TY - JOUR A1 - Müller, Stefanie H. A1 - Girard, Simon L. A1 - Hopfner, Franziska A1 - Merner, Nancy D. A1 - Bourassa, Cynthia V. A1 - Lorenz, Delia A1 - Clark, Lorraine N. A1 - Tittmann, Lukas A1 - Soto-Ortolaza, Alexandra I. A1 - Klebe, Stephan A1 - Hallett, Mark A1 - Schneider, Susanne A. A1 - Hodgkinson, Colin A. A1 - Lieb, Wolfgang A1 - Wszolek, Zbigniew K. A1 - Pendziwiat, Manuela A1 - Lorenzo-Betancor, Oswaldo A1 - Poewe, Werner A1 - Ortega-Cubero, Sara A1 - Seppi, Klaus A1 - Rajput, Alex A1 - Hussl, Anna A1 - Rajput, Ali H. A1 - Berg, Daniela A1 - Dion, Patrick A. A1 - Wurster, Isabel A1 - Shulman, Joshua M. A1 - Srulijes, Karin A1 - Haubenberger, Dietrich A1 - Pastor, Pau A1 - Vilariño-Güell, Carles A1 - Postuma, Ronald B. A1 - Bernard, Geneviève A1 - Ladwig, Karl-Heinz A1 - Dupré, Nicolas A1 - Jankovic, Joseph A1 - Strauch, Konstantin A1 - Panisset, Michel A1 - Winkelmann, Juliane A1 - Testa, Claudia M. A1 - Reischl, Eva A1 - Zeuner, Kirsten E. A1 - Ross, Owen A. A1 - Arzberger, Thomas A1 - Chouinard, Sylvain A1 - Deuschl, Günther A1 - Louis, Elan D. A1 - Kuhlenbäumer, Gregor A1 - Rouleau, Guy A. T1 - Genome-wide association study in essential tremor identifies three new loci JF - Brain N2 - We conducted a genome-wide association study of essential tremor, a common movement disorder characterized mainly by a postural and kinetic tremor of the upper extremities. Twin and family history studies show a high heritability for essential tremor. The molecular genetic determinants of essential tremor are unknown. We included 2807 patients and 6441 controls of European descent in our two-stage genome-wide association study. The 59 most significantly disease-associated markers of the discovery stage were genotyped in the replication stage. After Bonferroni correction two markers, one (rs10937625) located in the serine/threonine kinase STK32B and one (rs17590046) in the transcriptional coactivator PPARGC1A were associated with essential tremor. Three markers (rs12764057, rs10822974, rs7903491) in the cell-adhesion molecule CTNNA3 were significant in the combined analysis of both stages. The expression of STK32B was increased in the cerebellar cortex of patients and expression quantitative trait loci database mining showed association between the protective minor allele of rs10937625 and reduced expression in cerebellar cortex. We found no expression differences related to disease status or marker genotype for the other two genes. Replication of two lead single nucleotide polymorphisms of previous small genome-wide association studies (rs3794087 in SLC1A2, rs9652490 in LINGO1) did not confirm the association with essential tremor. KW - quality-control KW - disease KW - tool KW - movement disorders KW - genome-wide association study KW - tremor KW - genetics KW - essential tremor Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-186541 VL - 139 ER - TY - JOUR A1 - Ferger, Matthias A1 - Ban, Željka A1 - Krošl, Ivona A1 - Tomić, Sanja A1 - Dietrich, Lena A1 - Lorenzen, Sabine A1 - Rauch, Florian A1 - Sieh, Daniel A1 - Friedrich, Alexandra A1 - Griesbeck, Stefanie A1 - Kenđel, Adriana A1 - Miljanić, Snežana A1 - Piantanida, Ivo A1 - Marder, Todd B. T1 - Bis(phenylethynyl)arene Linkers in Tetracationic Bis-triarylborane Chromophores Control Fluorimetric and Raman Sensing of Various DNAs and RNAs JF - Chemistry-A European Journal N2 - We report four new luminescent tetracationic bis-triarylborane DNA and RNA sensors that show high binding affinities, in several cases even in the nanomolar range. Three of the compounds contain substituted, highly emissive and structurally flexible bis(2,6-dimethylphenyl-4-ethynyl)arene linkers (3: arene=5,5′-2,2′-bithiophene; 4: arene=1,4-benzene; 5: arene=9,10-anthracene) between the two boryl moieties and serve as efficient dual Raman and fluorescence chromophores. The shorter analogue 6 employs 9,10-anthracene as the linker and demonstrates the importance of an adequate linker length with a certain level of flexibility by exhibiting generally lower binding affinities than 3–5. Pronounced aggregation–deaggregation processes are observed in fluorimetric titration experiments with DNA for compounds 3 and 5. Molecular modelling of complexes of 5 with AT-DNA, suggest the minor groove as the dominant binding site for monomeric 5, but demonstrate that dimers of 5 can also be accommodated. Strong SERS responses for 3–5 versus a very weak response for 6, particularly the strong signals from anthracene itself observed for 5 but not for 6, demonstrate the importance of triple bonds for strong Raman