TY - JOUR A1 - Dumont, Martine A1 - Weber-Lassalle, Nana A1 - Joly-Beauparlant, Charles A1 - Ernst, Corinna A1 - Droit, Arnaud A1 - Feng, Bing-Jian A1 - Dubois, Stéphane A1 - Collin-Deschesnes, Annie-Claude A1 - Soucy, Penny A1 - Vallée, Maxime A1 - Fournier, Frédéric A1 - Lemaçon, Audrey A1 - Adank, Muriel A. A1 - Allen, Jamie A1 - Altmüller, Janine A1 - Arnold, Norbert A1 - Ausems, Margreet G. E. M. A1 - Berutti, Riccardo A1 - Bolla, Manjeet K. A1 - Bull, Shelley A1 - Carvalho, Sara A1 - Cornelissen, Sten A1 - Dufault, Michael R. A1 - Dunning, Alison M. A1 - Engel, Christoph A1 - Gehrig, Andrea A1 - Geurts-Giele, Willemina R. R. A1 - Gieger, Christian A1 - Green, Jessica A1 - Hackmann, Karl A1 - Helmy, Mohamed A1 - Hentschel, Julia A1 - Hogervorst, Frans B. L. A1 - Hollestelle, Antoinette A1 - Hooning, Maartje J. A1 - Horváth, Judit A1 - Ikram, M. Arfan A1 - Kaulfuß, Silke A1 - Keeman, Renske A1 - Kuang, Da A1 - Luccarini, Craig A1 - Maier, Wolfgang A1 - Martens, John W. M. A1 - Niederacher, Dieter A1 - Nürnberg, Peter A1 - Ott, Claus-Eric A1 - Peters, Annette A1 - Pharoah, Paul D. P. A1 - Ramirez, Alfredo A1 - Ramser, Juliane A1 - Riedel-Heller, Steffi A1 - Schmidt, Gunnar A1 - Shah, Mitul A1 - Scherer, Martin A1 - Stäbler, Antje A1 - Strom, Tim M. A1 - Sutter, Christian A1 - Thiele, Holger A1 - van Asperen, Christi J. A1 - van der Kolk, Lizet A1 - van der Luijt, Rob B. A1 - Volk, Alexander E. A1 - Wagner, Michael A1 - Waisfisz, Quinten A1 - Wang, Qin A1 - Wang-Gohrke, Shan A1 - Weber, Bernhard H. F. A1 - Devilee, Peter A1 - Tavtigian, Sean A1 - Bader, Gary D. A1 - Meindl, Alfons A1 - Goldgar, David E. A1 - Andrulis, Irene L. A1 - Schmutzler, Rita K. A1 - Easton, Douglas F. A1 - Schmidt, Marjanka K. A1 - Hahnen, Eric A1 - Simard, Jacques T1 - Uncovering the contribution of moderate-penetrance susceptibility genes to breast cancer by whole-exome sequencing and targeted enrichment sequencing of candidate genes in women of European ancestry JF - Cancers N2 - Rare variants in at least 10 genes, including BRCA1, BRCA2, PALB2, ATM, and CHEK2, are associated with increased risk of breast cancer; however, these variants, in combination with common variants identified through genome-wide association studies, explain only a fraction of the familial aggregation of the disease. To identify further susceptibility genes, we performed a two-stage whole-exome sequencing study. In the discovery stage, samples from 1528 breast cancer cases enriched for breast cancer susceptibility and 3733 geographically matched unaffected controls were sequenced. Using five different filtering and gene prioritization strategies, 198 genes were selected for further validation. These genes, and a panel of 32 known or suspected breast cancer susceptibility genes, were assessed in a validation set of 6211 cases and 6019 controls for their association with risk of breast cancer overall, and by estrogen receptor (ER) disease subtypes, using gene burden tests applied to loss-of-function and rare missense variants. Twenty genes showed nominal evidence of association (p-value < 0.05) with either overall or subtype-specific breast cancer. Our study had the statistical power to detect susceptibility genes with effect sizes similar to ATM, CHEK2, and PALB2, however, it was underpowered to identify genes in which susceptibility variants are rarer or confer smaller effect sizes. Larger sample sizes would be required in order to identify such genes. KW - breast cancer KW - genetic susceptibility KW - whole-exome sequencing KW - moderate-penetrance genes Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-281768 SN - 2072-6694 VL - 14 IS - 14 ER - TY - JOUR A1 - Redlich, Sarah A1 - Zhang, Jie A1 - Benjamin, Caryl A1 - Dhillon, Maninder Singh A1 - Englmeier, Jana A1 - Ewald, Jörg A1 - Fricke, Ute A1 - Ganuza, Cristina A1 - Haensel, Maria A1 - Hovestadt, Thomas A1 - Kollmann, Johannes A1 - Koellner, Thomas A1 - Kübert‐Flock, Carina A1 - Kunstmann, Harald A1 - Menzel, Annette A1 - Moning, Christoph A1 - Peters, Wibke A1 - Riebl, Rebekka A1 - Rummler, Thomas A1 - Rojas‐Botero, Sandra A1 - Tobisch, Cynthia A1 - Uhler, Johannes A1 - Uphus, Lars A1 - Müller, Jörg A1 - Steffan‐Dewenter, Ingolf T1 - Disentangling effects of climate and land use on biodiversity and ecosystem services—A multi‐scale experimental design JF - Methods in Ecology and Evolution N2 - Climate and land-use change are key drivers of environmental degradation in the Anthropocene, but too little is known about their interactive effects on biodiversity and ecosystem services. Long-term data on biodiversity trends are currently lacking. Furthermore, previous ecological studies have rarely considered climate and land use in a joint design, did not achieve variable independence or lost statistical power by not covering the full range of environmental gradients. Here, we introduce a multi-scale space-for-time study design to disentangle effects of climate and land use on biodiversity and ecosystem services. The site selection approach coupled extensive GIS-based exploration (i.e. using a Geographic information system) and correlation heatmaps with a crossed and nested design covering regional, landscape and local scales. Its implementation in Bavaria (Germany) resulted in a set of study plots that maximise the potential range and independence of environmental variables at different spatial scales. Stratifying the state of Bavaria into five climate zones (reference period 1981–2010) and three prevailing land-use types, that is, near-natural, agriculture and urban, resulted in 60 study regions (5.8 × 5.8 km quadrants) covering a mean annual temperature gradient of 5.6–9.8°C and a spatial extent of ~310 × 310 km. Within these regions, we nested 180 study plots located in contrasting local land-use types, that is, forests, grasslands, arable land or settlement (local climate gradient 4.5–10°C). This approach achieved low correlations between climate and land use (proportional cover) at the regional and landscape scale with |r ≤ 0.33| and |r ≤ 0.29| respectively. Furthermore, using correlation heatmaps for local plot selection reduced potentially confounding relationships between landscape composition and configuration for plots located in forests, arable land and settlements. The suggested design expands upon previous research in covering a significant range of environmental gradients and including a diversity of dominant land-use types at different scales within different climatic contexts. It allows independent assessment of the relative contribution of multi-scale climate and land use on biodiversity and ecosystem services. Understanding potential interdependencies among global change drivers is essential to develop effective restoration and mitigation strategies against biodiversity decline, especially in expectation of future climatic changes. Importantly, this study also provides a baseline for long-term ecological monitoring programs. KW - study design KW - biodiversity KW - climate change KW - ecosystem functioning KW - insect monitoring KW - land use KW - space-for-time approach KW - spatial scales Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258270 VL - 13 IS - 2 ER -