufgelöster Photoemission zeigen, dass das untere Hubbardband von Sn/Si(111) durch die Kalium-Deposition allmählich seine Form verändert. Sobald Zinn und Kalium zu gleichen Teilen auf der Oberfläche vorliegen, ist diese Transformation beendet und das System kann als einfacher Bandisolator ohne die Notwendigkeit, elektronische Korrelationen zu berücksichtigen, beschrieben werden. KW - Rastertunnelmikroskopie KW - ARPES KW - Elektronenkorrelation KW - Oberflächenphysik Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-241758 ER - TY - THES A1 - Häming, Marc T1 - Electronic Many-Body Effects in organic Thin-Films and Interfaces T1 - Elektronische Vielteilcheneffekte in dünnen organischen Filmen und an organischen Grenzflächen N2 - The results of this thesis contribute to the understanding of the electronic properties of organic thin-films and interfaces. It is demonstrated that photoemission spectroscopy is very useful for studying surfaces and interfaces. Additionally it is shown, that many-body effects can be relevant for organic thin films, in particular at interfaces with strong interaction. These effects can have general implications for the material properties. In the first part of this thesis a systematic series of polyacene molecules is investigated with NEXAFS spectroscopy. The comparison of the data with core level and IPES data indicates that core excitations and core excitons need to be understood as many-body excitations. This finding implies for example that a high exciton binding energy is not necessarily associated with strong localization of the excited electron at the hole. As these effects apply also for valence excitons they can be relevant for the separation of charges and for the electron-hole recombination at interfaces. In the next chapter some fundamental effects in organic multilayer films and at organic-metal interfaces are studied with core level and NEXAFS spectroscopy. In this context a series of selected molecules is investigated, namely BTCDA, BTCDI, PTCDA and PTCDI. It is shown that in case of strong interface interaction a density of adsorbate-substrate states is formed which can lead to significant charge transfer satellites in the PES and NEXAFS spectra, similar to what is known for transition metal compounds. Moreover, it is demonstrated that the data can be modeled qualitatively by a basic approach which fuses the single impurity Anderson model with the description of charge transfer satellites by Sawatzky et al. This approach, which is equivalent to that of Gunnarsson and Schönhammer, allows even a relatively simple semi-quantitative analysis of the experimental data. The comparison of different adsorbate layers indicates that these many-body effects are particularly strong in case of partial occupation of the LUMO derived DOS. In the third part an organic multilayer film (SnPc), an organic-metal interface with strong coupling (SnPc/Ag) and an organic-organic interface (SnPc/PTCDA/Ag) are studied exemplarily with resonant Auger spectroscopy. The comparison of the data gives evidence for the contribution of many-body effects to the autoionization spectra. Furthermore, it is found that the electron-vibration coupling and the substrate-adsorbate charge transfer occurs on the time scale of the core hole life time. Moreover, the interaction at the organic-organic interface is weak, comparable to the intermolecular interaction in the multilayer films, despite a considerable rigid level shift for the SnPc layer. Furthermore, weak but significant electron-electron correlation is found for the molecular frontier orbitals, which are important for the substrate-adsorbate charge transfer. Therefore, these strongly coupled adsorbate films are briefly discussed within the context of the Hubbard model in the last part of this thesis. From the data derived in this work it can be estimated that such monolayer films are in the regime of medium correlations. Consequently one can expect for these adsorbate films properties which are related to the extraordinary behavior of strongly correlated materials, for which Mott metal-insulator transitions, sophisticated magnetic properties and superconductivity can be observed. Additionally some results from the investigation of alkyl/Si self-assembled monolayers are briefly discussed in the appendix. It is demonstrated exemplarily for the alkyl chains that the electronic band structure of short, finitely repeating units can be well modeled by a comparatively simple quantum well approach. In principle this approach can also be applied to higher dimensional systems, which makes it very useful for the description of E(k) relations in the regime of repeating units of intermediate length. Furthermore, the photoelectron and NEXAFS spectra indicate strong interaction at the alkyl/Si interface. It was found that the interface states can be modified by moderate x-ray irradiation, which changes the properties for charge transport through the SAM. N2 - Die Ergebnisse dieser Arbeit tragen zum generellen Verständnis der elektronischen Struktur von dünnen organischen Filmen und Grenzflächen bei. Es wird gezeigt, dass verschiedene Spektroskopieformen der Photoemission sehr hilfreich sind, um Oberflächen und Grenzflächen zu untersuchen. Die Daten in dieser Arbeit weisen darauf hin, dass Vielteilchen Effekte in organischen Dünnschichten eine wichtige Rolle spielen, besonders an Grenzflächen mit starker Wechselwirkung. Diese Effekte können für unterschiedliche Materialeigenschaften von Bedeutung sein. Im ersten Teil dieser Dissertation wird eine systematische Serie von Polyacen Molekülen mit NEXAFS Spektroskopie untersucht. Der Vergleich mit Rumpfniveau und IPES Daten zeigt, dass Rumpfanregungen und Rumpfexzitonen als Vielteilchenanregungen verstanden werden müssen. Dieser Befund impliziert zum Beispiel, dass eine große Exzitonenbindungsenergie nicht automatisch bedeutet, dass das angeregte Elektron nahe am Rumpfloch lokalisiert sein muss. Da diese Effekte auch für Valenzexzitonen auftreten, spielen sie auch bei der Separation von Ladungsträgern oder Rekombination von Elektronen und Löchern eine Rolle. Im nächsten Kapitel werden fundamentale Effekte in organischen Multilagenfilmen und Metall-Organik Grenzflächen mit Rumpfniveau- und NEXAFS Spektroskopie untersucht. Dies wird anhand der systematisch ausgewählten Molekülserie BTCDA, BTCDI, PTCDA, PTCDI durchgeführt. Es wird gezeigt, dass sich im Falle von starker Wechselwirkung an den Grenzflächen eine Substrat-Adsorbat-Zustandsdichte bildet, die zu starken Ladungstransfersatelliten führen kann, ähnlich wie sie für Übergangsmetallkomplexe bekannt sind. Die experimentellen Daten können mit einem Model verstanden werden, das das Single Impurity Anderson Modell mit dem Ansatz von Sawatzky et al. zur Beschreibung von Ladungstransfersatelliten in Übergangsmetallkomplexen vereint. Diese Herangehensweise ist equivalent zum Ansatz von Gunnarsson und Schönhammer für Adsorbate. Sie erlaubt jedoch eine relativ einfache semiquantitative Auswertung der experimentellen Daten. Ein Vergleich der Spektren für verschiedene Adsorbatschichten weist darauf hin, dass Vielteilcheneffekte besonders dann stark sind, wenn die vom LUMO abgeleitete Zustandsdichte teilweise gefüllt ist. Im dritten Teil dieser Arbeit wird exemplarisch jeweils ein organischer Multilagenfilm (SnPc), eine Organik-Metall Grenzfläche mit starker Wechselwirkung (SnPc/Ag) sowie eine Organik-Organik Grenzfläche (SnPc/PTCDA/Ag) mit resonanter Auger Spektroskopie untersucht. Durch den Vergleich der Daten wird der Beitrag der Vielteilcheneffekte zu den Autoionisationsspektren klar. Demnach laufen die Elektron-Vibrations-Kopplung und der Adsorbat-Substrat Ladungstransfer auf der Zeitskala der Rumpflochlebensdauer ab. Außerdem ist die Wechselwirkung an der Organik-Organik Grenzfläche zwischen SnPc und PTCDA sehr schwach, vergleichbar mit der intermolekularen Wechselwirkung in Multilagenschichten trotz einer parallelen Verschiebung aller elektronischen Niveaus in der SnPc Schicht. Desweiteren wird eine relativ schwache aber dennoch signifikante Elektron-Elektron Korrelation in den oberen Valenzorbitalen gefunden, die eine wichtige Rolle für den Ladungstransfer zwischen Adsorbat und Substrat spielt. Daher werden im letzten Teil dieser Dissertation die stark gekoppelten Adsorbat Filme kurz im Kontext des Hubbard Modells diskutiert. Mit den Daten aus dieser Arbeit können solche Monolagenfilme in den Bereich für mittlere Korrelationsstärke eingeordnet werden. Folglich kann man für solche Adsorbatfilme Eigenschaften erwarten, die dem außergewöhnlichen Verhalten stark korrelierter Systeme ähneln, für die z. B. Mott Metall-Isolator Übergänge, interessante magnetische Eigenschaften und Supraleitung beobachtet wurden. Zusätzlich werden im Anhang kurz einige Ergebnisse aus den Untersuchungen an einem Schichtsystem diskutiert, das aus einer Monolage Alkylketten auf dem anorganischen Halbleiter Silizium besteht und auch als self-assembled monolayer (SAM) bekannt ist. An den Alkylketten wird exemplarisch gezeigt, dass die elektronische Bandstruktur von kurzen, sich endlich wiederholenden Einheiten sehr gut durch einen relativ einfachen Quantentrog Ansatz wiedergegeben werden kann. Im Prinzip kann dieser Ansatz auch auf mehrdimensionale Systeme angewendet werden. Daher ist er für die Beschreibung von E(k) Relationen in intermediären Systemen mit endlichen Wiederholeinheiten sehr nützlich. Desweiteren wird in den Photoelektronen- und NEXAFS Spektren eine starke Wechselwirkung an der alkyl/Si Grenzfläche beobachtet. Es wird gezeigt, dass die Grenzflächenzustände durch moderate Röntgenstrahlung modifiziert werden können, was wiederum die Eigenschaften für Ladungstransport durch die Alkylschicht beeinflusst. KW - Organischer Stoff KW - Dünne Schicht KW - Grenzfläche KW - Elektronenstruktur KW - NEXAFS KW - (resonant) photoemission spectroscopy KW - organic thin-films KW - interfaces KW - charge transfer satellites KW - polyacene KW - PTCDA KW - phthalocyanine KW - self-assembled monolayer (SAM) KW - electron-vibration coupling Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-55494 ER - TY - THES A1 - Fijalkowski, Kajetan Maciej T1 - Electronic Transport in a Magnetic Topological Insulator (V,Bi,Sb)\(_2\)Te\(_3\) T1 - Elektronischer Transport in einem magnetischen topologischen Isolator (V,Bi,Sb)\(_2\)Te\(_3\) N2 - This thesis focuses on investigating magneto-transport properties of a ferromagnetic topological insulator (V,Bi,Sb)2Te3. This material is most famously known for exhibiting the quantum anomalous Hall effect, a novel quantum state of matter that has opened up possibilities for potential applications in quantum metrology as a quantum standard of resistance, as well as for academic investigations into unusual magnetic properties and axion electrodynamics. All of those aspects are investigated in the thesis. N2 - Im Mittelpunkt dieser Arbeit steht die Untersuchung der Magneto-Transporteigenschaften des ferromagnetischen topologischen Isolators (V,Bi,Sb)2Te3. Dieses Material ist vor allem dafür bekannt, dass es den quantenanormalen Hall-Effekt aufweist, einen neuartigen Quantenzustand der Materie, der Möglichkeiten für potenzielle Anwendungen in der Quantenmetrologie als Quantenstandard des Widerstands sowie für wissenschaftliche Untersuchungen zu ungewöhnlichen magnetischen Eigenschaften und der Axion-Elektrodynamik eröffnet hat. All diese Aspekte werden in dieser Arbeit untersucht. KW - Topologischer Isolator KW - Axion KW - Bismutselenide KW - Transportprozess KW - Surface states KW - Magnetic Topological Insulator KW - Quantum anomalous Hall effect Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-282303 ER - TY - THES A1 - Hüwe, Florian T1 - Electrothermal Investigation on Charge and Heat Transport in the Low-Dimensional Organic Conductor (DCNQI)\(_2\)Cu T1 - Elektrothermische Untersuchung des Ladungs- und Wärmetransports an dem niederdimensionalen organischen Leiter (DCNQI)\(_2\)Cu N2 - This thesis aimed at the coherent investigation of the electrical and thermal transport properties of the low-dimensional organic conductor (DCNQI)2M (DCNQI: dicyanoquinonediimine; M: metallic counterion). These radical anion salts present a promising, new material class for thermoelectric applications and hence, a consistent characterization of the key parameters is required to evaluate and to optimize their performance. For this purpose, a novel experimental measurement setup enabling the determination of the electrical conductivity, the Seebeck coefficient and the thermal conductivity on a single crystalline specimen has been designed and implemented in this work. The novel measurement setup brought to operation within this thesis enabled a thorough investigation of the thermal transport properties in the (DCNQI)2M system. The thermal conductivity of (DCNQI-h8)2Cu at RT was determined to κ=1.73 W m^(-1) K^(-1). By reducing of the copper content in isostructural, crystalline (DMe-DCNQI)2CuxLi1-x alloys, the electrical conductivity has been lowered by one order of magnitude and the correlated changes in the thermal conductivity allowed for a verification of the Wiedemann-Franz (WF) law at RT. A room temperature Lorenz number of L=(2.48±0.45)⋅〖10〗^(-8) WΩK^(-2) was obtained in agreement with the standard Lorenz number L_0=2,44⋅〖10〗^(-8) WΩK^(-2) for 3D bulk metals. This value appears to be significantly reduced upon cooling below RT, even far above the Debye temperature of θ_D≈82 K, below which a breakdown of the WF law is caused by different relaxation times in response to thermal and to electric field perturbations. The experimental data enabled the first consistent evaluation of the thermoelectric performance of (DCNQI)$_2$Cu. The RT power factor of 110 μWm^(-1) K^(-2) is comparable to values obtained on PEDOT-based thermoelectric polymers. The RT figure of merit amounts to zT=0.02 which falls short by a factor of ten compared to the best values of zT=0.42 claimed for conducting polymers. It originates from the larger thermal conductivity in the organic crystals of about 1.73 W m^(-1) K^(-1) in (DCNQI)2Cu. Yet, more elaborate studies on the anisotropy of the thermal conductivity in PEDOT polymers assume their figure of merit to be zT=0.15 at most, recently. Therefore, (DCNQI)2Cu can be regarded as thermoelectric material of similar performance to polymer-based ones. Moreover, it represents one of the best organic n-type thermoelectric materials to date and as such, may also become important in hybrid thermoelectrics in combination with conducting polymers. Upon cooling below room temperature, (DCNQI)2Cu reveals its full potential attaining power factors of 50 mW K^(-2) m^(-1) and exceeding values of zT>0.15 below 40 K. These values represent the best thermoelectric performance in this low-temperature regime for organic as well as inorganic compounds and thus, low-dimensional organic conductors might pave the way toward new applications in cryogenic thermoelectrics. Further improvements may be expected from optimizing the charge carrier concentration by taking control over the CT process via the counterion stack of the crystal lattice. The concept has also been demonstrated in this work. Moreover, the thermoelectric performance in the vicinity of the CDW transition in (MeBr-DCNQI)2Cu was found to be increased by a factor of 5. Accordingly, the diversity of electronic ground states accessible in organic conductors provides scope for further improvements. Finally, the prototype of an all-organic thermoelectric generator has been built in combination with the p-type organic metal TTT2I3. While it only converts about 0.02% of the provided heat into electrical energy, the specific power output per active area attains values of up to 5 mW cm^(-2). This power output, defining the cost-limiting factor in the recovery of waste heat, is three orders of magnitude larger than in conducting polymer devices and as such, unrivaled in organic thermoelectrics. While the thermoelectric key parameters of (DCNQI)2Cu still lack behind conventional thermoelectrics made of e.g. Bi2Te3, the promising performance