TY - JOUR A1 - Doll, Julia A1 - Vona, Barbara A1 - Schnapp, Linda A1 - Rüschendorf, Franz A1 - Khan, Imran A1 - Khan, Saadullah A1 - Muhammad, Noor A1 - Alam Khan, Sher A1 - Nawaz, Hamed A1 - Khan, Ajmal A1 - Ahmad, Naseer A1 - Kolb, Susanne M. A1 - Kühlewein, Laura A1 - Labonne, Jonathan D. J. A1 - Layman, Lawrence C. A1 - Hofrichter, Michaela A. H. A1 - Röder, Tabea A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Graves, Tyler D. A1 - Kong, Il-Keun A1 - Nanda, Indrajit A1 - Kim, Hyung-Goo A1 - Haaf, Thomas T1 - Genetic Spectrum of Syndromic and Non-Syndromic Hearing Loss in Pakistani Families JF - Genes N2 - The current molecular genetic diagnostic rates for hereditary hearing loss (HL) vary considerably according to the population background. Pakistan and other countries with high rates of consanguineous marriages have served as a unique resource for studying rare and novel forms of recessive HL. A combined exome sequencing, bioinformatics analysis, and gene mapping approach for 21 consanguineous Pakistani families revealed 13 pathogenic or likely pathogenic variants in the genes GJB2, MYO7A, FGF3, CDC14A, SLITRK6, CDH23, and MYO15A, with an overall resolve rate of 61.9%. GJB2 and MYO7A were the most frequently involved genes in this cohort. All the identified variants were either homozygous or compound heterozygous, with two of them not previously described in the literature (15.4%). Overall, seven missense variants (53.8%), three nonsense variants (23.1%), two frameshift variants (15.4%), and one splice-site variant (7.7%) were observed. Syndromic HL was identified in five (23.8%) of the 21 families studied. This study reflects the extreme genetic heterogeneity observed in HL and expands the spectrum of variants in deafness-associated genes. KW - genetic diagnosis KW - consanguinity KW - genome-wide linkage analysis KW - hearing loss KW - Pakistan KW - exome sequencing Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219293 SN - 2073-4425 VL - 11 IS - 11 ER - TY - JOUR A1 - Dörk, Thilo A1 - Peterlongo, Peter A1 - Mannermaa, Arto A1 - Bolla, Manjeet K. A1 - Wang, Qin A1 - Dennis, Joe A1 - Ahearn, Thomas A1 - Andrulis, Irene L. A1 - Anton-Culver, Hoda A1 - Arndt, Volker A1 - Aronson, Kristan J. A1 - Augustinsson, Annelie A1 - Beane Freeman, Laura E. A1 - Beckmann, Matthias W. A1 - Beeghly-Fadiel, Alicia A1 - Behrens, Sabine A1 - Bermisheva, Marina A1 - Blomqvist, Carl A1 - Bogdanova, Natalia V. A1 - Bojesen, Stig E. A1 - Brauch, Hiltrud A1 - Brenner, Hermann A1 - Burwinkel, Barbara A1 - Canzian, Federico A1 - Chan, Tsun L. A1 - Chang-Claude, Jenny A1 - Chanock, Stephen J. A1 - Choi, Ji-Yeob A1 - Christiansen, Hans A1 - Clarke, Christine L. A1 - Couch, Fergus J. A1 - Czene, Kamila A1 - Daly, Mary B. A1 - dos-Santos-Silva, Isabel A1 - Dwek, Miriam A1 - Eccles, Diana M. A1 - Ekici, Arif B. A1 - Eriksson, Mikael A1 - Evans, D. Gareth A1 - Fasching, Peter A. A1 - Figueroa, Jonine A1 - Flyger, Henrik A1 - Fritschi, Lin A1 - Gabrielson, Marike A1 - Gago-Dominguez, Manuela A1 - Gao, Chi A1 - Gapstur, Susan M. A1 - García-Closas, Montserrat A1 - García-Sáenz, José A. A1 - Gaudet, Mia M. A1 - Giles, Graham G. A1 - Goldberg, Mark S. A1 - Goldgar, David E. A1 - Guenél, Pascal A1 - Haeberle, Lothar A1 - Haimann, Christopher A. A1 - Håkansson, Niclas A1 - Hall, Per A1 - Hamann, Ute A1 - Hartman, Mikael A1 - Hauke, Jan A1 - Hein, Alexander A1 - Hillemanns, Peter A1 - Hogervorst, Frans B. L. A1 - Hooning, Maartje