activity in molecules of this compound class. The energy of the characteristic stretching vibration of the C≡C bonds is significantly dependent on the aromatic moiety between the triple bonds. The insertion of aromatic moieties between two C≡C bonds thus offers an alternative design for dual Raman and fluorescence chromophores, applicable in multiplex biological Raman imaging. KW - boranes KW - Raman probes KW - molecular modelling KW - fluorescent probes KW - DNA/RNA sensors Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-256717 VL - 27 IS - 16 ER - TY - JOUR A1 - Dasari, Prasad A1 - Koleci, Naile A1 - Shopova, Iordana A. A1 - Wartenberg, Dirk A1 - Beyersdorf, Niklas A1 - Dietrich, Stefanie A1 - Sahagún-Ruiz, Alfredo A1 - Figge, Marc Thilo A1 - Skerka, Christine A1 - Brakhage, Axel A. A1 - Zipfel, Peter F. T1 - Enolase from Aspergillus fumigatus is a moonlighting protein that binds the human plasma complement proteins factor H, FHL-1, C4BP, and plasminogen JF - Frontiers in Immunology N2 - The opportunistic fungal pathogen Aspergillus fumigatus can cause severe infections, particularly in immunocompromised individuals. Upon infection, A. fumigatus faces the powerful and directly acting immune defense of the human host. The mechanisms on how A. fumigatus evades innate immune attack and complement are still poorly understood. Here, we identify A. fumigatus enolase, AfEno1, which was also characterized as fungal allergen, as a surface ligand for human plasma complement regulators. AfEno1 binds factor H, factor-H-like protein 1 (FHL-1), C4b binding protein (C4BP), and plasminogen. Factor H attaches to AfEno1 via two regions, via short conserved repeats (SCRs) 6–7 and 19–20, and FHL-1 contacts AfEno1 via SCRs 6–7. Both regulators when bound to AfEno1 retain cofactor activity and assist in C3b inactivation. Similarly, the classical pathway regulator C4BP binds to AfEno1 and bound to AfEno1; C4BP assists in C4b inactivation. Plasminogen which binds to AfEno1 via lysine residues is accessible for the tissue-type plasminogen activator (tPA), and active plasmin cleaves the chromogenic substrate S2251, degrades fibrinogen, and inactivates C3 and C3b. Plasmin attached to swollen A. fumigatus conidia damages human A549 lung epithelial cells, reduces the cellular metabolic activity, and induces cell retraction, which results in exposure of the extracellular matrix. Thus, A. fumigatus AfEno1 is a moonlighting protein and virulence factor which recruits several human regulators. The attached human regulators allow the fungal pathogen to control complement at the level of C3 and to damage endothelial cell layers and tissue components. KW - complement factor H KW - moonlighting KW - immune evasion KW - plasminogen KW - blocking phagocytosis Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195612 SN - 1664-3224 VL - 10 ER - TY - JOUR A1 - Dasari, Prasad A1 - Shopova, Iordana A. A1 - Stroe, Maria A1 - Wartenberg, Dirk A1 - Martin-Dahse, Hans A1 - Beyersdorf, Niklas A1 - Hortschansky, Peter A1 - Dietrich, Stefanie A1 - Cseresnyés, Zoltán A1 - Figge, Marc Thilo A1 - Westermann, Martin A1 - Skerka, Christine A1 - Brakhage, Axel A. A1 - Zipfel, Peter F. T1 - Aspf2 From Aspergillus fumigatus Recruits Human Immune Regulators for Immune Evasion and Cell Damage JF - Frontiers in Immunology N2 - The opportunistic fungal pathogen Aspergillus fumigatus can cause life-threatening infections, particularly in immunocompromised patients. Most pathogenic microbes control host innate immune responses at the earliest time, already before infiltrating host immune cells arrive at the site of infection. Here, we identify Aspf2 as the first A. fumigatus Factor H-binding protein. Aspf2 recruits several human plasma regulators, Factor H, factor-H-like protein 1 (FHL-1), FHR1, and plasminogen. Factor H contacts Aspf2 via two regions located in SCRs6–7 and SCR20. FHL-1 binds via SCRs6–7, and FHR1 via SCRs3–5. Factor H and FHL-1 attached to Aspf2-maintained cofactor activity and assisted in C3b inactivation. A Δaspf2 knockout strain was generated which bound Factor H with 28% and FHL-1 with 42% lower intensity. In agreement with less immune regulator acquisition, when challenged with complement-active normal human serum, Δaspf2 conidia had substantially more C3b (>57%) deposited on their surface. Consequently, Δaspf2 conidia were more efficiently phagocytosed (>20%) and killed (44%) by human neutrophils as wild-type conidia. Furthermore, Aspf2 recruited human plasminogen and, when activated by tissue-type plasminogen activator, newly generated plasmin cleaved