together with its potential for improvements make this novel material class an interesting candidate for further exploration. Particularly, the low-cost and energy-efficient synthesis routes of organic materials highlight their relevance for technological applications. N2 - Ziel der vorliegenden Arbeit war die umfassende Untersuchung der elektrischen und thermischen Transportgrößen von quasi-eindimensionalen, leitfähigen Radikalanionensalzen basierend auf dem Dicyanochinondiimin-Molekül (DCNQI). Diese kristallinen (DCNQI)2M (M: Metallion) Verbindungen stellen eine vielversprechende, neuartige Materialklasse für thermoelektrische Anwendungen dar, weshalb eine konsistente Charakterisierung der thermoelektrischen Kenngrößen von großem wissenschaftlichen Interesse ist. Dafür wurde in dieser Arbeit ein neuer experimenteller Aufbau entwickelt und in Betrieb genommen, der die Messung der elektrischen und thermischen Leitfähigkeit sowie des Seebeck-Koeffizienten an einer einzigen Kristallprobe ermöglicht. Der neu etablierte Messaufbau ermöglichte eine grundlegende Untersuchung der Wärmeleitfähigkeit in der (DCNQI)2M Materialklasse, wobei für (DCNQI-h8)2Cu Cu ein Raumtemperaturwert von to κ=1.73 W m^(-1) K^(-1) ermittelt werden konnte. Durch eine Variation des Kupferanteils in (DMe-DCNQI)2CuxLi1-x Mischkristallen konnte die elektrische Leitfähigkeit über eine Größenordnung variiert und die korrelierten Änderungen der Wärmeleitfähigkeit studiert werden. Dies erlaubte eine Bestätigung des Wiedemann-Franz (WF) Gesetzes bei RT mit einer Lorenzzahl von of L=(2.48±0.45)⋅〖10〗^(-8) WΩK^(-2), welche im Rahmen des Fehlers der nach dem Sommerfeld-Modell erwarteten Lorenzzahl von L_0=2,44⋅〖10〗^(-8) WΩK^(-2) für dreidimensionale Metalle entspricht. Unterhalb von RT ist das Wiedemann-Franz Gesetz in seiner etablierten Form jedoch nicht mehr erfüllt und unterschiedliche Relaxationszeiten für thermische und elektrische Störungen der elektronischen Fermi-Verteilung treten bereits weit oberhalb der Debye Temperatur von θ_D≈82 K auf. Die in dieser Arbeit gewonnenen, experimentellen Daten erlauben zum ersten Mal eine konsistente Evaluierung der thermoelektrischen Kenngrößen von (DCNQI)2Cu Radikalanionensalzen. Ein thermoelektrischer Leistungsfaktor von 110 μWm^(-1) K^(-2) konnte bei RT nachgewiesen werden, welcher vergleichbar mit den zur Zeit besten organischen Thermoelektrika basierend auf dem lochleitenden Polymer PEDOT ist. Die thermoelektrische Gütezahl erreicht bei RT einen Wert von zT=0.02, welcher aufgrund der höheren Wärmeleitfähigkeit von 1.73 W m^(-1) K^(-1) in (DCNQI)2Cu etwa eine Größenordnung schlechter ist als die höchste, publizierte Gütezahl für PEDOT:PSS. Literaturwerte für leitfähige Polymere sind jedoch häufig aufgrund der Anisotropie der Transportgrößen überschätzt, wenn die thermoelektrischen Kenngrößen nicht in einer einheitlichen Probenrichtung gemessen werden. Daher kann die thermoelektrische Leistungsfähigkeit von (DCNQI)2Cu zumindest als vergleichbar betrachtet werden. Hinzu kommt, dass (DCNQI)2Cu eines der besten organischen Thermoelektrika mit negativen Majoritätsladungsträgern ist und deshalb für thermoelektrische Hybridgeneratoren in Kombination mit lochleitenden Polymeren Bedeutung besitzt. Unterhalb von Raumtemperatur zeigen (DCNQI)2Cu Kristalle ihr großes thermoelektrisches Anwendungspotential mit Leistungsfaktoren von bis zu 50 mW K^(-2) m^(-1) und Gütezahlen größer als zT>0.15 unterhalb von 40 K. Nach aktuellem Kenntnisstand stellen diese Werte einen Rekord im Niedrigtemperaturbereich dar, sodass niederdimensionale organische Metalle hier neue thermoelektrische Anwendungsfelder bei kryogenen Temperaturen erschließen könnten. Eine weitere Optimierung der thermoelektrischen Kenngrößen sollte durch gezielte Einstellung der Ladungsträgerdichte erreicht werden können, beispielsweise durch die Kontrolle des Ladungstransfers von den Gegenionen auf das organische Molekül. Die Gültigkeit dieses Konzepts wurde in der vorliegenden Arbeit ebenfalls demonstriert. Zusätzlich konnte eine Verfünffachung der thermoelektrischen Gütezahl in der Nähe des Peierls-Phasenübergangs von (MeBr-DCNQI)2Cu gezeigt werden. Die diversen elektronischen Grundzustände in organischen Metallen stellen daher einen weiteren Ansatz zur Verbesserung der thermoelektrischen Leistungsfähigkeit dieser Materialklasse dar. Abschließend wurde ein Prototyp eines organischen, thermoelektrischen Generators aus einer Kombination von elektronenleitendem, einkristallinen (DCNQI)2Cu und dem niederdimensionalen, lochleitenden, organischen Metall TTT2I3 hergestellt. Obwohl der aktuelle, nicht-optimierte Generator nur 0.02% der eingespeisten Wärme in elektrische Energie umwandeln konnte, erreichte seine auf die aktive Fläche normierte Leistung bereits Werte von 5 mW cm^(-2). Diese übertreffen die Kenndaten vergleichbarer thermoelektrischer Generatoren basierend auf leitfähigen Polymeren um drei Größenordnungen, wobei zu beachten ist, dass dieser Parameter einen großen Teil der Kosten in der thermoelektrischen Abwärmenutzung bestimmt. Trotz der noch nicht erreichten Leistungsmerkmale von konventionellen thermoelektrischen Generatoren basierend auf Bi2Te3 verdeutlichen die Ergebnisse für (DCNQI)2Cu dennoch das hohe Potential organischer Metalle für die thermoelektrische Materialforschung, besonders unter Berücksichtigung der kostengünstigen und weniger energieintensiven Herstellung dieser Materialien in Hinblick auf technologische Anwendungen. KW - Radikalanionensalz KW - Thermoelektrischer Effekt KW - Niederdimensionales System KW - Low-dimensional molecular metals KW - quasi-one-dimensional organic metals KW - Wiedemann Franz law KW - thermoelectric generator KW - Waste Heat Recovery KW - Quasi-eindimensionale Organische Metalle KW - Wiedemann-Franz-Gesetz KW - Niederdimensionale Molekulare Metalle KW - Thermoelektrischer Generator KW - Abwärmenutzung KW - Wärmeleitung KW - Organik KW - Festkörperphysik Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-153492 ER - TY - THES A1 - Heindel, Tobias T1 - Elektrisch gepumpte Quantenpunkt-Einzelphotonenquellen für die Quantenkommunikation T1 - Electrically Pumped Quantum-Dot Single-Photon Sources for Quantum Communication N2 - Als erste kommerziell verfügbare Technologie der Quanteninformation ermöglicht die Quanten-Schlüsselverteilung eine sichere Datenübertragung indem einzelne Photonen oder quantenmechanisch verschränkte Photonenpaare zur Erzeugung eines Schlüssels verwendet werden. Die hierfür benötigten nicht-klassischen Photonen-Zustände können durch Halbleiter-Quantenpunkte erzeugt werden. Im Gegensatz zu anderen Quanten-Emittern wie isolierten Atomen, organischen Molekülen oder Fehlstellen in Diamantnanokristallen bieten diese zudem den Vorteil, direkt in komplexe Halbleiter-Mikrostrukturen integriert werden zu können. Quantenpunkte sind somit prädestiniert für die Entwicklung neuartiger optoelektronischer Bauelemente auf einer skalierbaren Technologieplattform. Vor diesem Hintergrund werden in der vorliegenden Arbeit die Eigenschaften elektrisch gepumpter Quantenpunkt-Mikrostrukturen untersucht. Als optisch aktives Medium dienen dabei selbstorganisierte InAs/GaAs-Quantenpunkte. Die Zielsetzung ist die Erzeugung nicht-klassischen Lichts für Anwendungen in der Quantenkommunikation, wobei ein besonderer Fokus auf dem elektrischen Betrieb der entsprechenden Quantenlichtquellen liegt. Dabei werden sowohl ausgeprägte Resonatoreffekte im Regime der schwachen Licht-Materie-Wechselwirkung ausgenutzt, um helle Einzelphotonenquellen zu realisieren, als auch die Eigenschaften korrelierter Photonenpaare zweier spektral separierter Quantenpunkt-Zustände analysiert. Als Untersuchungsmethode wird in erster Linie die spektral und zeitlich hochauflösende Mikro-Lumineszenz-Spektroskopie bei kryogenen Temperaturen eingesetzt. Zudem erfolgen Experimente zur Photonenstatistik anhand von Messungen der Auto- sowie Kreuzkorrelationsfunktion zweiter Ordnung. Wie im Folgenden aufgeführt, gelingt dabei der Bogenschlag von grundlegenden Untersuchungen an Quantenpunkt-Mikrostrukturen bis hin zur erstmaligen Implementierung elektrisch getriggerter Quantenpunkt-Einzelphotonenquellen in realistischen Experimenten zur Quanten-Schlüsselverteilung außerhalb einer geschützten Laborumgebung. Elektrisch getriggerte Einzelphotonenquellen: Für die Erzeugung elektrisch getriggerter, einzelner Photonen wurden Quantenpunkte in Mikroresonatoren eingebettet. Diese basieren auf dotierten, zylindrischen Fabry-Pérot Mikrosäulenresonatoren, deren Design bezüglich der Photonen-Auskoppeleffizienz optimiert wurde. […] Anhand von Messungen zur Photonenstatistik konnte für diese spektral resonant gekoppelten Quantenpunkt-Mikroresonatorsysteme sowohl unter kontinuierlicher- als auch unter gepulst-elektrischer Anregung Einzelphotonen-Emission nachgewiesen werden. […] Anhand einer eingehenden Analyse der Emissionsraten sowie der elektrischen Injektionseffizienzen bei Anregungs-Repetitionsraten von bis zu 220 MHz konnte gezeigt werden, dass die untersuchten Mikroresonatoren zudem als äußerst effiziente, elektrisch getriggerte Einzelphotonenquellen eingesetzt werden können. Sowohl bezüglich der Einzelphotonen-Emissionsraten von bis zu (47,0+/-6,9) MHz als auch der Gesamteffizienz der Bauteile bis hin zu (34+/-7) % konnten dabei Rekordwerte erzielt werden. Korrelierte Photonenpaare elektrisch gepumpter Quantenpunkte: […] Quanten-Schlüsselverteilung mit elektrisch getriggerten Einzelphotonenquellen: Ausgehend von den grundlegenden Untersuchungen dieser Arbeit, erfolgte die erstmalige Implementierung elektrisch getriggerter Quantenpunkt-Einzelphotonenquellen in Experimenten zur Quanten-Schlüsselverteilung. Basierend auf den eingehend analysierten Quantenpunkt-Mikroresonatoren, wurden dabei zwei Experimente in Freistrahloptik mit unterschiedlichen Übertragungsdistanzen durchgeführt. In beiden Fällen wurde ein BB84-Protokoll nachgeahmt, indem auf die einzelnen Photonen eine feststehende Abfolge von vier unterschiedlichen Polarisationszuständen aufmoduliert wurde. Das erste Experiment, durchgeführt im Labormaßstab in Würzburg, basierte auf einem Quantenkanal mit einer Länge von etwa 40 cm und arbeitete bei einer Taktrate von 183 MHz. Die höchste dabei erzielte ausgesiebte Schlüsselrate (engl. sifted-key rate) betrug 35,4 kbit/s bei einem Quanten-Bitfehlerverhältnis (QBER) von 3,8 %. Der Einzelphotonen-Charakter der Emission innerhalb des Quantenkanals konnte jeweils eindeutig nachgewiesen werden […]. Das zweite Experiment zur Quanten-Schlüsselverteilung wurde mittels zweier Teleskope über eine Distanz von 500 m in der Münchner Innenstadt zwischen den Dächern zweier Gebäude der Ludwig-Maximilians-Universität realisiert. […] Bei einer Taktrate von 125 MHz konnte mit diesem System im Einzelphotonen-Regime eine maximale sifted-key rate von 11,6 kbit/s bei einem QBER von 6,2 % erzielt werden. Diese erstmalige Implementierung elektrisch betriebener, nicht-klassischer Lichtquellen in Experimenten zur Quanten-Schlüsselverteilung stellt einen wichtigen Schritt hinsichtlich der Realisierung effizienter und praktikabler Systeme für die Quantenkommunikation dar. N2 - Quantum key distribution is the first commercially available technology of quantum information and allows for secure data communication by utilizing single-photons or entangled photon-pairs for key generation. The required non-classical light states can be produced by semiconductor quantum dots. Compared to other quantum emitters, such as isolated atoms, organic molecules or vacancy centers in diamond nanocrystals, they offer the advantage of being capable for the integration into complex semiconductor microstructures. Therefore quantum dots are predestinated for the development of novel optoelectronic devices on a scalable technology platform. In this context, the work at hand explores the properties of electrically-pumped quantum dot microstructures. Thereby selforganized InAs/GaAs quantum dots serve as optically active medium. Aim of this work is the generation of non-classical light for applications in quantum communication, at which the study focuses specifically on electrical operation of the respective quantum light sources. In this framework pronounced cavity effects in the weak coupling regime of light-matter interaction will be employed to realize bright single-photon sources. Furthermore the properties of correlated photon-pairs from two spectrally-seperated quantum dot states will be analyzed. The structures were investigated by means of microluminescence spectroscopy with high spatial and temporal resolution. Moreover, experiments on the photon statistics were performed by measurements of the second-order auto- and cross-correlationfunction. As specified below, achievements within this study range from fundamental investigations on quantum dot microstructures to the first implementation of electrically-triggered quantum dot single-photon sources in realistic quantum key distribution experiments outside a shielded lab environment. Electrically-Triggered Single-Photon Sources: For the generation of electrically-triggered single-photons quantum dots were embedded in microcavities. The latter ones are based on doped Fabry-Pérot micropillar resonators featuring a design that was optimized for enhanced photon-exctraction effiency. […] Photon statistic measurements on these resonantly-coupled quantum dot micropillar systems prooved single-photon emission under continuous electrical as well as pulsed electrical excitation. […] A detailed investigation of the photon emission rates and carrier injection efficincies at excitation repetition rates of up to 220 MHz showed, that the micropillar cavities can be used as extremely efficient single-photon sources. Record high values for single-photon emission rates of up to (47.0+/-6.9) MHz as well as overall efficiencies of up to (34+/-7) % were achieved for these devices. Correlated Photon-Pairs of Electrically Pumped Quantum Dots: […] Quantum Key Distribution Using Electrically Triggered Single-Photon Sources: Based on the fundamental investigations in this work, the first implementation of electrically driven quantum dot single-photon sources into quantum key distribution experiments was carried out. Utilizing the investigated quantum dot micropillar cavities, two free space experiments were performed with different transmission distances. In both cases a BB84-protocoll was emulated by modulating the single-photons with a fixed pattern of four different polarization settings. The first experiment, performed on a lab-scale in Würzburg, is based on a 40 cm quantum channel and worked at a clock rate of 183 MHz. Sifted-key rates of up to 35.4 kbit/s with a quantum bit error ratio (QBER) of 3.8 % were achieved. Single-photon emission within the quantum channel was proven unambiguously […]. The second quantum key distribution experiment was realized over a distance of 500 m in downtown Munich, connecting two buildings of the Ludwig-Maximilians-Universität via telescopes on the rooftops. […] Using this system at a clock rate of 125 MHz, a maximum sifted-key rate of 11.6 kbit/s at a QBER of 6.2 % was achieved in the single-photon regime. This first implementation of an electrically-driven non-classical light source in quantum key distribution experiments can be considered as a major step toward the realization of efficient and practical quantum communication systems. KW - Quantenpunkt KW - Lumineszenzdiode KW - Einzelphotonenemission KW - semiconductor quantum dot KW - single photon emission KW - non-classical light KW - electrically triggered KW - quantum key distribution KW - quantum information technology KW - Quantenkryptologie Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-105778 ER - TY - THES A1 - Fiederling, Roland T1 - Elektrische Spininjektion in GaAs LEDs T1 - Electrical spin injection into GaAs LEDs N2 - Die Zielsetzung dieser Arbeit war die elektrische Spininjektion in Halbleiter zu erforschen und Methoden zu deren Realisation zu entwickeln. Hierzu wurden in dieser Arbeit III-V und II-VI Halbleiterheterostrukturen mit Hilfe von