TY - JOUR A1 - Jiang, Yuxiang A1 - Oron, Tal Ronnen A1 - Clark, Wyatt T. A1 - Bankapur, Asma R. A1 - D'Andrea, Daniel A1 - Lepore, Rosalba A1 - Funk, Christopher S. A1 - Kahanda, Indika A1 - Verspoor, Karin M. A1 - Ben-Hur, Asa A1 - Koo, Da Chen Emily A1 - Penfold-Brown, Duncan A1 - Shasha, Dennis A1 - Youngs, Noah A1 - Bonneau, Richard A1 - Lin, Alexandra A1 - Sahraeian, Sayed M. E. A1 - Martelli, Pier Luigi A1 - Profiti, Giuseppe A1 - Casadio, Rita A1 - Cao, Renzhi A1 - Zhong, Zhaolong A1 - Cheng, Jianlin A1 - Altenhoff, Adrian A1 - Skunca, Nives A1 - Dessimoz, Christophe A1 - Dogan, Tunca A1 - Hakala, Kai A1 - Kaewphan, Suwisa A1 - Mehryary, Farrokh A1 - Salakoski, Tapio A1 - Ginter, Filip A1 - Fang, Hai A1 - Smithers, Ben A1 - Oates, Matt A1 - Gough, Julian A1 - Törönen, Petri A1 - Koskinen, Patrik A1 - Holm, Liisa A1 - Chen, Ching-Tai A1 - Hsu, Wen-Lian A1 - Bryson, Kevin A1 - Cozzetto, Domenico A1 - Minneci, Federico A1 - Jones, David T. A1 - Chapman, Samuel A1 - BKC, Dukka A1 - Khan, Ishita K. A1 - Kihara, Daisuke A1 - Ofer, Dan A1 - Rappoport, Nadav A1 - Stern, Amos A1 - Cibrian-Uhalte, Elena A1 - Denny, Paul A1 - Foulger, Rebecca E. A1 - Hieta, Reija A1 - Legge, Duncan A1 - Lovering, Ruth C. A1 - Magrane, Michele A1 - Melidoni, Anna N. A1 - Mutowo-Meullenet, Prudence A1 - Pichler, Klemens A1 - Shypitsyna, Aleksandra A1 - Li, Biao A1 - Zakeri, Pooya A1 - ElShal, Sarah A1 - Tranchevent, Léon-Charles A1 - Das, Sayoni A1 - Dawson, Natalie L. A1 - Lee, David A1 - Lees, Jonathan G. A1 - Sillitoe, Ian A1 - Bhat, Prajwal A1 - Nepusz, Tamás A1 - Romero, Alfonso E. A1 - Sasidharan, Rajkumar A1 - Yang, Haixuan A1 - Paccanaro, Alberto A1 - Gillis, Jesse A1 - Sedeño-Cortés, Adriana E. A1 - Pavlidis, Paul A1 - Feng, Shou A1 - Cejuela, Juan M. A1 - Goldberg, Tatyana A1 - Hamp, Tobias A1 - Richter, Lothar A1 - Salamov, Asaf A1 - Gabaldon, Toni A1 - Marcet-Houben, Marina A1 - Supek, Fran A1 - Gong, Qingtian A1 - Ning, Wei A1 - Zhou, Yuanpeng A1 - Tian, Weidong A1 - Falda, Marco A1 - Fontana, Paolo A1 - Lavezzo, Enrico A1 - Toppo, Stefano A1 - Ferrari, Carlo A1 - Giollo, Manuel A1 - Piovesan, Damiano A1 - Tosatto, Silvio C. E. A1 - del Pozo, Angela A1 - Fernández, José M. A1 - Maietta, Paolo A1 - Valencia, Alfonso A1 - Tress, Michael L. A1 - Benso, Alfredo A1 - Di Carlo, Stefano A1 - Politano, Gianfranco A1 - Savino, Alessandro A1 - Rehman, Hafeez Ur A1 - Re, Matteo A1 - Mesiti, Marco A1 - Valentini, Giorgio A1 - Bargsten, Joachim W. A1 - van Dijk, Aalt D. J. A1 - Gemovic, Branislava A1 - Glisic, Sanja A1 - Perovic, Vladmir A1 - Veljkovic, Veljko A1 - Almeida-e-Silva, Danillo C. A1 - Vencio, Ricardo Z. N. A1 - Sharan, Malvika A1 - Vogel, Jörg A1 - Kansakar, Lakesh A1 - Zhang, Shanshan A1 - Vucetic, Slobodan A1 - Wang, Zheng A1 - Sternberg, Michael J. E. A1 - Wass, Mark N. A1 - Huntley, Rachael P. A1 - Martin, Maria J. A1 - O'Donovan, Claire A1 - Robinson, Peter N. A1 - Moreau, Yves A1 - Tramontano, Anna A1 - Babbitt, Patricia C. A1 - Brenner, Steven E. A1 - Linial, Michal A1 - Orengo, Christine A. A1 - Rost, Burkhard A1 - Greene, Casey S. A1 - Mooney, Sean D. A1 - Friedberg, Iddo A1 - Radivojac, Predrag A1 - Veljkovic, Nevena T1 - An expanded evaluation of protein function prediction methods shows an improvement in accuracy JF - Genome Biology N2 - Background A major bottleneck in our understanding of the molecular underpinnings of life is the assignment of function to proteins. While molecular experiments provide the most reliable annotation of proteins, their relatively low throughput and restricted purview have led to an increasing role for computational function prediction. However, assessing methods for protein function prediction and tracking progress in the field remain challenging. Results We conducted the second critical assessment of functional annotation (CAFA), a timed challenge to assess computational methods that automatically assign protein function. We evaluated 126 methods from 56 research groups for their