TY - JOUR A1 - Stoeckel, M. Cornelia A1 - Esser, Roland W. A1 - Gamer, Matthias A1 - Büchel, Christian A1 - von Leupoldt, Andreas T1 - Brain Responses during the Anticipation of Dyspnea JF - Neural Plasticity N2 - Dyspnea is common in many cardiorespiratory diseases. Already the anticipation of this aversive symptom elicits fear in many patients resulting in unfavorable health behaviors such as activity avoidance and sedentary lifestyle. This study investigated brain mechanisms underlying these anticipatory processes. We induced dyspnea using resistive-load breathing in healthy subjects during functional magnetic resonance imaging. Blocks of severe and mild dyspnea alternated, each preceded by anticipation periods. Severe dyspnea activated a network of sensorimotor, cerebellar, and limbic areas. The left insular, parietal opercular, and cerebellar cortices showed increased activation already during dyspnea anticipation. Left insular and parietal opercular cortex showed increased connectivity with right insular and anterior cingulate cortex when severe dyspnea was anticipated, while the cerebellum showed increased connectivity with the amygdala. Notably, insular activation during dyspnea perception was positively correlated with midbrain activation during anticipation. Moreover, anticipatory fear was positively correlated with anticipatory activation in right insular and anterior cingulate cortex. The results demonstrate that dyspnea anticipation activates brain areas involved in dyspnea perception. The involvement of emotion-related areas such as insula, anterior cingulate cortex, and amygdala during dyspnea anticipation most likely reflects anticipatory fear and might underlie the development of unfavorable health behaviors in patients suffering from dyspnea. KW - brain response KW - dyspnea KW - cardiorespiratory disease KW - anticipation Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166238 VL - 2016 IS - 6434987 ER - TY - JOUR A1 - Gottschalk, Michael G. A1 - Richter, Jan A1 - Ziegler, Christiane A1 - Schiele, Miriam A. A1 - Mann, Julia A1 - Geiger, Maximilian J. A1 - Schartner, Christoph A1 - Homola, György A. A1 - Alpers, Georg W. A1 - Büchel, Christian A1 - Fehm, Lydia A1 - Fydrich, Thomas A1 - Gerlach, Alexander L. A1 - Gloster, Andrew T. A1 - Helbig-Lang, Sylvia A1 - Kalisch, Raffael A1 - Kircher, Tilo A1 - Lang, Thomas A1 - Lonsdorf, Tina B. A1 - Pané-Farré, Christiane A. A1 - Ströhle, Andreas A1 - Weber, Heike A1 - Zwanzger, Peter A1 - Arolt, Volker A1 - Romanos, Marcel A1 - Wittchen, Hans-Ulrich A1 - Hamm, Alfons A1 - Pauli, Paul A1 - Reif, Andreas A1 - Deckert, Jürgen A1 - Neufang, Susanne A1 - Höfler, Michael A1 - Domschke, Katharina T1 - Orexin in the anxiety spectrum: association of a HCRTR1 polymorphism with panic disorder/agoraphobia, CBT treatment response and fear-related intermediate phenotypes JF - Translational Psychiatry N2 - Preclinical studies point to a pivotal role of the orexin 1 (OX1) receptor in arousal and fear learning and therefore suggest the HCRTR1 gene as a prime candidate in panic disorder (PD) with/without agoraphobia (AG), PD/AG treatment response, and PD/AG-related intermediate phenotypes. Here, a multilevel approach was applied to test the non-synonymous HCRTR1 C/T Ile408Val gene variant (rs2271933) for association with PD/AG in two independent case-control samples (total n = 613 cases, 1839 healthy subjects), as an outcome predictor of a six-weeks exposure-based cognitive behavioral therapy (CBT) in PD/AG patients (n = 189), as well as with respect to agoraphobic cognitions (ACQ) (n = 483 patients, n = 2382 healthy subjects), fMRI alerting network activation in healthy subjects (n = 94), and a behavioral avoidance task in PD/AG pre- and post-CBT (n = 271). The HCRTR1 rs2271933 T allele was associated with PD/AG in both samples independently, and in their meta-analysis (p = 4.2 × 10−7), particularly in the female subsample (p = 9.8 × 10−9). T allele carriers displayed a significantly poorer CBT outcome (e.g., Hamilton anxiety rating scale: p = 7.5 × 10−4). The T allele count was linked to higher ACQ sores in PD/AG and healthy subjects, decreased inferior frontal gyrus and increased locus coeruleus activation in the alerting network. Finally, the T allele count was associated with increased pre-CBT exposure avoidance and autonomic arousal as well as decreased post-CBT improvement. In sum, the present results provide converging evidence for an involvement of HCRTR1 gene variation in the etiology of PD/AG and PD/AG-related traits as well as treatment response to CBT, supporting future therapeutic approaches targeting the orexin-related arousal system. KW - human behaviour KW - molecular neuroscience KW - personalized medicine KW - predictive markers KW - psychiatric disorders Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227479 VL - 9 ER -