Photolumineszenz-, Elektrolumineszenz- und Anregungsspektroskopie untersucht. Die Messungen wurden bei Temperaturen im Bereich von 1.6 K bis 50 K durchgeführt und es wurden Magnetfelder bis zu 9 T verwendet. Die elektrische Spininjektion in einen nicht magnetischen Halbleiter wurde zum ersten mal in dieser Arbeit nachgewiesen. Hierzu wurden zwei neuartige Konzepte verwendet und miteinander verbunden. Zum einen wurde die Detektion von spinpolarisierten Strömen mit Hilfe von optischen Übergängen durchgeführt. Zum anderen wurde in dieser Arbeit erstmals ein semimagnetischer II-VI Halbleiter als spinpolarisierender Kontakt verwendet. Durch die optische Detektion wurden die bisherigen Magnetowiderstandsmessungen zur Bestimmung der Spininjektion abgelöst und durch die Verwendung von semimagnetischen Halbleitern wurde eine neue Klasse von Materialien für die Anwendung in spinselektiven Halbleiterheterostrukturen gefunden. Für den optischen Detektor der Elektronenpolarisation wurde eine GaAs/(Al, Ga)As Leuchtdiode (Spin-LED) verwendet, in die über das p-dotierte Substrat unpolarisierte Löcher und über den n-dotierten semimagnetischen Halbleiter spinpolarisierte Elektronen injiziert wurden. Das durch die Rekombination der Ladungsträger aus der LED emittierte Licht wurde in Oberflächenemission detektiert. Aufgrund der Auswahlregeln für optische Übergänge in Halbleitern mit Zinkblendestruktur ist es möglich, anhand der zirkularen Polarisation der Elektrolumineszenz, die Polarisation der injizierten Elektronen anzugeben. Abhängig vom externen Magnetfeld wurde die zirkulare Polarisation der Lichtemission von Spin-LEDs analysiert. Diese Polarisation erreichte schon bei geringen externen Magnetfeldern von z.B. 0.5 T sehr hohe Werte von bis zu 50 %. Im Vergleich dazu ist die intrinsische Polarisation von GaAs/(Al, Ga)As Heterostrukturen mit bis zu 5 % sehr gering. An den Spin-LEDs wurden Photolumineszenzmessungen zu der Bestimmung der intrinsischen Polarisation durchgeführt und zusätzlich wurde die Elektrolumineszenz von GaAs LEDs ohne manganhaltigen Kontakt analysiert. Mit Hilfe dieser Referenzmessungen konnten Seiteneffekte, die z.B. durch die magneto-optisch aktive manganhaltige Schicht in den Spin-LEDs verursacht werden können, ausgeschlossen werden. Insgesamt war es möglich die elektrische Spininjektion in Halbleiter eindeutig nachzuweisen. N2 - The purpose of this thesis was to study the electrical spin injection into semiconductors. To realize this III-V and II-VI semiconductor heterostructures have been studied by photoluminescence-, electroluminescence-, and excitationspectroscopy. All measurements in this thesis have been carried out in the temperature range from 1.6 K to 50 K, and magnetic fields up to 9 T have been used. The electrical spin injection into a non magnetic semiconductor has been demonstrated experimentally for the first time in this thesis. This was possible because two complete new concepts have been used to realize the electrical spin injection. On one hand the polarization of a spin polarized current was detected by optical transitions. And on the other hand a semimagnetic II-VI semiconductor has been used for the first time to generate a spin polarized current. With semimagnetic semiconductors a new class of spin selective materials has been introduced into spintronics and by the optical detection of a spin polarized current former experimental methods e.g. magneto resistivity measurements have become obsolete. A GaAs/(Al, Ga)As light emitting diode (Spin-LED), where unpolarized holes are injected over the p-type substrate and spin polarized electrons are injected over the n-type semimagnetic contact layer, has been used in this thesis to detect spin polarized currents. The light which is emitted from the active area of the LED in surface emission has been analyzed. Due to the selection rules for optical transitions in semiconductors it is possible to determine the polarization of the current driving the LED by the analysis of the circular polarization of the emitted light. The circular polarization of the light emission of Spin-LEDs has been determined for various external magnetic fields. This polarization reached at weak magnetic fields of 0.5 T already quite high values of about 50 %. In comparison, a non magnetic GaAs/(Al, Ga)As LED produces circular polarized light with a polarization of about 5 %, which is a typical value and quite small. The Spin-LEDs have been also analyzed by photoluminescence to determine the intrinsic polarization and additionally the electroluminescence of GaAs LEDs without semimagnetic contact has been analyzed. In conclusion, all these measurements clearly showed, that spin polarized currents can be injected through semimagnetic semiconductors into non magnetic semiconductors. KW - Zwei-Sechs-Halbleiter KW - Elektronenspin KW - Diffusionsverfahren KW - Halbleiter KW - Spintronik KW - Spin-LED KW - Optische Spektroskopie KW - Semiconductors KW - Spintronics KW - Spin-LED KW - Optical spectroscopy Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11338 ER - TY - THES A1 - Brodbeck, Sebastian T1 - Elektrische und magnetische Felder zur Untersuchung und Manipulation von Exziton-Polaritonen T1 - Electric and magnetic fields for analysis and manipulation of exciton-polaritons N2 - Starke Licht-Materie-Wechselwirkung in Halbleiter-Mikroresonatoren führt zur Ausbildung von Eigenmoden mit gemischtem Licht-Materie-Charakter, die als Polaritonen bezeichnet werden. Die besonderen Eigenschaften dieser bosonischen Quasiteilchen können zur Realisierung neuartiger Bauteile genutzt werden, wie etwa des Polariton-Lasers, der auf stimulierter Streuung beruht anstatt auf stimulierter Emission, durch die Photon-Lasing ausgelöst wird. Durch den direkten Zugang zu Polariton-Zuständen in spektroskopischen Experimenten, sowie durch die Möglichkeit mit vielfältigen Mitteln nahezu beliebige Potentiallandschaften definieren zu können, eröffnen sich zahlreiche weitere Anwendungsgebiete, etwa in der Quantensimulation bzw. -emulation. Mittels externer elektrischer und magnetischer Felder können Erkenntnisse über Polaritonen gewonnen werden, die in rein optischen Experimenten nicht zugänglich sind. Durch die Felder, die nicht mit rein photonischen Moden wechselwirken, kann auf den Materie-Anteil der Hybridmoden zugegriffen werden. Weiterhin können die Felder zur in-situ Manipulation der Polariton-Energie genutzt werden, was für die Erzeugung dynamischer Potentiale relevant werden könnte. Der Fokus dieser Arbeit liegt daher auf der Betrachtung verschiedener Phänomene der Licht-Materie-Wechselwirkung unter dem Einfluss äußerer Felder. Dazu wurden auf das jeweilige Experiment abgestimmte Strukturen und Bauteile hergestellt und in magneto-optischen oder elektro-optischen Messungen untersucht. Um elektrische Felder entlang der Wachstumsrichtung anlegen zu können, d.h. in vertikaler Geometrie, wurden dotierte Resonatoren verwendet, die mit elektrischen Kontakten auf der Probenoberfläche und -rückseite versehen wurden. In diesen Bauteilen wurde die Energieverschiebung im elektrischen Feld untersucht, der sogenannte Stark-Effekt. Dieser im linearen Regime bereits mehrfach demonstrierte Effekt wurde systematisch auf den nichtlinearen Bereich des Polariton-Lasings erweitert. Dabei wurde besonderes Augenmerk auf die Probengeometrie und deren Einfluss auf die beobachteten Energieverschiebungen gelegt. Die Untersuchungen von Proben mit planarer, semi-planarer und Mikrotürmchen-Geometrie zeigen, dass ein lateraler Einschluss der Ladungsträger, wie er im Mikrotürmchen erzielt wird, zu einer Umkehrung der Energieverschiebung führt. Während in dieser Geometrie mit zunehmender Feldstärke eine Blauverschiebung des unteren Polaritons gemessen wird, die durch Abschirmungseffekte erklärt werden kann, wird in planarer und semi-planarer Geometrie die erwartete Rotverschiebung beobachtet. In beiden Fällen können, je nach Verstimmung, Energieverschiebungen im Bereich von einigen hundert µeV gemessen werden. Die gemessenen Energieverschiebungen zeigen gute Übereinstimmung mit den Werten, die nach einem Modell gekoppelter Oszillatoren berechnet wurden. Weiterhin werden vergleichbare Energieverschiebungen unter- und oberhalb der Schwelle zum Polariton-Lasing beobachtet, sodass der Polariton-Stark-Effekt als eindeutiges Merkmal erachtet werden kann, anhand dessen optisch angeregte Polariton- und Photon-Laser eindeutig unterschieden werden können. Wird das elektrische Feld nicht entlang der Wachstumsrichtung angelegt, sondern senkrecht dazu in der Ebene der Quantenfilme, dann kommt es schon bei geringen Feldstärken zur Feldionisation von Elektron-Loch-Paaren. Um diese Feldgeometrie zu realisieren, wurde ein Verfahren entwickelt, bei dem Kontakte direkt auf die durch einen Ätzvorgang teilweise freigelegten Quantenfilme eines undotierten Mikroresonators aufgebracht werden. Durch das Anlegen einer Spannung zwischen den lateralen Kontakten kann die Polariton-Emission unterdrückt werden, wobei sich die Feldabhängigkeit der Polariton-Besetzung durch ein Modell gekoppelter Ratengleichungen reproduzieren lässt. Die neuartige Kontaktierung erlaubt es weiterhin den Photostrom in den Quantenfilmen zu untersuchen, der proportional zur Dichte freier Ladungsträger ist. Dadurch lässt sich zeigen, dass die zwei Schwellen mit nichtlinearem Anstieg der Emission, die in derartigen Proben häufig beobachtet werden, auf grundsätzlich verschiedene Verstärkungsmechanismen zurückgehen. An der zweiten Schwelle wird ein Abknicken des leistungsabhängigen Photostroms beobachtet, da dort freie Ladungsträger als Reservoir des Photon-Lasings dienen, deren Dichte an der Schwelle teilweise abgeklemmt wird. Die erste Schwelle hingegen, die dem Polariton-Lasing zugeordnet wird, hat keinen Einfluss auf den linear mit der Anregungsleistung ansteigenden Photostrom, da dort gebundene Elektron-Loch-Paare als Reservoir dienen. Mittels angepasster Ratengleichungsmodelle für Polariton- und Photon-Laser lässt sich der ermittelte Verlauf der Ladungsträgerdichte über den gesamten Leistungsbereich qualitativ reproduzieren. Abschließend wird durch ein magnetisches Feld der Einfluss der Licht-Materie-Wechselwirkung auf die Elektron-Loch-Bindung im Regime der sehr starken Kopplung beleuchtet. Durch die Messung der diamagnetischen Verschiebung wird der mittlere Elektron-Loch-Abstand von unterem und oberem Polariton für zwei Resonatoren mit unterschiedlich starker Licht-Materie-Wechselwirkung bestimmt. Bei geringer Kopplungsstärke werden die Hybridmoden in guter Näherung als Linearkombinationen der ungekoppelten Licht- und Materie-Moden beschrieben. Für den Resonator mit großer Kopplungsstärke wird eine starke Asymmetrie zwischen unterem und oberem Polariton beobachtet. Die diamagnetische Verschiebung des oberen Polaritons steigt mit zunehmender Verstimmung auf bis etwa 2,1 meV an, was fast eine Größenordnung über der Verschiebung des unteren Polaritons (0,27 meV) bei derselben Verstimmung liegt und die Verschiebung des ungekoppelten Quantenfilms um mehr als den Faktor 2 übersteigt. Das bedeutet, dass das untere Polariton durch eine Wellenfunktion beschrieben wird, dessen Materie-Anteil einen verringerten mittleren Elektron-Loch-Abstand aufweist. Im oberen Polariton ist dieser mittlere Radius deutlich größer als der eines Elektron-Loch-Paars im ungekoppelten Quantenfilm, was sich durch eine von Photonen vermittelte Wechselwirkung mit angeregten und Kontinuumszuständen des Quantenfilms erklären lässt. N2 - Strong light-matter interaction in semiconductor microcavities leads to the formation of eigenmodes with mixed light-matter characteristics, so-called polaritons. The unique properties of these bosonic quasiparticles may be exploited to realize novel devices, such as polariton-lasers which rely on stimulated scattering instead of stimulated emission, which in turn triggers photon-lasing. Polariton states are directly accessible in spectroscopic experiments and can be subjected to almost arbitrary potential landscapes which could lead to numerous applications, for instance in quantum simulation or emulation. External electric and magnetic fields can be used to gain insights into polaritons that are not available in all-optical experiments. The matter part of the hybrid modes is accessed by the external fields that do not interact with purely photonic modes. Furthermore, in-situ manipulation of the polariton energy by external fields could be used to create dynamic potentials. This thesis is therefore focussed on studying different aspects of light-matter coupling under the influence of external fields. To this end, structures and devices tailored to the specific experiments were fabricated and investigated in electro-optical or magneto-optical measurements. Doped microcavities with electrical contacts on the sample surface and back side were used to apply electric fields along the growth direction, i.e. in vertical geometry. The energy shift in an electric field, the so-called Stark effect, was investigated in these devices. In this work, measurements of the polariton Stark effect, which has previously been demonstrated in the linear regime, were systematically extended to the nonlinear regime of polariton-lasing with special attention paid to the sample geometry and its influence on the observable energy shifts. Investigations of samples with planar, semi-planar and micropillar geometries show that lateral carrier confinement in a micropillar leads to an inversion of the energy shift. While in this geometry a blueshift with increasing field strength is measured, which can be explained by screening effects, the expected redshift is restored in planar and semi-planar geometries. In both cases, detuning-dependent energy shifts of up to hundreds of µeV are observed in good agreement with values calculated with a model of coupled harmonic oscillators. Furthermore, comparable shifts below and above the polariton-lasing threshold are observed both in the semi-planar and in the micropillar geometry. The polariton Stark effect may therefore be considered as criterion to unambiguously distinguish optically excited polariton- and photon-lasers. If the electric field is not oriented along the growth direction but perpendicular to it, i.e. in the plane of the quantum wells, then field ionization of electron-hole pairs occurs already at low field strengths. To realize this field geometry, a process was developed to deposit electrical contacts directly onto the quantum wells of an undoped microcavity which are partially exposed in an etching step. The polariton emission can be suppressed by applying voltage to the lateral contacts and the dependency of the polariton occupation upon the electric field is reproduced using a set of coupled rate equations. This novel contacting technique furthermore allows to measure the photocurrent in the quantum wells which is proportional to the free carrier density. The two thresholds of nonlinear emission, which are commonly observed in similar samples, can then be shown to rely on fundamentally different gain mechanisms. A kink in the power dependence of the photocurrent is observed at the second threshold, where free carriers act as reservoir for photon-lasing which is why their density is partially clamped at threshold. The first threshold on the other hand, which is attributed to polariton-lasing, has no influence on the linear increase of the photocurrent with increasing excitation power, since there bound electron-hole pairs act as reservoir. The experimentally determined power dependence of the photocurrent is reproduced qualitatively over the whole range of excitation powers using adapted rate equation models for polariton- and photon-lasers. Finally, a magnetic field is used to reveal the impact of light-matter interactions on electron-hole coupling in the regime of very strong coupling. By measuring the diamagnetic shift, the average electron-hole separations of lower and upper polariton are determined for two microcavities with different light-matter coupling strengths. At small coupling strength, describing the hybrid modes as linear combinations