TY - JOUR A1 - Göbel, Kerstin A1 - Pankratz, Susann A1 - Asaridou, Chloi-Magdalini A1 - Herrmann, Alexander M. A1 - Bittner, Stefan A1 - Merker, Monika A1 - Ruck, Tobias A1 - Glumm, Sarah A1 - Langhauser, Friederike A1 - Kraft, Peter A1 - Krug, Thorsten F. A1 - Breuer, Johanna A1 - Herold, Martin A1 - Gross, Catharina C. A1 - Beckmann, Denise A1 - Korb-Pap, Adelheid A1 - Schuhmann, Michael K. A1 - Kuerten, Stefanie A1 - Mitroulis, Ioannis A1 - Ruppert, Clemens A1 - Nolte, Marc W. A1 - Panousis, Con A1 - Klotz, Luisa A1 - Kehrel, Beate A1 - Korn, Thomas A1 - Langer, Harald F. A1 - Pap, Thomas A1 - Nieswandt, Bernhard A1 - Wiendl, Heinz A1 - Chavakis, Triantafyllos A1 - Kleinschnitz, Christoph A1 - Meuth, Sven G. T1 - Blood coagulation factor XII drives adaptive immunity during neuroinflammation via CD87-mediated modulation of dendritic cells JF - Nature Communications N2 - Aberrant immune responses represent the underlying cause of central nervous system (CNS) autoimmunity, including multiple sclerosis (MS). Recent evidence implicated the crosstalk between coagulation and immunity in CNS autoimmunity. Here we identify coagulation factor XII (FXII), the initiator of the intrinsic coagulation cascade and the kallikrein–kinin system, as a specific immune cell modulator. High levels of FXII activity are present in the plasma of MS patients during relapse. Deficiency or pharmacologic blockade of FXII renders mice less susceptible to experimental autoimmune encephalomyelitis (a model of MS) and is accompanied by reduced numbers of interleukin-17A-producing T cells. Immune activation by FXII is mediated by dendritic cells in a CD87-dependent manner and involves alterations in intracellular cyclic AMP formation. Our study demonstrates that a member of the plasmatic coagulation cascade is a key mediator of autoimmunity. FXII inhibition may provide a strategy to combat MS and other immune-related disorders. KW - blood coagulation KW - factor XII KW - neuroinflammation KW - dendric cells Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-165503 VL - 7 IS - 11626 ER - TY - JOUR A1 - Breuer, René A1 - Mattheisen, Manuel A1 - Frank, Josef A1 - Krumm, Bertram A1 - Treutlein, Jens A1 - Kassem, Layla A1 - Strohmaier, Jana A1 - Herms, Stefan A1 - Mühleisen, Thomas W. A1 - Degenhardt, Franziska A1 - Cichon, Sven A1 - Nöthen, Markus M. A1 - Karypis, George A1 - Kelsoe, John A1 - Greenwood, Tiffany A1 - Nievergelt, Caroline A1 - Shilling, Paul A1 - Shekhtman, Tatyana A1 - Edenberg, Howard A1 - Craig, David A1 - Szelinger, Szabolcs A1 - Nurnberger, John A1 - Gershon, Elliot A1 - Alliey-Rodriguez, Ney A1 - Zandi, Peter A1 - Goes, Fernando A1 - Schork, Nicholas A1 - Smith, Erin A1 - Koller, Daniel A1 - Zhang, Peng A1 - Badner, Judith A1 - Berrettini, Wade A1 - Bloss, Cinnamon A1 - Byerley, William A1 - Coryell, William A1 - Foroud, Tatiana A1 - Guo, Yirin A1 - Hipolito, Maria A1 - Keating, Brendan A1 - Lawson, William A1 - Liu, Chunyu A1 - Mahon, Pamela A1 - McInnis, Melvin A1 - Murray, Sarah A1 - Nwulia, Evaristus A1 - Potash, James A1 - Rice, John A1 - Scheftner, William A1 - Zöllner, Sebastian A1 - McMahon, Francis J. A1 - Rietschel, Marcella A1 - Schulze, Thomas G. T1 - Detecting significant genotype–phenotype association rules in bipolar disorder: market research meets complex genetics JF - International Journal of Bipolar Disorders N2 - Background Disentangling the etiology of common, complex diseases is a major challenge in genetic research. For bipolar disorder (BD), several genome-wide association studies (GWAS) have been performed. Similar to other complex disorders, major breakthroughs in explaining the high heritability of BD through GWAS have remained elusive. To overcome this dilemma, genetic research into BD, has embraced a variety of strategies such as the formation of large