J. A1 - Hopper, John L. A1 - Howell, Tony A1 - Huo, Dezheng A1 - Ito, Hidemi A1 - Iwasaki, Motoki A1 - Jakubowska, Anna A1 - Janni, Wolfgang A1 - John, Esther M. A1 - Jung, Audrey A1 - Kaaks, Rudolf A1 - Kang, Daehee A1 - Kapoor, Pooja Middha A1 - Khusnutdinova, Elza A1 - Kim, Sung-Won A1 - Kitahara, Cari M. A1 - Koutros, Stella A1 - Kraft, Peter A1 - Kristensen, Vessela N. A1 - Kwong, Ava A1 - Lambrechts, Diether A1 - Le Marchand, Loic A1 - Li, Jingmei A1 - Lindström, Sara A1 - Linet, Martha A1 - Lo, Wing-Yee A1 - Long, Jirong A1 - Lophatananon, Artitaya A1 - Lubiński, Jan A1 - Manoochehri, Mehdi A1 - Manoukian, Siranoush A1 - Margolin, Sara A1 - Martinez, Elena A1 - Matsuo, Keitaro A1 - Mavroudis, Dimitris A1 - Meindl, Alfons A1 - Menon, Usha A1 - Milne, Roger L. A1 - Mohd Taib, Nur Aishah A1 - Muir, Kenneth A1 - Mulligan, Anna Marie A1 - Neuhausen, Susan L. A1 - Nevanlinna, Heli A1 - Neven, Patrick A1 - Newman, William G. A1 - Offit, Kenneth A1 - Olopade, Olufunmilayo I. A1 - Olshan, Andrew F. A1 - Olson, Janet E. A1 - Olsson, Håkan A1 - Park, Sue K. A1 - Park-Simon, Tjoung-Won A1 - Peto, Julian A1 - Plaseska-Karanfilska, Dijana A1 - Pohl-Rescigno, Esther A1 - Presneau, Nadege A1 - Rack, Brigitte A1 - Radice, Paolo A1 - Rashid, Muhammad U. A1 - Rennert, Gad A1 - Rennert, Hedy S. A1 - Romero, Atocha A1 - Ruebner, Matthias A1 - Saloustros, Emmanouil A1 - Schmidt, Marjanka K. A1 - Schmutzler, Rita K. A1 - Schneider, Michael O. A1 - Schoemaker, Minouk J. A1 - Scott, Christopher A1 - Shen, Chen-Yang A1 - Shu, Xiao-Ou A1 - Simard, Jaques A1 - Slager, Susan A1 - Smichkoska, Snezhana A1 - Southey, Melissa C. A1 - Spinelli, John J. A1 - Stone, Jennifer A1 - Surowy, Harald A1 - Swerdlow, Anthony J. A1 - Tamimi, Rulla M. A1 - Tapper, William J. A1 - Teo, Soo H. A1 - Terry, Mary Beth A1 - Toland, Amanda E. A1 - Tollenaar, Rob A. E. M. A1 - Torres, Diana A1 - Torres-Mejía, Gabriela A1 - Troester, Melissa A. A1 - Truong, Thérèse A1 - Tsugane, Shoichiro A1 - Untch, Michael A1 - Vachon, Celine M. A1 - van den Ouweland, Ans M. W. A1 - van Veen, Elke M. A1 - Vijai, Joseph A1 - Wendt, Camilla A1 - Wolk, Alicja A1 - Yu, Jyh-Cherng A1 - Zheng, Wei A1 - Ziogas, Argyrios A1 - Ziv, Elad A1 - Dunnig, Alison A1 - Pharaoh, Paul D. P. A1 - Schindler, Detlev A1 - Devilee, Peter A1 - Easton, Douglas F. T1 - Two truncating variants in FANCC and breast cancer risk JF - Scientific Reports N2 - Fanconi anemia (FA) is a genetically heterogeneous disorder with 22 disease-causing genes reported to date. In some FA genes, monoallelic mutations have been found to be associated with breast cancer risk, while the risk associations of others remain unknown. The gene for FA type C, FANCC, has been proposed as a breast cancer susceptibility gene based on epidemiological and sequencing studies. We used the Oncoarray project to genotype two truncating FANCC variants (p.R185X and p.R548X) in 64,760 breast cancer cases and 49,793 controls of European descent. FANCC mutations were observed in 25 cases (14 with p.R185X, 11 with p.R548X) and 26 controls (18 with p.R185X, 8 with p.R548X). There was no evidence of an association with the risk of breast cancer, neither overall (odds ratio 0.77, 95%CI 0.44–1.33, p = 0.4) nor by histology, hormone receptor status, age or family history. We conclude that the breast cancer risk association of these two FANCC variants, if any, is much smaller than for BRCA1, BRCA2 or PALB2 mutations. If this applies