of uncoupled light and matter modes is a valid approximation. At large coupling strength, significant asymmetries between lower and upper polariton are observed. With increasing detuning, the upper polariton diamagnetic shift increases up to 2.1 meV, almost an order of magnitude larger than the lower polariton shift (0.27 meV) at the same detuning and more than twice as large as the bare quantum well diamagnetic shift. Thus, the lower polariton is described by a wavefunction with a matter part exhibiting a decreased average electron-hole separation. For the upper polariton, this average radius is much larger than that of an electron-hole pair in the uncoupled quantum well which can be explained by photon-mediated interactions with excited and continuum states of the quantum well. KW - Drei-Fünf-Halbleiter KW - Exziton-Polariton KW - Quantenwell KW - Optischer Resonator KW - Polariton Lasing KW - Quantum confined Stark effect KW - Very strong coupling KW - Mikroresonator Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207397 ER - TY - THES A1 - Hartmann, David T1 - Elektrisches und magnetisches Schalten im nichtlinearen mesoskopischen Transport T1 - Electric and magnetic switching in nonlinear mesoscopic transport N2 - Im Rahmen dieser Arbeit wurden Transporteigenschaften von Nanostrukturen basierend auf modulationsdotierten GaAs/AlGaAs Heteroübergängen untersucht. Derartige Heterostrukturen zeichnen sich durch ein hochbewegliches zweidimensionales Elektronengas (2DEG) aus, das sich wenige 10 nm unterhalb der Probenoberfläche ausbildet. Mittels Elektronenstrahl-Lithographie und nasschemischer Ätztechnik wurde dieses Ausgangsmaterial strukturiert. Eindimensionale Leiter mit Kanalweiten von wenigen 10 nm wurden auf diese Weise hergestellt. Die Vorzüge derartiger Strukturen zeigen sich im ballistischen Elektronentransport über mehrere 10 µm und einer hohen Elektronenbeweglichkeit im Bereich von 10^6cm^2/Vs. Als nanoelektronische Basiselemente wurden eingehend eindimensionale Quantendrähte sowie y-förmig verzweigte Strukturen untersucht, deren Kanalleitwert über seitliche Gates kontrolliert werden kann. Dabei wurden die Transportmessungen überwiegend im stark nichtlinearen Transportregime bei Temperaturen zwischen 4,2 K und Raumtemperatur durchgeführt. Der Fokus dieser Arbeit lag insbesondere in der Untersuchung von Verstärkungseigenschaften und kapazitiven Kopplungen zwischen Nanodrähten, der Realisierung von komplexen Logikfunktionen wie Zähler- und Volladdiererstrukturen, dem Einsatz von Quantengates sowie der Analyse von rauschaktiviertem Schalten, stochastischen Resonanzphänomenen und Magnetfeldasymmetrien des nichtlinearen mesoskopischen Leitwertes. N2 - This thesis reports on transport features of nanoelectronic devices based on modulation doped GaAs/AlGaAs heterostructures with a two dimensional electron gas (2DEG) a few 10 nm below the sample surface. Using electron beam lithography and wet chemical etching techniques low dimensional conductors were designed with a channel width of a few 10 nm. Such conductors enable ballistic transport up to 10 µm with high electron mobilities in the range of 10^6cm^2/Vs. One dimensional quantum wires as well as y-branched structures were used as nanoelectronic basic elements, which were controlled by lateral side-gates. Transport measurements were mainly performed in the strong nonlinear transport regime at temperatures between 4.2 K and room temperature. Experimental investigations were focused on gain, capacitive couplings between single nanowires, the realisation of complex logic functions like counter and fulladder devices, quantum-gate applications, noise activated switching, stochastic resonance phenomena and magnetic field asymmetries of the nonlinear mesoscopic transport. KW - Niederdimensionales Elektronengas KW - Galliumarsenid-Bauelement KW - Galliumarsenid-Feldeffekttransistor KW - Nanoelektronik KW - Stochastische Resonanz KW - Elektronisches Rauschen KW - Quantendraht KW - Drei-Fünf-Halbleiter KW - Festkörperphysik KW - Y-Schalter KW - Magnetsensor KW - bistabiles Schalten KW - ballistischer Transport KW - Volladdierer KW - nanoelectronic KW - mesoscopic KW - ballistic KW - full adder KW - magnetic sensor KW - bistable switching Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29175 ER - TY - THES A1 - Anneser, Katrin T1 - Elektrochemische Doppelschichtkondensatoren zur Stabilisierung fluktuierender photovoltaischer Leistung T1 - Electric double layer capacitors for stabilizing intermittent photovoltaic power N2 - Der Ausbau der regenerativen Energiequellen führt vermehrt zu unvorhersehbaren Schwankungen der erzeugten Leistung, da Windkraft und Photovoltaik von natürlichen Bedingungen abhängen. Gerade Kurzzeitfluktuationen im Sekunden- bis Minutenbereich, die bei Solarzellen durch die Verschattung von vorüberziehenden Wolken zustande kommen, wird bislang wenig Beachtung geschenkt. Kurzzeitspeicher müssen eine hohe Zyklenstabilität aufweisen, um zur Glättung dieser Leistungsfluktuationen in Frage zu kommen. Im Rahmen der vorliegenden Dissertation wurden elektrochemische Doppelschichtkondensatoren für die Kopplung mit Siliziumsolarzellen und organischen Solarmodulen mit Hilfe von Simulationen und Messungen untersucht. Zusätzlich wurden grundlegende Fragestellungen zur Prozessierung und Alterung von Doppelschichtkondensatoren im Hinblick auf ein in der Literatur bereits diskutiertes System betrachtet, das beide Komponenten in einem Bauteil integriert - den sogenannten photocapacitor. Um die Druckbarkeit des gesamten elektrochemischen Doppelschichtkondensators zu ermöglichen, wurde der konventionell verwendete Flüssigelektrolyt durch einen Polymer-Gel-Elektrolyten auf Basis von Polyvinylalkohol und einer Säure ersetzt. Durch eine Verbesserung der Prozessierung konnte ein größerer Anteil der spezifischen Fläche der porösen Kohlenstoffelektroden vom Elektrolyten benetzt und somit zur Speicherung genutzt werden. Die Untersuchungen zeigen, dass mit Polymer-Gel-Elektrolyten ähnliche Kapazitäten erreicht werden wie mit Flüssigelektrolyten. Im Hinblick auf die Anwendung im gekoppelten System muss der elektrochemische Doppelschichtkondensator den gleichen Umweltbedingungen hinsichtlich Temperatur und Luftfeuchte standhalten wie die Solarzelle. Hierzu wurden umfangreiche Alterungstests durchgeführt und festgestellt, dass die Kapazität zwar bei Austrocknung des wasserhaltigen Polymer-Gel-Elektrolyten sinkt, bei einer Wiederbefeuchtung aber auch eine Regeneration des Speichers erfolgt. Zur passenden Auslegung des elektrochemischen Doppelschichtkondensators wurde eine detaillierte Analyse der Leistungsfluktuationen durchgeführt, die mit einem eigens entwickelten MPP-Messgerät an organischen Solarmodulen gemessen wurden. Anhand der Daten wurde analysiert, welche Energiemengen für welche Zeit im Kurzzeitspeicher zwischengespeichert werden müssen, um eine effiziente Glättung der ins Netz einzuspeisenden Leistung zu erreichen. Aus der Statistik der Fluktuationen wurde eine Kapazität berechnet, die als Richtwert in die Simulationen einging und dann mit anderen Kapazitäten verglichen wurde. Neben einem idealen MPP-Tracking für verschiedene Arten von Solarzellen und Beleuchtungsprofilen konnte die Simulation auch die Kopplung aus Solarzelle und elektrochemischem Doppelschichtkondensator mit zwei verschiedenen Betriebsstrategien nachbilden. Zum einen wurde ein fester Lastwiderstand genutzt, zum anderen eine Zielspannung für den Kurzzeitspeicher und somit auch die Solarzelle vorgegeben und der Lastwiderstand variabel so angepasst, dass die Zielspannung gehalten wird. Beide Betriebsmethoden haben einen Energieverlust gegenüber der MPP-getrackten Solarzelle zu verzeichnen, führen aber zu einer Glättung der Leistung des gekoppelten Systems. Die Simulation konnte für Siliziumsolarzellen mit einem Demonstratorversuch im Labor und für organische Solarzellen unter realen Bedingungen validiert werden. Insgesamt ergibt sich eine vielversprechende Glättung der Leistungsfluktuationen von Solarzellen durch den Einsatz von elektrochemischen Doppelschichtkondensatoren. N2 - The increased usage of regenerative energy sources leads to more unpredictable fluctuations in power output, as wind power and photovoltaics depend on natural conditions. Especially short-term fluctuations in the range of seconds to minutes, which occur in solar cells due to the shading by passing clouds, have received little attention so far. Corresponding short-term storage units that can be used to smooth these power fluctuations must have a high cycle stability. In the scope of this thesis the suitability of electrochemical double layer capacitors for coupling with silicon solar cells and organic solar modules was investigated with simulations and measurements. Processing methods and aging of electrochemical double layer capacitors in respect to an integrated system consisting of both components - already discussed in the literature as the so-called photocapacitor - were considered. As the liquid electrolyte was replaced by a polymer gel electrolyte based on polyvinyl alcohol and an acid in order to enable printability of the entire electrochemical double-layer capacitor. An increase of the capacitance to the level of the capacitance for electrodes with liquid electrolytes was achieved by improved processing in which a larger proportion of the specific area of the porous carbon electrodes could be wetted by the electrolyte and thus used for storage. In the application as coupled system the electrochemical double-layer capacitor must withstand the same environmental conditions with regard to temperature and humidity as the solar cell. Extensive aging tests were carried out and it was found that, although the capacitance decreases when the water-containing polymer gel electrolyte dries out, remoistening also regenerates the storage capacitance. A detailed analysis of the power fluctuations, which were measured under real conditions with small organic solar modules using a specially developed MPP measuring device, was carried out to determine the appropriate characteristics of the electrochemical double layer capacitor. Using a mathematically smoothed mean curve, it was determined which amounts of energy have to be stored in the short-term storage device for which time in order to achieve the smoothed curve. From the statistics of the fluctuations a capacitance could be calculated which was used as a guide value in the simulations and could then be compared to the impact of other capacities. In addition to ideal MPP tracking for different types of solar cells and lighting profiles, the simulation was also able to model the coupling of solar cell and electrochemical double layer capacitor with two different operating strategies. On the one hand a fixed load resistance was used, on the other hand a target voltage for the short-term storage device and thus also for the solar cell was specified. The load resistance was variably adapted so that the target voltage was reached. Both operating methods show an energy loss compared to the MPP tracked solar cell without storage component, but lead to smoothing of the power output of the coupled system. The simulation could be validated for silicon solar cells with a demonstrator test in the laboratory and for organic solar cells on the external test setup under real conditions. Overall, the use of electrochemical double layer capacitors results in a promising smoothing of the power fluctuations of solar cells. KW - Energie KW - Photovoltaik KW - Energiespeicher Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-199339 ER - TY - THES A1 - Michalke, Thordis T1 - Elektronen-Korrelationen und Elektron-Phonon-Kopplung in einem nanostrukturierten Adsorbatsystem T1 - Electron Correlations and Electron Phonon Coupling in a Nanoscaled Adsorbate System N2 - In meiner Arbeit werden die Auswirkungen von Vielteilcheneffekten in einem niedrigdimensionalen Adsorbatsystem untersucht. Ein solches System kann als einfaches Modellsystem zum Verständnis der Vielteilcheneffekte dienen. Mit Hilfe der Photoelektronenspektroskopie und Rastertunnelspektroskopie kann die Lebensdauer der Quasiteilchen direkt gemessen werden. An quasi-nulldimensionalen Quantenpunkten lässt sich außerdem der Einfluss der Dimensionalität und der Strukturgröße auf die Korrelationseffekte und Kopplungsstärken der Elektronen messen. Das Adsorbatsystem Stickstoff auf Kupfer (Cu(100)c(2x2)N) ist hierfür ideal geeignet. Bei der Adsorption von Stickstoff auf Cu(100) bilden sich auf Grund starker Verspannungen durch die inkommensurate c(2x2)-Bedeckung Stickstoff-Inseln mit einer typischen Größe von 5x5 nm². Auf diesen quasi-nulldimensionalen Quantenpunkten lässt sich lokal mit der Rastertunnelspektroskopie die elektronische Zustandsdichte messen. In den STS-Spektren und Bildern sind typische diskrete Eigenzustände eines Quantentrogs zu beobachten. Mit einem Modell gedämpfter, quasifreier Elektronen ist es gelungen, diese Eigenzustände zu simulieren und wichtige physikalische Größen, wie die effektive Masse, die Bindungsenergie und die mittlere Lebensdauer der Elektronen in den Inseln zu bestimmen. Mit Hilfe der Photoelektronenspektroskopie können zahlreiche adsorbatinduzierte Zustände identifiziert und die zweidimensionale Bandstruktur des Adsorbatsystems gemessen werden. Die Elektron-Phonon-Kopplung spielt in dem Stickstoff-Adsorbatsystem eine wichtige Rolle: Temperaturabhängige Messungen der zweidimensionalen Zustände lassen auf eine sehr starke Kopplung schließen mit Werten bis zu 1,4 für die Kopplungskonstante. Dabei ist die Kopplungsstärke wesentlich von der Lokalisierung der Adsorbatzustände abhängig. In der Nähe der Fermikante zeigt ein Adsorbatzustand eine außergewöhnliche Linienform. Die Spektralfunktion kann selbst bei recht hohen Temperaturen von 150 K mit dem Realteil der Selbstenergie der Elektron-Phonon-Kopplung beschrieben werden. Für die Phononenzustandsdichte wird dabei das Einstein-Modell verwendet auf Grund des dominierenden Anteils der adsorbatinduzierten optischen Phononen. Die Kopplungsstärke und der Beitrag der Elektron-Elektron und Elektron-Defekt-Streuung werden aus diesen Daten extrahiert. Auf Grund der sehr starken Elektron-Phonon-Kopplung könnte man spekulieren, ob sich in der Oberfläche Cooper-Paare bilden, deren Anziehung über ein optisches Adsorbatphonon vermittelt würde, und so eine exotische Oberflächen-Supraleitung verursachen. N2 - In my thesis the influence of many body effects on a low dimensional adsorbate system is studied. The adsorbate system provides as a modell system for the understanding of these many body effects. With photoelectron spectroscopy and scanning tunneling spectroscopy the lifetime of these quasi particles can be measured directly. For quasi zero dimensional quantum dots the influence of the dimensionality and the size of the structures to correlation effects and coupling constants of the electrons can be measured. The adsorbate system nitrogen on copper (Cu(100)c(2x2)N) is an ideal modell system for such studies. During the adsorption of nitrogen on Cu(100) nitrogen islands are formed with a typical size of 5x5 nm² due to the incommensurate c(2x2)structure and strain relief mechanism. Using scanning tunneling spectroscopy one is able to measure locally on a single island, a quasi-zero dimensional quantum dot. In STS-spectra quantum well states are observed with typical discrete eigen-states. A model is used to simulate these eigen-states and extract important physical parameters like the effective mass, the binding energy and the mean lifetime of the electronic states inside the islands. The photoelectron spectroscopy reveals several adsorbate induced states. The two dimensional bandstructure of the nitrogen adsorbate system has been measured. Electron phonon coupling plays a key role in these two dimensional states. Temperature dependent measurements reveal a very strong coupling with values up to 1,4 for the coupling constant. The coupling constant is very sensitive to the localization of the adsorbate states. One of the adsorbate induced states shows an