consortia to increase sample size and sequencing approaches. Here we advocate a complementary approach making use of already existing GWAS data: a novel data mining procedure to identify yet undetected genotype–phenotype relationships. We adapted association rule mining, a data mining technique traditionally used in retail market research, to identify frequent and characteristic genotype patterns showing strong associations to phenotype clusters. We applied this strategy to three independent GWAS datasets from 2835 phenotypically characterized patients with BD. In a discovery step, 20,882 candidate association rules were extracted. Results Two of these rules—one associated with eating disorder and the other with anxiety—remained significant in an independent dataset after robust correction for multiple testing. Both showed considerable effect sizes (odds ratio ~ 3.4 and 3.0, respectively) and support previously reported molecular biological findings. Conclusion Our approach detected novel specific genotype–phenotype relationships in BD that were missed by standard analyses like GWAS. While we developed and applied our method within the context of BD gene discovery, it may facilitate identifying highly specific genotype–phenotype relationships in subsets of genome-wide data sets of other complex phenotype with similar epidemiological properties and challenges to gene discovery efforts. KW - bipolar disorder KW - subphenotypes KW - rule discovery KW - data mining KW - genotype-phenotype patterns Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220509 VL - 6 ER - TY - JOUR A1 - Bleilevens, Christian A1 - Soppert, Josefin A1 - Hoffmann, Adrian A1 - Breuer, Thomas A1 - Bernhagen, Jürgen A1 - Martin, Lukas A1 - Stiehler, Lara A1 - Marx, Gernot A1 - Dreher, Michael A1 - Stoppe, Christian A1 - Simon, Tim-Philipp T1 - Macrophage migration inhibitory factor (MIF) plasma concentration in critically ill COVID-19 patients: a prospective observational study JF - Diagnostics N2 - Mortality in critically ill coronavirus disease 2019 (COVID-19) patients is high and pharmacological treatment strategies remain limited. Early-stage predictive biomarkers are needed to identify patients with a high risk of severe clinical courses and to stratify treatment strategies. Macrophage migration inhibitory factor (MIF) was previously described as a potential predictor for the outcome of critically ill patients and for acute respiratory distress syndrome (ARDS), a hallmark of severe COVID-19 disease. This prospective observational study evaluates the predictive potential of MIF for the clinical outcome after severe COVID-19 infection. Plasma MIF concentrations were measured in 36 mechanically ventilated COVID-19 patients over three days after intensive care unit (ICU) admission. Increased compared to decreased MIF was significantly associated with aggravated organ function and a significantly lower 28-day survival (sequential organ failure assessment (SOFA) score; 8.2 ± 4.5 to 14.3 ± 3, p = 0.009 vs. 8.9 ± 1.9 to 12 ± 2, p = 0.296; survival: 56% vs. 93%; p = 0.003). Arterial hypertension was the predominant comorbidity in 85% of patients with increasing MIF concentrations (vs. decreasing MIF: 39%; p = 0.015). Without reaching significance, more patients with decreasing MIF were able to improve their ARDS status (p = 0.142). The identified association between an early MIF response, aggravation of organ function and 28-day survival may open future perspectives for biomarker-based diagnostic approaches for ICU management of COVID-19 patients. KW - Macrophage Migration Inhibitory Factor (MIF) KW - COVID-19 KW - ICU treatment KW - acute respiratory distress syndrome (ARDS) KW - SOFA Score KW - Horowitz Quotient Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228967 SN - 2075-4418 VL - 11 IS - 2 ER -