ability to predict biological functions using Gene Ontology and gene-disease associations using Human Phenotype Ontology on a set of 3681 proteins from 18 species. CAFA2 featured expanded analysis compared with CAFA1, with regards to data set size, variety, and assessment metrics. To review progress in the field, the analysis compared the best methods from CAFA1 to those of CAFA2. Conclusions The top-performing methods in CAFA2 outperformed those from CAFA1. This increased accuracy can be attributed to a combination of the growing number of experimental annotations and improved methods for function prediction. The assessment also revealed that the definition of top-performing algorithms is ontology specific, that different performance metrics can be used to probe the nature of accurate predictions, and the relative diversity of predictions in the biological process and human phenotype ontologies. While there was methodological improvement between CAFA1 and CAFA2, the interpretation of results and usefulness of individual methods remain context-dependent. KW - Protein function prediction KW - Disease gene prioritization Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-166293 VL - 17 IS - 184 ER - TY - JOUR A1 - Viljur, Mari‐Liis A1 - Abella, Scott R. A1 - Adámek, Martin A1 - Alencar, Janderson Batista Rodrigues A1 - Barber, Nicholas A. A1 - Beudert, Burkhard A1 - Burkle, Laura A. A1 - Cagnolo, Luciano A1 - Campos, Brent R. A1 - Chao, Anne A1 - Chergui, Brahim A1 - Choi, Chang‐Yong A1 - Cleary, Daniel F. R. A1 - Davis, Thomas Seth A1 - Dechnik‐Vázquez, Yanus A. A1 - Downing, William M. A1 - Fuentes‐Ramirez, Andrés A1 - Gandhi, Kamal J. K. A1 - Gehring, Catherine A1 - Georgiev, Kostadin B. A1 - Gimbutas, Mark A1 - Gongalsky, Konstantin B. A1 - Gorbunova, Anastasiya Y. A1 - Greenberg, Cathryn H. A1 - Hylander, Kristoffer A1 - Jules, Erik S. A1 - Korobushkin, Daniil I. A1 - Köster, Kajar A1 - Kurth, Valerie A1 - Lanham, Joseph Drew A1 - Lazarina, Maria A1 - Leverkus, Alexandro B. A1 - Lindenmayer, David A1 - Marra, Daniel Magnabosco A1 - Martín‐Pinto, Pablo A1 - Meave, Jorge A. A1 - Moretti, Marco A1 - Nam, Hyun‐Young A1 - Obrist, Martin K. A1 - Petanidou, Theodora A1 - Pons, Pere A1 - Potts, Simon G. A1 - Rapoport, Irina B. A1 - Rhoades, Paul R. A1 - Richter, Clark A1 - Saifutdinov, Ruslan A. A1 - Sanders, Nathan J. A1 - Santos, Xavier A1 - Steel, Zachary A1 - Tavella, Julia A1 - Wendenburg, Clara A1 - Wermelinger, Beat A1 - Zaitsev, Andrey S. A1 - Thorn, Simon T1 - The effect of natural disturbances on forest biodiversity: an ecological synthesis JF - Biological Reviews N2 - Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human‐induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land‐use change. Conversely, the suppression of natural disturbances threatens disturbance‐dependent biota. Using a meta‐analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α‐diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground‐dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α‐diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta‐analysis by applying a unified diversity concept based on Hill numbers to estimate α‐diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity–disturbance relationships are shaped by species relative abundances. Our synthesis of α‐diversity was extended by a synthesis of disturbance‐induced change in species assemblages, and revealed that disturbance changes the β‐diversity of multiple taxonomic groups, including some groups that were not affected at the α‐diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α‐diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes. KW - natural disturbance KW - diversity–disturbance relationship KW - disturbance severity KW - disturbance extent KW - intermediate disturbance hypothesis KW - forest communities KW - α‐diversity KW - β‐diversity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287168 VL - 97 IS - 5 SP - 1930 EP - 1947 ER -