exceptional line shape when approaching the Fermi energy: the spectral function can be described by the real part of the electron phonon self energy even at quite high temperatures (150 K). The Einstein model is used to describe the phonon density of states because of the dominant role of adsorbate induced optical phonons. The coupling constant and the contributions of the electron-electron and electron-defect scattering are deduced. Due to the very strong electron phonon coupling in the adsorbate system one may speculate about an exotic surface superconductivity, where the Cooper pairs might be confined to the surface and their attraction might be mediated by the adsorbate optical phonons. KW - Adsorbat KW - Nanostrukturiertes Material KW - Elektronenkorrelation KW - Elektron-Phonon-Wechselwirkung KW - Photoelektronenspektroskopie KW - Rastertunnelspektroskopie KW - Adsorbatsystem KW - Quasiteilchen-Lebensdauer KW - Quantentrogzustände KW - Photoelectron Spectroscopy KW - Scanning Tunneling Spectroscopy KW - Adsorbate System KW - Quasiparticle Lifetime KW - Quantum Well States Y1 - 2004 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-11957 ER - TY - THES A1 - Erfurth, Felix T1 - Elektronenspektroskopie an Cd–freien Pufferschichten und deren Grenzflächen in Cu(In,Ga)(S,Se)2 Dünnschichtsolarzellen N2 - Die in dieser Arbeit untersuchten Solarzellen auf Basis des Verbindungshalbleiters Cu(In,Ga)(S,Se)2 sind zur Zeit das vielversprechendste Materialsystem im Bereich der Dünnschichtfotovoltaik. Um damit möglichst hohe Wirkungsgrade zu erreichen, ist eine CdS–Pufferschicht notwendig, welche aufgrund ihrer Toxizität und des schlecht integrierbaren, nasschemischen Abscheideprozesses durch alternative Pufferschichten ersetzt werden soll. Im Rahmen dieser Arbeit wurden solche Cd–freien Pufferschichten in Chalkopyrit–Dünnschichtsolarzellen untersucht. Dabei wurde insbesondere deren Grenzfläche zum Absorber charakterisiert, da diese eine wesentliche Rolle beim Ladungsträgertransport spielt. Die hier untersuchten (Zn,Mg)O–Schichten stellen ein vielversprechendes Materialsystem für solche Cd–freien Pufferschichten dar. Durch den Einbau von Magnesium können die elektronischen Eigenschaften der eigentlichen ZnO–Schicht an den Absorber angepasst werden, was zu deutlich höheren Wirkungsgraden führt. Als Hauptgrund geht man dabei von einer besseren Leitungsbandanpassung an der Grenzfläche aus, welche allerdings bisher nur grob anhand der Position des Valenzbandmaximums an der Oberfläche und der optischen Volumenbandlücke abgeschätzt werden konnte. In dieser Arbeit wurde diese Grenzfläche daher mittels Photoelektronenspektroskopie und Inverser Photoelektronenspektroskopie untersucht, wobei durch die Kombination beider Methoden die Valenz– und Leitungsbandpositionen direkt bestimmt werden konnten. Es wurde gezeigt, dass der Bandverlauf an der Grenzfläche tatsächlich durch die Änderung des Mg–Gehalts der (Zn,Mg)O–Schichten optimiert werden kann, was eine wichtige Voraussetzung für einen möglichst verlustarmen Ladungstransport ist. Im Fall von reinem ZnO wurde ein „cliff“ (Stufe nach unten) beobachtet, welches mit steigendem Mg–Gehalt abnimmt schließlich ganz verschwindet. Die weitere Erhöhung des Mg–Gehalts führt zur Bildung eines „spike“ (Stufe nach oben). Dass es sich bei einer solchen Stufe nicht um die abrupte Änderung des Bandverlaufs an einer „idealen“, scharf definierten Grenzfläche handelt, haben die vorliegenden Untersuchungen der chemischen Struktur gezeigt. Infolge der dabei beobachteten Durchmischungseffekte bildet sich eine sehr komplexe Grenzfläche mit endlicher Breite aus. So wurde bei der Deposition der (Zn,Mg)O–Schichten die Bildung von In–O–Verbindungen an der Grenzfläche beobachtet. Im Fall von Zn konnte die Diffusion in den Absorber nachgewiesen werden, wodurch es dort zur Bildung von ZnS kommt. Im weiteren Verlauf dieser Arbeit wurde die Grenzfläche zwischen der (Zn,Mg)O–Pufferschicht und CuInS2–Absorbern untersucht. Durch ihre höhere Bandlücke im Vergleich zu den oben untersuchten Cu(In,Ga)(S,Se)2–Absorbern erhofft man sich eine höhere Leerlaufspannung und dadurch bessere Wirkungsgrade. Bisher liegt dieser Leistungsanstieg allerdings unter den zu erwartenden Werten, wofür eine schlechte Anpassung des Leitungsbandverlaufs an die herkömmliche CdS–Pufferschicht verantwortlich gemacht wird. Gerade für dieses Materialsystem scheint sich daher (Zn,Mg)O als Pufferschicht anzubieten, um die Bandanpassung an der Grenzfläche zu optimieren. Bei den in dieser Arbeit durchgeführten Untersuchungen an dieser Grenzfläche konnten ebenfalls Durchmischungsprozesse beobachtet werden. Zusätzlich wurde gezeigt, dass auch bei diesem Materialsystem der Bandverlauf an der Grenzfläche durch die Variation des Mg–Gehalts angepasst werden kann. Insgesamt konnte so für beide Absorbertypen ein detailliertes Bild der (Zn,Mg)O/Puffer–Grenzfläche gezeichnet werden. Für hinreichend gute Wirkungsgrade von Zellen mit „trocken“ abgeschiedenen Pufferschichten ist in den meisten Fällen eine zusätzliche, nasschemische Vorbehandlung des Absorbers notwendig, deren Einfluss auf die Absorberoberfläche ebenfalls in dieser Arbeit untersucht wurde. Dabei hat sich gezeigt, dass durch eine solche Behandlung das auf der Oberfläche angereicherte Natrium vollständig entfernt wird, was eine deutliche Steigerung desWirkungsgrades zur Folge hat.Weitere Untersuchungen führten zu dem Ergebnis, dass eine solche Reinigung der Absorberoberfläche auch durch den Prozess der Sputterdeposition selbst hervorgerufen werden kann. So kommt es neben der Ablagerung des Schichtmaterials zu deutlichem Materialabtrag von der Absorberoberfläche, wodurch diese von Adsorbaten und von auf der Oberfläche sitzenden Oxidverbindungen gereinigt wird. Untersuchungen an Absorbern, welche in einem Cd2+–haltigen Bad vorbehandelt wurden, haben gezeigt, dass der dabei abgeschiedene CdS/Cd(OH)2–Film ebenfalls fast vollständig während der Sputterdeposition entfernt wird. Abschließend wurden auf In2S3–basierende Pufferschichten charakterisiert, welche aufgrund ihrer bisher erreichten hohen Wirkungsgrade eine weitere Alternative zu CdS–Puffern darstellen. Hier wurde an der Grenzfläche zum Absorber eine starke Diffusion der Cu–Atome in die Pufferschicht hinein beobachtet, wodurch es zur Bildung von CuInS2–Phasen kommt. Messungen an bei verschiedenen Temperaturen abgeschiedenen Schichten haben gezeigt, dass diese Diffusion durch hohe Temperaturen zusätzlich verstärkt wird. Gleichzeitig konnte auch die Diffusion von Ga–Atomen nachgewiesen werden, welche allerdings wesentlich schwächer ausfällt. Analog zu den vorangegangenen Ergebnissen konnte somit auch bei diesem Materialsystem die Ausbildung einer sehr komplexen Grenzflächenstruktur beobachtet werden. N2 - In this work investigations were accomplished on Cu(In,Ga)(S,Se)2 thin film solar cells, which represent today’s most promising thin film solar cell technology. To obtain high efficiencies a CdS buffer layer is essential in such solar cells. Because of its toxicity and the unfavorable, intermediate wet chemical deposition process, one would like to replace this layer by alternative buffer layers. In the framework of this thesis different Cd–free buffers were investigated. Thereby especially the interface to the chalkopyrite absorber was characterized because of its major role concerning the charge carrier transport. One promising material for such Cd–free buffer layers is (Zn,Mg)O. By doping the actual ZnO–layer with Magnesium, the electronic properties of the layer can be adjusted to that of the absorber layer. This results in higher efficiencies, which is attributed to a better conduction band alignment at the interface. In the past this alignment was only estimated indirectly by other groups by using the position of the valence band maximum at the surface and the optically derived band gap of the bulk material. In this work this interface was investigated by applying photoelectron spectroscopy and inverse photoelectron spectroscopy. With the combination of both methods the positions of both, the valence and conduction band, could be determined directly. It was shown that the band alignment at the interface can indeed be optimized by changing the Mg–content of the (Zn,Mg)O–layers, which is an important requirement for a low–loss charge transport. In the case of pure ZnO–layers a “cliff” (i.e. a downward step) is observed, which becomes smaller and finally vanishes with increasing Mg–content. A further increase of the Mg–content leads to the formation of a “spike” (i.e. an upward step). The investigations of the chemical structure of this interface showed that this step–like behaviour cannot be understood as an abrupt change of the band alignment. The observed intermixing processes form a complex interface structure of finite width. At this interface the formation of In–O bonds has been observed. Furthermore the diffusion of Zn into the absorber could be proved, which causes the formation of ZnS. Moreover the interface between (Zn,Mg)O–layers and CuInS2–absorbers was investigated. For these wide band gap absorbers, a higher open circuit voltage is expected compared to the above–mentioned Cu(In,Ga)(S,Se)2–absorbers, which should give better efficiencies. Up to now this enhancement of the cell performance is much lower than expected, which is attributed to a bad conduction band alignment at the interface to the conventional CdS–buffer layer. Consequently, for this absorber material (Zn,Mg)O seems to be the perfect buffer layer to tailor the band alignment at the absorber/buffer interface. During these investigations also interface diffusion processes were observed that already have been mentioned above. Additionally it was shown that also for this absorber material the band alignment at the interface can be tailored by changing the Mg–content of the buffer layer. Altogether a detailed picture of the absorber/buffer interface could be drawn for both kinds of absorbers. To obtain reasonable cell efficiencies of solar cells with dry deposited buffer layers a wet chemical treatment of the absorber surface is required in most cases. The influence of this treatment on the absorber surface has been investigated in this work as well. It was shown that such a treatment basically removes the sodium from the absorber surface, which causes an distinct enhancement of the cell efficiency. Further investigations led to the conclusion that such a cleaning of the absorber surface can also be caused by the sputter deposition process itself. Besides the deposition of the layer compound a cleaning of the surface occurs due to the removal of adsorbates and oxides sitting at the surface. Investigations on absorbers that have been treated in a Cd2+– containing wet chemical bath showed, that the thereby deposited CdS/Cd(OH)2–film was almost completely removed from the surface, too. Finally buffer layers based on In2S3 were investigated, which is another promising buffer material for those Cd–free solar cells. At this absorber/buffer interface a strong diffusion of Cu– atoms into the buffer layer was observed, accompanied by the formation of CuInS2. Measurements of layers that were prepared at different deposition temperatures showed, that this diffusion is enforced at high temperatures. At the same time the diffusion of Ga–atoms was observed likewise, although it was much weaker. All in all the formation of a very complex interface structure could be demonstrated also for this kind of buffer layer. KW - Dünnschichtsolarzelle KW - Elektronenspektroskopie KW - Solarzelle KW - Röntgen-Photoelektronenspektroskopie KW - Zwischenschicht Y1 - 2010 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-46208 ER - TY - THES A1 - Heßler, Markus T1 - Elektronenspektroskopie an Übergangsmetallclustern T1 - Electron spectroscopy on transition metal clusters N2 - Im Rahmen der vorliegenden Arbeit wurden Untersuchungen zum Magnetismus und der elektronischen Struktur deponierter Cluster der 3d-Übergangsmetalle Fe, Co und Ni durchgeführt. Dabei zeigte sich, dass die Deposition der Cluster in Argon-Dünnfilme nicht nur zur fragmentationsfreien Probenpräparation genutzt werden kann, sondern auch die Untersuchung der Cluster in einer Umgebung mit geringer Wechselwirkung erlaubt. Die Beobachtung des atomaren Co-Multipletts sowie die Übereinstimmung der, mittels XMCD bestimmten, magnetischen Gesamtmomente von Fe- und Co-Clustern mit Gasphasenexperimenten zeigen auf, dass unter stabil gewählten Bedingungen die intrinsischen magnetischen Clustereigenschaften tatsächlich experimentell zugänglich sind. Die synchrotroninduzierte Mobilität von Clustern und Argon manifestiert sich in der Veränderung der Form der Absorptions- und Photoemissionslinien sowie in der zunehmenden Verminderung der gemessenen Magnetisierung. Neben den geeigneten Experimentierbedingungen ist zur Bestimmung der magnetischen Momente die Anwendbarkeit der XMCD-Summenregeln auf die Spektroskopie an Clustern notwendig. Besondere Beachtung verdient dabei auf Grund der reduzierten Symmetrie in Clustern der "magnetische Dipolterm" zur Spin-Summenregel. Der Vergleich des spektroskopisch ermittelten Gesamtmoments mit demjenigen, welches aus superparamagnetischen Magnetisierungskurven bestimmt wurde, erlaubt es, für seinen Beitrag bei Co-Clustern eine obere Schranke von 10% anzugeben. Erwartungsgemäß weisen die Spinmomente von Fe- und Co-Clustern gemessen am Festkörper deutlich erhöhte Werte auf, allerdings reichen sie nicht an die mittels Stern-Gerlach-Ablenkung bestimmten magnetischen Gesamtmomente der Cluster heran. Die elektronische Struktur von Nickelclustern erweist sich als sehr empfindlich gegen Wechselwirkungen mit Fremdatomen, so dass die magnetischen Resultate aus der Gasphase nicht nachvollzogen werden können. Allen Clustern in der Argonumgebung ist jedoch eine starke Erhöhung des bahnartigen Anteils am Gesamtmoment, generell auf mehr als 20% gemein. Damit kann nachgewiesen werden, dass die bestehende Diskrepanz zwischen berechneten Spinmomenten und experimentell bestimmten Gesamtmomenten in der Tat auf große Bahnmomente zurückzuführen ist. Dies gilt um so mehr, als die in dieser Arbeit bestimmten magnetischen Gesamtmomente an Fe- und Co-Clustern in guter Übereinstimmung mit Stern-Gerlach-Experimenten stehen. Die Wechselwirkung der Cluster mit der Oberfläche des Graphits führt bereits in den XAS-Absorptionsprofilen der L-Kanten zu sichtbaren Veränderungen in Form und energetischer Position der Absorptionsresonanzen. Alle untersuchten Cluster erfahren gleichzeitig eine starke Reduktion ihrer magnetischen Momente, häufig bis unter die Nachweisgrenze. Unter diesen Umständen ist es durchaus angebracht, von einer starken Cluster-Substrat-Wechselwirkung auszugehen. Dieser Befund wird durch die mittels Photoelektronenspektroskopie erzielten Ergebnisse untermauert. Veränderungen durch das "Einschalten" der Substratwechselwirkung sind sowohl in den Rumpfniveau- als auch den Valenzbandspektren zu erkennen. Charakteristisch für die ausführlicher untersuchten Ni-Cluster ist die Ausbildung einer, mit dem Graphitsubstrat hybridisierten, Elektronenstruktur mit reduzierter Zustandsdichte in der Umgebung des Ferminiveaus. Eine solche Konfiguration begünstigt die Ausbildung von "low-spin" - Zuständen, wie sie in den XMCD-Experimenten bei vorhandener Wechselwirkung mit dem Graphit gefunden werden. Die starke Kopplung der elektronischen Zustände von Cluster und Substrat äußert sich ebenfalls in dem Verlust des Fano-Resonanzverhaltens in der resonanten Photoemission an der 3p-Absorptionsschwelle. Das Fehlen der analogen Beobachtung an der 2p-Schwelle, muss einer starken Lokalisierung des 2p-rumpflochangeregten Zwischenzustandes zugeschrieben werden. Die genaue Analyse der Veränderung des resonant-Raman-Verhaltens in der 2p-RESPES könnte wertvolle komplementäre Informationen liefern, wird aber durch die Gegenwart der Argon-Valenzemission zu stark behindert, um konkrete Aussagen zuzulassen. Die Analyse der RESPES-Daten lässt den Schluss zu, dass die tatsächliche Besetzung der 3d-Zustände durch die Substratwechselwirkung nicht nennenswert