to all truncating variants in FANCC it would suggest there are differences between FA genes in their roles on breast cancer risk and demonstrates the merit of large consortia for clarifying risk associations of rare variants. KW - oncology KW - risk factors Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-222838 VL - 9 ER - TY - JOUR A1 - Lu, Yuan A1 - Boswell, Wiliam A1 - Boswell, Mikki A1 - Klotz, Barbara A1 - Kneitz, Susanne A1 - Regneri, Janine A1 - Savage, Markita A1 - Mendoza, Cristina A1 - Postlethwait, John A1 - Warren, Wesley C. A1 - Schartl, Manfred A1 - Walter, Ronald B. T1 - Application of the Transcriptional Disease Signature (TDSs) to Screen Melanoma-Effective Compounds in a Small Fish Model JF - Scientific Reports N2 - Cell culture and protein target-based compound screening strategies, though broadly utilized in selecting candidate compounds, often fail to eliminate candidate compounds with non-target effects and/or safety concerns until late in the drug developmental process. Phenotype screening using intact research animals is attractive because it can help identify small molecule candidate compounds that have a high probability of proceeding to clinical use. Most FDA approved, first-in-class small molecules were identified from phenotypic screening. However, phenotypic screening using rodent models is labor intensive, low-throughput, and very expensive. As a novel alternative for small molecule screening, we have been developing gene expression disease profiles, termed the Transcriptional Disease Signature (TDS), as readout of small molecule screens for therapeutic molecules. In this concept, compounds that can reverse, or otherwise affect known disease-associated gene expression patterns in whole animals may be rapidly identified for more detailed downstream direct testing of their efficacy and mode of action. To establish proof of concept for this screening strategy, we employed a transgenic strain of a small aquarium fish, medaka (Oryzias latipes), that overexpresses the malignant melanoma driver gene xmrk, a mutant egfr gene, that is driven by a pigment cell-specific mitf promoter. In this model, melanoma develops with 100% penetrance. Using the transgenic medaka malignant melanoma model, we established a screening system that employs the NanoString nCounter platform to quantify gene expression within custom sets of TDS gene targets that we had previously shown to exhibit differential transcription among xmrk-transgenic and wild-type medaka. Compound-modulated gene expression was identified using an internet-accessible custom-built data processing pipeline. The effect of a given drug on the entire TDS profile was estimated by comparing compound-modulated genes in the TDS using an activation Z-score and Kolmogorov-Smirnov statistics. TDS gene probes were designed that target common signaling pathways that include proliferation, development, toxicity, immune function, metabolism and detoxification. These pathways may be utilized to evaluate candidate compounds for potential favorable, or unfavorable, effects on melanoma-associated gene expression. Here we present the logistics of using medaka to screen compounds, as well as, the development of a user-friendly NanoString data analysis pipeline to support feasibility of this novel TDS drug-screening strategy. KW - bioinformatics KW - phenotypic screening Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-237322 VL - 9 ER -