the chromogenic substrate S2251 and degraded fibrinogen. Furthermore, plasmin attached to conidia damaged human lung epithelial cells, induced cell retraction, and caused matrix exposure. Thus, Aspf2 is a central immune evasion protein and plasminogen ligand of A. fumigatus. By blocking host innate immune attack and by disrupting human lung epithelial cell layers, Aspf2 assists in early steps of fungal infection and likely allows tissue penetration. KW - complement KW - blocking opsonization KW - phagocytosis KW - acquisition of host regulators KW - immune evasion Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-197013 SN - 1664-3224 VL - 9 IS - 1635 ER - TY - JOUR A1 - Rullmann, Michael A1 - Preusser, Sven A1 - Poppitz, Sindy A1 - Heba, Stefanie A1 - Gousias, Konstantinos A1 - Hoyer, Jana A1 - Schütz, Tatjana A1 - Dietrich, Arne A1 - Müller, Karsten A1 - Hankir, Mohammed K. A1 - Pleger, Burkhard T1 - Adiposity Related Brain Plasticity Induced by Bariatric Surgery JF - Froniers in Human Neuroscience N2 - Previous magnetic resonance imaging (MRI) studies revealed structural-functional brain reorganization 12 months after gastric-bypass surgery, encompassing cortical and subcortical regions of all brain lobes as well as the cerebellum. Changes in the mean of cluster-wise gray/white matter density (GMD/WMD) were correlated with the individual loss of body mass index (BMI), rendering the BMI a potential marker of widespread surgery-induced brain plasticity. Here, we investigated voxel-by-voxel associations between surgery-induced changes in adiposity, metabolism and inflammation and markers of functional and structural neural plasticity. We re-visited the data of patients who underwent functional and structural MRI, 6 months (n = 27) and 12 months after surgery (n = 22), and computed voxel-wise regression analyses. Only the surgery-induced weight loss was significantly associated with brain plasticity, and this only for GMD changes. After 6 months, weight loss overlapped with altered GMD in the hypothalamus, the brain's homeostatic control site, the lateral orbitofrontal cortex, assumed to host reward and gustatory processes, as well as abdominal representations in somatosensory cortex. After 12 months, weight loss scaled with GMD changes in right cerebellar lobule VII, involved in language-related/cognitive processes, and, by trend, with the striatum, assumed to underpin (food) reward. These findings suggest time-dependent and weight-loss related gray matter plasticity in brain regions involved in the control of eating, sensory processing and cognitive functioning. KW - adiposity KW - magnetic resonance imaging KW - brain plasticity KW - bariatric surgery KW - gastric-bypass surgery Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227168 VL - 13 ER - TY - JOUR A1 - Al-Zaben, Naim A1 - Medyukhina, Anna A1 - Dietrich, Stefanie A1 - Marolda, Alessandra A1 - Hünniger, Kerstin A1 - Kurzai, Oliver A1 - Figge, Marc Thilo T1 - Automated tracking of label-free cells with enhanced recognition of whole tracks JF - Scientific Reports N2 - Migration and interactions of immune cells are routinely studied by time-lapse microscopy of in vitro migration and confrontation assays. To objectively quantify the dynamic behavior of cells, software tools for automated cell tracking can be applied. However, many existing tracking algorithms recognize only rather short fragments of a whole cell track and rely on cell staining to enhance cell segmentation. While our previously developed segmentation approach enables tracking of label-free cells, it still suffers from frequently recognizing only short track fragments. In this study, we identify sources of track fragmentation and provide solutions to obtain longer cell tracks. This is achieved by improving the detection of low-contrast cells and by optimizing the value of the gap size parameter, which defines the number of missing cell positions between track fragments that is accepted for still connecting them into one track. We find that the enhanced track recognition increases the average length of cell tracks up to 2.2-fold. Recognizing cell tracks as a whole will enable studying and quantifying more complex patterns of cell behavior, e.g. switches in migration mode or dependence of the phagocytosis efficiency on the number and type of preceding interactions. Such quantitative analyses will improve our understanding of how immune cells interact and function in health and disease. KW - image processing KW - software Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-221093 VL - 9 ER -