verändert wird. Neben der Charakterisierung der großen magnetischen Clustermomente nach Spin- und Bahnanteilen vermitteln die Experimente dieser Arbeit einen guten Einblick in die Veränderungen der elektronischen Eigenschaften durch die Wechselwirkung mit dem Graphit. Der Einfluss des Substrates führt zu einer starken Verkleinerung der magnetischen Momente. Offensichtlich wird die elektronische Gesamtenergie an der Grenzfläche durch die Ausbildung von hybridisierten Zuständen minimiert, welche nahe der Fermienergie eine geringe Zustandsdichte besitzen. N2 - The present thesis presents investigations on the magnetism and the electronic structure of deposited 3d transition metal clusters. Clusters are being deposited into thin argon layers in order to avoid fragmentation. At the same time the argon is used as a matrix providing an environment of weak interaction. Under suitably chosen stable experimental conditions the atomic absorption multiplet is observed and the magnetic moments of Fe and Co clusters determined by XMCD compare well to those observed in gas phase experiments. Thus intrinsic magnetic cluster properties can be probed from rare gas matrix isolated clusters. At elevated x-ray photon flux densities mobility of both, rare gas atoms and clusters, is generated by the synchrotron beam and leads to noticeable changes in spectroscopic line shapes and the reduction of the magnetic moments. Besides suitable experimental conditions it is important to ascertain the applicability of the XMCD sum rules in the case of the clusters. Due to the reduced symmetry in the clusters the magnetic dipole contribution to the spin sum rule deserves particular attention. From the comparison of the total magnetic moment determined by XMCD to the one following from superparamagnetic magnetisation curves an upper limit of 10% for this contribution can be determined. As expected the spin magnetic moments in Fe and Co clusters exceed those of the corresponding bulk materials. They do not, however, reach the values of the total magnetic moments determined from Stern-Gerlach deflection experiments. The electronic structure of Ni clusters proves to be particulary sensitive with respect to the interaction with foreign atoms. Therefore the gas phase magnetic moments cannot be reproduced in the present experiments. Common to all clusters within the argon film is a strong enhancement of the orbital contribution to the total magnetic moment, generally above 20%. This observation of strong orbital moments bridges the gap between calculated spin magnetic moments an experimental total moments. In particular we find good agreement of the total magnetic moments determined in the present work compared to those of Stern-Gerlach experiments. When the clusters interact with the graphite surface noticeable changes occur in both, the spectral shape and the energy positions of the L edge resonance profiles, respectively. All clusters investigated undergo a strong reduction of their magnetic moments under these conditions. It is therefore appropriate to consider the cluster substrate interaction to be considerable. This finding is further substantiated by the experimental results obtained by photoelectron spectroscopy. The substrate interaction leads to visible changes in the core level as well as the valence band spectra. For Ni clusters the latter reveal the formation of a hybridised electronic structure with a reduced density of states in the vicinity of the Fermi level. Such an electronic configuration favors the formation of low spin states which are indeed observed for the clusters interacting with graphite. The strong coupling of cluster an substrate electronic states is also reflected by the loss of the fano line shape in the 3p resonant photoemission signal. This observation does not hold for the RESPES at the 2p-threshold, however. This apparent discrepancy is attributed to a strongly localised core excited intermediate state at the 2p edge. While the detailed analysis of the resonant raman regime could yield useful complementary information it is prevented by the strong emission from the argon valence states. Nevertheless it can be inferred from the RESPES data that the 3d occupation number in Ni clusters is not substantially altered by the substrate interaction. The experiments of this work does provide the characterisation of the cluster magnetic moments in terms of their spin and orbital contributions. In addition they provide an inside into the modifications of the electronic properties emanating from the cluster substrate interaction. The hybridisation with graphite electronic structure leads to a strong reduction of the magnetic moments. Obviously, the interfacial total energy is minimised by adopting an electronic level structure with little density of states near the Fermi level. KW - Übergangsmetall KW - Metallcluster KW - Elektronenspektroskopie KW - Cluster KW - Magnetismus KW - XMCD KW - Übergangsmetall KW - cluster KW - magnetism KW - XMCD KW - transition metal Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-18689 ER - TY - THES A1 - Vogt, Matthias Guido T1 - Elektronische Eigenschaften von Wabengittern mit starker Spin-Bahn-Kopplung T1 - Electronic Properties of honeycomb lattices with strong spin-orbit coupling N2 - Im Rahmen dieser Arbeit wurden die elektronischen Eigenschaften von Graphen auf Metalloberflächen mittels Rastertunnelmikroskopie und Quasiteilcheninterferenz (englisch quasiparticle interference, QPI)-Messungen untersucht. Durch das Verwenden schwerer Substrate sollte die Spin-Bahn-Wechselwirkung des Graphen verstärkt werden und damit eine Bandlücke am K-Punkt der Bandstruktur mittels QPI beobachtet werden. Um das Messen von QPI auf Graphen zu testen, wurde auf der Oberfläche eines SiC(0001)-Kristalls durch Erhitzen Graphen erzeugt und mit dem Rastertunnelmikroskop untersucht. Dieses System wurde schon ausführlich in der Literatur beschrieben und bereits bekannte QPI-Messungen von Streuringen, die auf den Dirac-Kegeln des Graphen am K-Punkt basieren, konnte ich auf gr/SiC(0001) in guter Qualität erfolgreich reproduzieren. Anschließend wurde Graphen nach einem wohlbekannten Verfahren durch Aufbringen von Ethylen auf ein erhitztes Ir(111)-Substrat erzeugt. Dieses gr/Ir(111)-System diente auch als Grundlage für Interkalationsversuche von Bismut (gr/Bi/Ir(111)) und Gadolinium (gr/Gd/Ir(111)) zwischen das Graphen und das Substrat. Auf gr/Bi/Ir(111) wurde ein schon aus der Literatur bekanntes Netzwerk aus Versetzungslinien beobachtet, dem zusätzlich eine Temperaturabhängigkeit nachgewiesen werden konnte. Beim Versuch, Gadolinium zu interkalieren, wurden zwei verschieden Oberflächenstrukturen beobachtet, die auf eine unterschiedlich Anordnung bzw. Menge des interkalierten Gadoliniums zurückzuführen sein könnten. Auf keinem dieser drei Systeme konnten allerdings Streuringe mittels QPI beobachtet werden. Als Vorbereitung der Interkalation von Gadolinium wurden dessen Wachstum und magnetische Eigenschaften auf einem W(110)-Kristall untersucht. Dabei konnte eine aus der Literatur bekannte temperaturabhängige Austauschaufspaltung reproduziert werden. Darüber hinaus konnten sechs verschieden magnetische Domänen beobachtet werden. Zusätzlich sind auf der Oberfläche magnetische Streifen auszumachen, die möglicherweise auf einer Spinspirale basieren. Als Grundlage für die mögliche zukünftige Erzeugung Graphen-artiger Molekülgitter wurde das Wachstum von H-TBTQ und Me-TBTQ auf Ag(111) untersucht. Die Moleküle richten sich dabei nach der Oberflächenstruktur des Silber aus und bilden längliche Inseln, deren Kanten in drei Vorzugsrichtungen verlaufen. Auf H-TBTQ wurde zudem eine zweite, Windmühlen-artige Ausrichtung der Moleküle auf der Oberfläche beobachtet. Auf den mit den Molekülen bedeckten Stellen der Oberfläche wurde eine Verschiebung des Ag-Oberflächenzustands beobachtet, die mit einem Ladungstransfer vom Ag(111)-Substrat auf die TBTQ-Moleküle zu erklären sein könnte. N2 - In this thesis, the electronic properties of graphene on metal surfaces were investigated by scanning tunneling microscopy and quasiparticle interference (QPI) measurements. In order to enhance the spin orbital interaction of the graphene and possibly observe a band gap at the K-point of the band structure via QPI, substrates with heavy atoms were used. To test the ability to measure QPI on graphene, graphene was produced on the surface of a SiC(0001) crystal by heating and examined with a scanning tunneling microscope. This system has already been described in detail in the literature and I was able to successfully reproduce QPI measurements of clearly recognizable scattering rings, which are due to the Dirac cones of the graphene at the K-point Afterwards, graphene was produced by a well-known process by applying ethylene to a heated Ir(111) substrate. This gr/Ir(111) system also served as a basis for intercalation experiments of bismuth (gr/Bi/Ir(111)) and gadolinium (gr/Gd/Ir(111)) between the graphene and the substrate. On gr/Bi/Ir(111), a network of dislocation lines known from literature was observed, which also showed a temperature dependence. In the attempt to intercalate gadolinium, two different surface structures were observed which could be due to a different arrangement or quantity of the intercalated gadolinium. However, on none of these three systems scattering rings were observed by QPI. In preparation for the intercalation of gadolinium, its growth and magnetic properties were investigated on a W(110) substrate. A temperature-dependent exchange splitting of the surface density of states known from the literature could be reproduced. In addition, six different magnetic domains and magnetic stripes were observed on the surface, which may be based on a spin spiral. The growth of H-TBTQ and Me-TBTQ on Ag(111) was investigated as a basis for a possible subsequent generation of graphene-like molecular lattices in the future. The molecules are aligned to the surface structure of the silver and form elongated islands with edges in three preferred directions. H-TBTQ also appeared in a second, windmilllike orientation of the molecules on the surface. A shift of the Ag surface state was observed on the surface areas covered by the molecules, which might be explained by a charge transfer from the Ag(111) substrate to the TBTQ molecules. KW - Spin-Bahn-Wechselwirkung KW - Graphen KW - Rastertunnelmikroskopie KW - Wabengitter KW - Tribenzotriquinacen KW - Quasiteilcheninterferenz Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-207506 ER - TY - THES A1 - Seibel, Christoph T1 - Elektronische Struktur von Halbleiteroberflächen mit starker Spin-Bahn-Wechselwirkung: Topologie, Spinpolarisation und Robustheit T1 - Electronic structure of semiconductor surfaces with strong spin-orbit interactions: topology, spin polarisation and robustness N2 - Neue Erkenntnisse über elektronische Eigenschaften von Festkörpern legen den Grundstein für innovative Anwendungen der Zukunft. Von zentraler Bedeutung sind insbesondere die Eigenschaften der Elektronenspins. Um diese besser zu verstehen, befasst sich die vorliegende Arbeit mit der experimentellen Analyse der elektronischen Struktur von topologischen Isolatoren (Sb$_2$Te$_3$ , Bi$_2$Se$_x$Te$_{3−x}$, Bi$_{1.5}$Sb$_{0.5}$Te$_{1.8}$Se$_{1.2} und Bi$_{1.4}$Sb$_{1.1}$Te$_{2.2}$S$_{0.3}$) und Kristallen mit starker Spin-Bahn-Wechselwirkung (BiTeI) mittels Photoelektronenspektroskopie. Zu Beginn werden die zum Verständnis dieser Arbeit benötigten Grundlagen erklärt sowie die unterschiedlichen zum Einsatz kommenden Techniken eingeführt. Der Hauptteil der Arbeit teilt sich in drei Forschungsschwerpunkte. Der erste Teil befasst sich mit den elektronischen Eigenschaften der Valenzbandstruktur von Sb2Te3 und den auftretenden Oberflächenzuständen. Durch gezielte Variation der Energie der anregenden Strahlung wird der Charakter der Wellenfunktion des topologischen Oberflächenzustands und dessen Wechselwirkung mit Valenzzuständen erforscht. Dabei spielt die Topologie der Volumenbandstruktur eine grundlegende Rolle. Der zusätzliche Vergleich zu Photoemissionsrechnungen ermöglicht detaillierte Einblicke in die Wechselwirkung zwischen Oberflächen- und Volumenzuständen und gibt Aufschluss darüber, wie diese vermittelt werden. Im zweiten Abschnitt wird durch die Analyse des gemessenen Photoelektronenspins das Zusammenspiel der Spintextur des Grundzustands und Endzuständen in Bi2Te3 untersucht. Dabei treten, im Gegensatz zu Grundzustandsrechnungen, Radialkomponenten des Polarisationsvektors in nichtsymmetrischer Messgeometrie auf. Sowohl deren Energieabhängigkeit als auch deren Auftreten in Photoemissionsrechnungen (1-Schritt-Modell) deutet darauf hin, dass diese ihren Ursprung in Übergangsmatrixelementen des Photoemissionsprozesses haben. Dieses Ergebnis wird mit Spinpolarisationsmessungen am Oberflächenzustand des nicht-topologischen Schichtsystems BiTeI verglichen. Im dritten Teil werden Auswirkungen unterschiedlicher Manipulationen der untersuchten Materialien auf deren elektronische Eigenschaften beschrieben. Die Adsorption von Bruchteilen einer monoatomaren Lage des Alkalimetalls Caesium auf die Oberfläche des topologischen Isolators Sb2Te3 wird systematisch untersucht. Dadurch kann dessen intrinsische p-Dotierung teilweise abgebaut werden, wobei die Valenzbandstruktur trotz der Reaktivität des Adsorbats intakt bleibt. Des Weiteren werden Auswirkungen von Änderungen der Kristallstöchiometrie durch Volumendotierung vergleichend diskutiert. Ausblickend befasst sich das Kapitel mit dem Verhalten geringer Mengen ferromagnetischer Materialen (Fe, Ni) auf den Oberflächen der topologischen Isolatoren. Für die verschiedenen Adsorbate werden Trends aufgezeigt, die von Temperatur und Zusammensetzung des Substratkristalls abhängen. N2 - New findings about electronic properties lay the foundation for future applications. The spin properties of systems with large spin-orbit coupling are particularly important. The content of this thesis therefore treats the experimental study of the surface electronic structure of topological insulators (Sb$_2$Te$_3$ , Bi$_2$Se$_x$Te$_{3−x}$, Bi$_{1.5}$Sb$_{0.5}$Te$_{1.8}$Se$_{1.2} and Bi$_{1.4}$Sb$_{1.1}$Te$_{2.2}$S$_{0.3}$) and topologically trivial BiTeI crystals using photoelectron spectroscopy. At the beginning basic knowledge to understand this thesis, as well as exploited techniques are addressed. The main part of this thesis separates into three research topics. The first part focuses on the electronic properties of the valence band structure and the wave functions of the occuring surface states. Via variation of the energy of the exciting radiation the character of the wavefunction of the respective topologically non trivial surface state as well as its interaction with valence states is explored. The bulk boundary correspondence and the topology of the bulk electronic structure is of special importance for this interaction. Additionally, it is concluded from photoemission calculations, that the interaction between surface and bulk valence states is mediated by a surface resonance state. The second section presents an analysis of photoelectron spins to investigate the respective contributions of the spin texture of the initial state and final states. This thesis reports on non-vanishing radial components of the polarization vector which do not appear in groundstate calculations. The energy dependance in combination with one-step photoemission calculations indicates that these radial components find their origin in transition matrix elements of the photoemission process. The result is compared to spin resolved measurements of the surface state of the layered material BiTeI which is not a topological insulator. In the third part the consequences of various manipulations of the analyzed materials on their respective electronic structure are described. The systematic adsorption of submonolayer amounts of the alkalimetal Caesium on the surface of the topological insulator Sb2Te3(0001) reduces its intrinsic p-doping without altering its valence band structure despite the reactivity of the adsorbate. Furthermore the effects of stoichiometric changes of elemental composition and bulk doping are being discussed. Finally the behavior of small amounts of ferromagnetic materials (Fe, Ni) on the surface of the respective topological insulators are being addressed. For the different adsorbates trends are shown, which depend on temperature and chemical composition of the substrate. KW - Elektronenstruktur KW - Topologischer Isolator KW - Sb2Te3 KW - ARPES Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-140418 ER - TY - THES A1 - Weinhardt, Lothar T1 - Elektronische und chemische Eigenschaften von Grenzflächen und Oberflächen in optimierten Cu(In,Ga)(S,Se)2 Dünnschichtsolarzellen T1 - Electronical and chemical properties of interfaces and surfaces in optimized Cu(In,Ga)(S,Se)2 thin film solar cells N2 - In der vorliegenden Arbeit wurden Untersuchungen an Dünnschichtsolarzellen auf der Basis von Cu(In,Ga)(S,Se)2, der heute vielversprechendsten Dünnschichttechnologie, durchgeführt. Für eine weitere Optimierung der Zellen ist ein detailliertes Verständnis ihrer chemischen, elektronischen und strukturellen Eigenschaften notwendig. Insbesondere die in dieser Arbeit untersuchten Eigenschaften an den Grenzflächen der Zelle sind aufgrund ihrer zentralen Rolle für den Ladungsträgertransport von besonderem Interesse. Bei den vorliegenden Untersuchungen kamen verschiedene Spektroskopien zum Einsatz. Mit einer Kombination von Photoelektronenspektroskopie und Inverser Photoelektronenspektroskopie war es möglich, sowohl eine direkte Bestimmung der Valenz- und Leitungsbandanpassungen an den untersuchten Grenzflächen durchzuführen als auch Oberflächenbandlücken zu bestimmen. Die Messungen wurden durch die volumenempfindliche Röntgenemissionsspektroskopie ideal ergänzt, die - wie diese Arbeit zeigt - zusammen mit der Photoelektronenspektroskopie besonders nützlich bei der Analyse des Durchmischungsverhaltens an Grenzflächen oder auch des Einflusses chemischer Behandlungen auf die chemischen und elektronischen Eigenschaften von Oberflächen ist. Im ersten Teil der Arbeit wurden vier Grenzflächen in Proben auf der Basis des Cu(In,Ga)(S,Se)2-Absorbers von Shell Solar (München) untersucht. Es konnte dabei zunächst das Durchmischungsverhalten an der CdS/CuIn(S,Se)2-Grenzfläche in Abhängigkeit des S-Gehaltes an der Absorberoberfläche untersucht werden. Bei Messungen an der i-ZnO/CdS-Grenzfläche wurde ein flacher Leitungsbandverlauf gefunden, zudem konnte eine Durchmischung an dieser Grenzfläche ausgeschlossen werden. Eine besondere Herausforderung stellten die Messungen an der Grenzfläche des Absorbers zum Molybdänrückkontakt dar, da diese Grenzfläche nach ihrem Entstehen unweigerlich unter der etwa 1-2 um dicken Absorberschicht begraben liegt. Durch geeignetes Abspalten des Absorbers vom Rückkontakt gelang es, diese Grenzfläche freizulegen und zu spektroskopieren. Die Untersuchungen zur Vorbehandlung des Shell-Absorbers mit einer ammoniakalischen Cd-Lösung dienten dem Verständnis der positiven Einflüsse dieser Behandlung auf den Zellwirkungsgrad. Dabei wurde neben verschiedenen Reinigungswirkungen auf den Absorber als wichtigster Befund die Bildung einer sehr dünnen CdS-Schicht und, für hohe Cd-Konzentrationen, einer zusätzlichen Cd(OH)2-Schicht auf der Absorberoberfläche nachgewiesen. Die gewonnenen Erkenntnisse über die Cd-Behandlung haben eine besondere Bedeutung für die Untersuchung der Grenzfläche des Absorbers und einer mit ILGAR ("Ion Layer Gas Reaction") hergestellten Zn(O,OH)-Pufferschicht. An dieser Grenzfläche wurde die Bandanpassung mit und ohne vorherige Cd-Behandlung des Absorbers vermessen. Wird die Bandanpassung ohne Vorbehandlung noch durch Adsorbate auf dem Absorber dominiert, wobei man ein "Cliff" im Leitungsband findet, so ist der Leitungsbandverlauf für die Grenzfläche mit Cd-behandeltem Absorber flach, was im Einklang mit den sehr guten Wirkungsgraden steht, die mit solchen Zellen erreicht werden. Im zweiten Teil der Arbeit wurden Messungen an Dünnschichtsolarzellen mit selenfreiem Cu(In,Ga)S2 Absorber diskutiert. Ein Problem des Cu(In,Ga)S2-Systems besteht heute noch darin, daß die offene Klemmenspannung geringer ausfällt, als dies aufgrund der im Vergleich zu CuInSe2 größeren Bandlücke zu erwarten wäre. Modelle, die dies auf eine ungünstige Bandanpassung an der CdS/Cu(In,Ga)S2-Grenzfläche zurückführen, konnten in dieser Arbeit durch die Messung der Leitungsbandanpassung, die ein deutlich "Cliff"-artiges Verhalte aufweist, bestätigt werden. Untersuchungen des Einflusses unterschiedlicher Oberflächenzusammensetzungen auf die chemischen und elektronischen Eigenschaften der Cu(In,Ga)Se2-Absorberoberfläche ergaben, wie sich die Bandlücke des Absorbers mit wachsender Kupferverarmung vergrößert und gleichzeitig die Bandverbiegung zunimmt. Im letzten, rein grundlagenorientierten Teil dieser Arbeit wurden Röntgenabsorptions- und resonante Röntgenemissionsmessungen an CdS und ZnS im Vergleich zu von A. Fleszar berechneten theoretischen Spektren, die unter Berücksichtigung der Übergangsmatrixelemente aus einer LDA-Bandstruktur berechnet wurden, diskutiert. Es konnten dabei sowohl Anregungen in exzitonische Zustände als auch kohärente Emission mit Informationen über die Bandstruktur gefunden werden. Auch war es möglich, die Lebensdauern verschiedener Valenzlochzustände zu bestimmen. Es zeigt sich, daß so die Bestimmung einer unteren Grenze für die Bandlücke möglich ist, für eine genaue Bestimmung bei den untersuchten Verbindungen jedoch ein Vergleich mit theoretischen Berechnungen notwendig ist. N2 - In this thesis, thin film solar cells based on Cu(In,Ga)(S,Se)2 - today's most promising thin film solar cell technology - were spectroscopically analyzed in some detail. Until now, good results could be obtained mainly by empirically optimizing the process parameters, but a further optimization calls for a fundamental understanding of the Cu(In,Ga)(S,Se)2 solar cell. Since this device is a multilayer system, a detailed knowledge of the chemical, structural, and electronic properties of its interfaces is required. Partly due to the cost effective production process of the Cu(In,Ga)(S,Se)2 thin film solar cells, their properties are very different from ideal reference systems like single crystals, which makes them a particularly interesting research field. However, this requires the consideration of two aspects: the investigated samples should originate as close as possible from the industrial production process and, when investigating interfaces, their properties have to be measured directly without relying on previously published bulk properties. Both aspects have been achieved in this work. Samples were directly taken from the production process of different collaboration partners, and a direct determination of the conduction and valence band alignments, which are crucial for the carrier transport through the cell device, were conducted by a combination of photoelectron spectroscopy and inverse photoemission. These techniques were ideally complemented by x-ray emission spectroscopy, which can be particular helpful when investigating intermixing processes or the influence of chemical treatments on the chemical and electronic properties of surfaces. In the first part of this thesis, four different interfaces in samples based on the Cu(In,Ga)(S,Se)2 absorber of Shell Solar were investigated. It could be shown, that the intermixing of sulfur and selenium at the CdS/Cu(In,Ga)(S,Se)2 interface found in earlier measurements is dependent on the sulfur content at the absorber surface. Next, the interface between the CdS buffer layer and the i-ZnO part of the window layer was investigated. For this interface, an intermixing can be excluded and a flat conduction band offset is found. By suitably removing the absorber from the back contact, it was possible to investigate the interface between the absorber and the Mo back contact with spectroscopic techniques giving insight into the chemical properties of this interface. The chemical treatment of the absorber by an ammonia-based Cd-solution was investigated for a better understanding of its beneficial impact on the cell performance. Apart from a cleaning of the absorber, the main finding was the formation of a very thin CdS/CdSe layer and, for high Cd-concentrations, of an additional Cd(OH)2 layer on the absorber surface. The investigated Cd-treatment significantly improves the performance of cells with a Zn(O,OH) buffer layer deposited with ILGAR ("Ion Layer Gas Reaction"). The band alignment at the interface between ILGAR Zn(O,OH) and the absorber was investigated with Cd-treated and untreated absorbers. In the second part of this thesis, measurements of thin film solar cells with selenium-free Cu(In,Ga)S2 absorbers are discussed. These absorbers have a larger band gap than CuInSe2, which gives them the potential of higher efficiencies. However, the gain in the open circuit voltage is smaller than expected raising one of the most important questions in the CIGSSe community. In this thesis, this question is answered by a model, that ascribes this behavior to an unfavorable band alignment at the CdS/Cu(In,Ga)S2 interface. The model is supported by the measurement of the band alignment showing a pronounced "cliff" in the conduction band. The investigation of the influence of different absorber surface compositions on the chemical and electronic properties of the Cu(In,Ga)Se2 surface shows, that the surface band gap is increased by increasing copper depletion. These measurements are an important contribution to the understanding of the different recombination behaviors and efficiencies of cells with copper-rich and copper-poor absorbers. In the last part of this thesis, x-ray absorption and resonant x-ray emission spectra of CdS and ZnS (i.e. the currently preferred buffer material (CdS) as well as one of its most promising alternatives (ZnS) for Cu(In,Ga)(S,Se)2 solar cells) were discussed and compared to calculations of A. Fleszar. In these calculations theoretical spectra were obtained ad hoc using an LDA band structure taking the transition matrix elements into account. Thereby valuable information about the band structure could be extracted from the coherent emission in the resonant spectra. Moreover lifetimes of different valence hole states were determined with the surprising observation of an 1.5 eV lifetime broadening of the S 3s deep valence hole. KW - Dünnschichtsolarzelle KW - Oberfläche KW - Elektronische Eigenschaft KW - Grenzfläche KW - Oberflächenchemie KW - Grenzflächenchemie KW - Photoelektronenspektroskopie KW - Röntgenemission KW - Inverse Photoemission KW - Solarzellen KW - Halbleitergrenzflächen KW - photoelectron spectrscopy KW - x-ray emission KW - inverse photoemission KW - solar cells KW - semiconductor interfaces Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-16234 ER - TY - THES A1 - Latussek, Volker T1 - Elektronische Zustände in Typ-III-Halbleiterheterostrukturen T1 - Electron states in type III semiconductor heterostructures N2 - Seit 1988 werden mit dem Verfahren der Molekularstrahlepitaxie (MBE: Molecular Beam Epitaxy) am Physikalischen Institut der Universität Würzburg Halbleiterheterostrukturen aus dem Halbleitermaterialsystem Hg(1-x)Cd(x)Te hergestellt. Diese quecksilberhaltige Legierung ist ein II-VI-Verbindungshalbleiter und zeichnet sich durch eine legierungs- und temperaturabhängige fundamentale Energielücke aus. Die Bandstruktur ist je nach Temperatur und Legierungsfaktor x einerseits halbleitend, anderseits aber halbmetallisch. Die schmallückigen Hg(1-x)Cd(x)Te-Legierungen werden als Infrarotdetektoren eingesetzt. Mit dem Verfahren der Molekularstrahlepitaxie ist es möglich Bandstrukturen mit spezifischen Eigenschaften herzustellen (band structure engineering). Unter diesen neuen Materialien stellen die Typ-III-Übergitter eine besondere Klasse dar. Bei diesen zweidimensionalen Materialstrukturen wird eine nur wenige Atomlagen dicke Schicht von 30 °A bis 100 °A aus dem Halbmetall HgTe, dem Trogmaterial, in eine Legierung aus Hg(1-x)Cd(x)Te, dem Barrierenmaterial, eingebettet und zu einem Übergitter aufgebaut. Zweidimensionale Typ-III-Halbleiterheterostrukturen, wie die HgTe-Hg(1-x)Cd(x)Te-Quantentrogstrukturen und HgTe-Hg(1-x)Cd(x)Te-Übergitter, sind von fundamentalen Interesse zum Verständnis von elektronischen Zuständen komplexer Bandstrukturen und zweidimensionaler Ladungsträgersysteme. Darüber hinaus werden HgTe-Hg(1-x)Cd(x)Te-Übergitter in der Sensorik als Infrarotdektoren eingesetzt, deren cut-off-Wellenlänge prozessgesteuert in der Molekularstrahlepitaxie über die Trogbreite, der Schichtdicke des HgTe, eingestellt werden kann. Je nach verwendeten Barrierenmaterial Hg(1-x)Cd(x)Te und Temperatur besitzen die Übergitterstrukturen mit großen Barrierenschichtdicken, das sind die Quantentrogstrukturen, in Abhängigkeit von der Trogbreite, für niedrige Trogbreiten eine normal halbleitende Subbandstruktur, während sich für größere Trogbreiten eine invertiert halbleitende Subbandstruktur einstellt. In der invertiert halbleitenden Subbandstruktur ist ein indirekter Halbleiter realisierbar. Bei Strukturen mit dünnen Barrierenschichtdicken ist die Minibanddispersion stark ausgeprägt und es kann sich zusätzlich eine halbmetallische Subbandstruktur ausbilden. Diese speziellen Eigenschaften sind einzigartig und kennzeichnen die komplexe Bandstruktur von Typ-III-Heterostrukturen. Erst die genaue Kenntnis und ein vertieftes Verständnis der komplexen Bandstruktur erlaubt die Interpretation von Ergebnissen aus (magneto)-optischen Untersuchungen der elektronischen Eigenschaften von Typ-III-Halbleiterheterostrukturen. Die Berechnung der elektronischen Zustände in den HgTe-Hg(1-x)Cd(x)Te-Übergitter wurde in der vorliegenden Arbeit in der Envelopefunktionsnäherung durchgeführt. Seit drei Jahrzehnten wird die Envelopefunktionenn¨aherung (EFA: Envelope Function Approximation) sehr erfolgreich bei der Interpretation der experimentellen Ergebnisse von (magneto)- optischen Untersuchungen an Halbleiterheterostrukturen eingesetzt. Der Erfolg basiert auf der effektiven Beschreibung der quantisierten, elektronischen Zustände an Halbleitergrenzflächen, in Quantentrögen und Übergittern und der Einzigartigkeit, zur Berechnung der experimentellen Ergebnisse, die Abhängigkeit von äußeren Parametern, wie der Temperatur und des hydrostatischen Druckes, aber auch eines elektrischen und magnetischen Feldes, wie auch von freien Ladungsträgern, ein zu arbeiten. Die sehr gute quantitative Übereinstimmung der theoretischen Berechnungen in der Envelopefunktionennäherung und vieler experimenteller Messergebnisse an Halbleiterheterostrukturen baut auf der quantitativen Bestimmung der relevanten Bandstrukturparameter in der k·p-Störungstheorie zur Beschreibung der elektronischen Eigenschaften der beteiligten Volumenhalbleiter auf. In Kapitel 1 der vorliegenden Arbeit wird daher zunächst das Bandstrukturmodell des Volumenmaterials Hg(1-x)Cd(x)Te vorgestellt und daraus die Eigenwertgleichung des Hamilton-Operators in der Envelopefunktionenn¨aherung abgeleitet. Danach wird das L¨osungsverfahren, die Matrixmethode, zur Berechnung der Eigenwerte und Eigenfunktionen beschrieben und auf die Berechnung der elektronischen Subbandzustände der Typ-III-Hg(1-x)Cd(x)Te-Übergitter angewendet. Es folgt eine Diskussion der grundlegenden Eigenschaften der komplexen Bandstruktur in den verschiedenen Regimen der Typ-III-Halbleiterheterostrukturen und der charakteristischen Wellenfunktionen, den Grenzflächenzuständen. An Ende dieses Kapitels wird die Berechnung des Absorptionskoeffizienten hergeleitet und die grundlegenden Eigenschaften der Diplomatrixelemente zur Charakterisierung der optischen Eigenschaften von HgTe-Hg(1-x)Cd(x)Te-Übergitter exemplarisch vorgestellt. In Kapitel 2 sind die wesentlichen Ergebnisse aus dem Vergleich von Infrarotabsorptionsmessungen an HgTe-Hg(1-x)Cd(x)Te-Übergitter mit den berechneten Absorptionskoeffizienten zusammengestellt. N2 - For three decades the envelope function approximation (EFA) has been very successful in the interpretation of experimental results of magneto-transport and optical investigations of semiconducting heterostructures. Its success is based on the ability to describe the quantized electron states in semiconductor interfaces, quantum wells and superlattices combined with its unique ability to include the influence of external parameters such as temperature and hydrostatic pressure as well as electric and magnetic fields and the incorporation of free charge carriers. The excellent quantitative agreement between theoretical calculations using the envelope function approximation and numerous experimental results depends on the quantitative determination of the corresponding band structure parameters in the k · p perturbation theory required to correctly describe the electronic properties of the bulk semiconductors in the heterostructure in question. In order to understand numerous experiments on bulk semiconductors it is not necessary to know the band structure in the entire Brillouin zone. Knowledge is merely required near the corresponding band structure extrema. In the experiments considered here on the II-VI materials of HgTe and CdTe, which crystallize in the zinc blende structure, as well as III-V materials such as GaAs and GaAlAs, the center of the Brillouin zone is of primary importance. Since 1988 Molecular beam epitaxy (MBE) has been employed at the physics department (Physikalisches Institut) of the University of Würzburg to produce semiconducting heterostructures based on Hg(1-x)Cd(x)Te. With this method it is possible to produce materials with a particular band structure and specific properties (band structure engineering). Among these new heterostructures, type III superlattices represent an unique class. In these structures, thin layers (30 - 100)°A of only a few atomic layers of the semimetallic HgTe are alternated with layers of the Hg(1-x)Cd(x)Te alloy to form a superlattice. The resulting growth by the MBE method permits superlattices with the desired band structure to be produced and the corresponding optical absorption in the infrared spectral range. From a comparison of the band structure of these type III superlattices by means of the envelope function approximation and the resulting absorption spectrum with the experimental results from infrared spectroscopy it was possible for the first time to determine a precise value for the valence band offset a characteristic heterostructure parameter, as well as its temperature´dependence. Hereby HgTe thicknesses were determined by high resolution x-ray diffraction. Structure in the absorption spectra could be quantitatively assigned to dipole transitions between the involved subbands of the type III superlattice. The quantitative description of the optical properties of semiconducting heterostructures from the Ansatz that known bulk properties result in new and tailor made properties can also be stated conversely; from known heterostructure properties unknown properties of bulk materials can be determined. Using this corollary, first direct experimental determination of the difference of the hydrostatic deformation potentials, C-a, of HgTe with high precision, (-3.69 ± 0.10) eV, by means of hydrostatic pressure experiments on type III superlattices were carried out. Calculations of the electron states in heterostructures were carried out in this dissertation. Hereby the envelope function approximation was employed whereby the numerical eigenvalue problem was formulated in terms of the matrix method in which the individual components of the envelope functions were expanded from a complete set of functions. Because of the poor convergence in the calculations of interface states in type III quantum well structures, a new set of functions was constructed, which results in the required convergence for all heterostructures: from a p-type inversion channel in Ge bi-crystals, including GaAs-GaAlAs quantum well structures, to type III superlattices. The individual components of the envelope functions were very precisely approximated by only a very few, 10 - 20, basis functions. KW - Quecksilbertellurid KW - Cadmiumtellurid KW - Heterostruktur KW - Übergitter KW - Elektronenzustand KW - Halbleiterheterostrukturen KW - Envelopefunktionennäherung KW - Hg(1-x)Cd(x)Te KW - Semiconductor heterostrctures KW - envelope function approximation KW - Hg(1-x)Cd(x)Te Y1 - 2005 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-15055 ER - TY - THES A1 - Lutter, Fabian T1 - Elementsensitive Bildgebung - Einsatz chromatischer Pixelarrays in Röntgen nano-CT T1 - Element sensitive imaging - Use of chromatic pixel arrays in X-ray nano-CT N2 - Diese Arbeit befasst sich mit der Weiterentwicklung und Charakterisierung des XRM-II nanoCT Systems, sowie dessen Möglichkeiten zur Materialtrennung und Elementbestimmung in der nano-Computertomographie. Beim XRM-II nanoCT System handelt es sich um ein Röntgenmikroskop, welches in ein Rasterelektronenmikroskop integriert ist, und auf dem Prinzip der geometrischen Vergrößerung basiert. Neben zweidimensionalen Durchstrahlungsbildern ist dieses Mikroskop auch zur dreidimensionalen Bildgebung mittels Computertomographie fähig. Der Ausgangspunkt für die Weiterentwicklung ist das XRM-II, mit welchem bereits Computertomographien im Nanometerbereich möglich waren. Deren Aufnahmedauer liegt zwischen 14 und 21 Tagen, was das System trotz seiner hohen Auflösung wenig praktikabel macht. Durch eine Anpassung der Blendeneinstellungen am Rasterelektronenmikroskop konnte der Strahlstrom um den Faktor 40 erhöht und damit die Aufnahmedauer auf 24 Stunden reduziert werden, wobei weiterhin eine zweidimensionale Auflösung von \(167 \pm 9\) nm erreicht wird. Durch die Trennung von Objekt- und Targetmanipulator lassen sich beide unabhängig und genauer bewegen, wodurch es möglich ist selbst 50 nm große Strukturen abzubilden. Die Charakterisierung erfolgt sowohl für das komplette System als auch getrennt in die entscheidenden Komponenten wie Target und Detektor. Für das Röntgentarget werden Monte-Carlo Simulationen zur Brennfleckgröße, welche entscheidend für die erreichbare Auflösung ist, durchgeführt und mit Auflösungstests verglichen. Der Röntgendetektor wird hinsichtlich seiner spektralen Auflösung überprüft, welche hauptsächlich vom Charge Sharing Effekt beeinflusst wird. Die Charakterisierung des Gesamtsystems erfolgt durch den Vergleich mit einer höher auflösenden Bildgebungsmethode, der FIB Tomographie. Hierbei wird die gleiche Probe, ein Bruchstück einer CPU, mit beiden Methoden unter der Voraussetzung einer ähnlichen Aufnahmezeit (24 h) untersucht. In der nano-CT kann ein 12 mal größeres Volumen analysiert werden, was jedoch eine geringere räumliche Auflösung als die FIB Tomographie mit sich bringt. Da die spektrale Auflösung des Detektors aufgrund des Charge Sharing begrenzt ist, lassen sich nur Materialien mit einem großen Unterschied in der Ordnungszahl mittels der Energieschwellen des Detektors trennen. Jedoch kann in Verbindung mit der geeigneten Wahl des Targetmaterials der Absorptionskontrast für leichte Materialien, wie beispielsweise \(SiO_2\) verbessert werden. Darüber hinaus ist es am XRM-II nanoCT möglich, durch das integrierte EDX-System, Elemente in der Computertomographie zu identifizieren. Dies wird anhand eines Drei-Wegekatalysators und eines NCA-Partikel gezeigt. N2 - The general topic of this thesis is the development and characterization of the XRM-II nanoCT system, as well as its possibilities for material separation in nano-computed tomographay. The XRM-II nanoCT system is an X-ray microscope integrated into a scanning electron microscope and is based on the principle of geometric magnification. In addition to two-dimensional radiographs, this system is also capable of three-dimensional imaging by using computed tomography. The starting point for the development is the XRM-II system, which is already capable of performing computed tomography in the nanometer range. The acquisition time is between 14 and 21 days, which is the reason why this system is impractical despite its high resolution. By adjusting the aperture settings on the scanning electron microscope, the beam current could be increased by a factor of 40, reducing the acquisition time to 24 hours, while the achievable resolution is still at \(167 \pm 9\) nm. By separating the object and target manipulator, their movement becomes independent and more precisely, resulting in the possibility of resolving even 50 nm sized structures. The characterization is done both for the complete system and separately for the decisive components such as target and detector. Monte Carlo simulations of the focal spot size, which is crucial for the achievable resolution, are performed for the X-ray target and are compared to resolution tests. The spectral resolution of the X-ray detector is checked, which is mainly influenced by the charge sharing effect. The complete system is characterized by the comparison of it to a higher resolving imaging method, the FIB Tomography. The exact same sample, a fragment of a CPU, is analyzed with both imaging methods under the restriction of a similar measurement time (24 h). In the nano-CT the examined volume is 12 times larger than in the FIB tomography, resulting in a lower spatial resolution. Since the spectral resolution of the detector is mainly limited by charge sharing, only materials with a large difference in atomic number can be separated using the detector's energy thresholds. In connection with an appropriate choice of target material, the absorption contrast for light materials such as \(SiO_2\) can be improved. Furthermore, it is possible to identify elements in the computed tomography on the XRM-II nanoCT system using the integrated EDX system. This is demonstrated on a three-way catalytic converter and on a NCA particle. KW - Computertomographie KW - Rasterelektronenmikroskopie KW - Nanometerbereich KW - Röntgendetektor KW - Energieauflösung KW - Elementbestimmung KW - nano-CT KW - Röntgenmikroskopie Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319955 ER - TY - THES A1 - Scholz, Markus T1 - Energy-Dispersive NEXAFS: A Novel Tool for the Investigation of Intermolecular Interaction and Structural Phase Dynamics T1 - Energiedispersives NEXAFS: Eine neue Methode zur Untersuchung intermolekularer Wechselwirkung und Phasendynamik N2 - In the context of this thesis, the novel method soft X-ray energy-dispersive NEXAFS spectroscopy was explored and utilized to investigate intermolecular coupling and post-growth processes with a temporal resolution of seconds. 1,4,5,8- naphthalene tetracarboxylic acid dianhydride (NTCDA)multilayer films were the chosen model system for these investigations. The core hole-electron correlation in coherently coupled molecules was studied by means of energy-dispersive near-edge X-ray absorption fine-structure spectroscopy. A transient phase was found which exists during the transition between a disordered condensed phase and the bulk structure. This phase is characterized by distinct changes in the spectral line shape and energetic position of the X-ray absorption signal at the C K-edge. The findings were explained with the help of theoretical models based on the coupling of transition dipole moments, which are well established for optically excited systems. In consequence, the experimental results provides evidence for a core hole-electron pair delocalized over several molecules. Furthermore, the structure formation of NTCDA multilayer films on Ag(111) surfaces was investigated. With time-resolved and energy-dispersive NEXAFS experiments the intensity evolution in s- and p-polarization showed a very characteristic behavior. By combining these findings with the results of time-dependent photoemission measurements, several sub-processes were identified in the post- growth behavior. Upon annealing, the amorphous but preferentially flat-lying molecules flip into an upright orientation. After that follows a phase characterized by strong intermolecular coupling. Finally, three-dimensional islands are established. Employing the Kolmogorov-Johnson-Mehl-Avrami model, the activation energies of the sub-processes were determined. N2 - Im Rahmen dieser Arbeit wurden die Möglichkeiten der neuartigen Methode energiedispersive Röntgen-Nahkanten-Absorptions-Spektroskopie für die Untersuchung intermolekularer Wechselwirkungen und zeitabhängiger Prozesse während der Strukturbildung aufgezeigt. Als Modellsystem wurden hierbei 1,4,5,8- Naphthalin-Tetracarboxyls¨aure-Dianhydrid-(NTCDA-) Filme verwendet. Es wurde die Rumpfloch-Elektronen-Wechselwirkung kohärent gekoppelter Moleküle mittels energiedispersiver Röntgen-Nahkanten-Absorptions-Spektroskopie untersucht. Dabei wurde eine Übergangsphase gefunden, die während der Ausbildung einer langreichweitigen Ordnung zeitlich zwischen der ungeordneten und der Volumenstruktur auftritt. Diese Übergangsphase zeichnete sich durch eine charakteristische Änderung der spektralen Linienform und ihrer energetischen Position bei Messungen an der C K-Kante aus. Die experimentellen Befunde lassen sich mit Hilfe theoretischer Modelle erklären, welche die Kopplung von Übergangsdipolmomenten beschreiben. Diese theoretischen Konzepte sind bei optisch angeregten Systemen etabliert. Die experimentellen Ergebnisse zeigen den über mehrere Moleküle delokalisierten Charakter des Rumpfloch-Elektron-Paars. Zudem wurde die Strukturbildung von mehrlagigen NTCDA-Filmen auf Ag(111) untersucht. Zeitabhängige energiedispersive NEXAFS-Experimente mit s- und p-polarisiertem Licht zeigten ein charakteristisches Verhalten. In Kombination mit zeitabhängigen Photoemissionsmessungen wurden bei der Strukturbildung verschiedene Unterprozesse gefunden. Nach erwärmen der Probe richten sich die ursprünglich flach orientierte Moleküle zunächst auf. Im Anschluss folgt eine Aggregation der Moleküle in einer Phase mit starker intermolekularer Kopplung. Letztendlich bildet sich die bekannte dreidimensionale Filmstruktur aus. Anhand des Kolmogorov-Johnson-Mehl-Avrami Modells konnte die Aktivierungsenergie für die verschiedenen Unterprozesse ermittelt werden. KW - Organisches Molekül KW - NEXAFS KW - Zwischenmolekulare Kraft KW - Dünne Schicht KW - Energiedispersiv KW - Phasendynamik KW - Strukturbildung KW - NEXAFS KW - energy-dispersive KW - organic molecule KW - intermolecular interaction KW - phase dynamics Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-83839 ER - TY - THES A1 - Kasper, Christian Andreas T1 - Engineering of Highly Coherent Silicon Vacancy Defects in Silicon Carbide T1 - Erzeugung hochkohärenter Silizium Fehlstellen in Siliziumkarbid N2 - In this work the creation of silicon vacancy spin defects in silicon carbide with predictable properties is demonstrated. Neutron and electron irradiation was used to create silicon vacancy ensembles and proton beam writing to create isolated vacancies at a desired position. The coherence properties of the created silicon vacancies as a function of the emitter density were investigated and a power-law function established. Sample annealing was implemented to increase the coherence properties of existing silicon vacancies. Further, spectral hole burning was used to implement absolute dc-magnetometry. N2 - In dieser Arbeit wird die Erzeugung von Silizium Fehlstellen in Siliziumkarbid mit vorhersagbaren Eigenschaften nachgewiesen. Neutronen- und Elektronenbestrahlung wurden zur Erzeugung von Ensembles von Silizium Fehlstellen verwendet, während isolierte Fehlstellen an einer gewünschten Position mit Hilfe eines Protonenstrahls erzeugt wurden. Die Kohärenz der erzeugten Silizium Fehlstellen wurde in Abhängigkeit der Emitterdichte untersucht und eine Gesetzmäßigkeit hierfür eingeführt. Um die Kohärenz der Silizium Fehlstellen zu erhöhen, wurden Annealing Experimente durchgeführt. Des Weiteren wurde spektrales Holeburning verwendet, um absolute DC-Magnetometrie nachzuweisen. KW - Störstelle KW - Siliciumcarbid KW - Kohärenz KW - Irradiation KW - Color Center KW - Spin defect KW - Bestrahlung KW - Farbzentrum KW - Spin Defekt Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-237797 ER -