TY - JOUR A1 - Meyer, Malin Tordis A1 - Watermann, Christoph A1 - Dreyer, Thomas A1 - Ergün, Süleyman A1 - Karnati, Srikanth T1 - 2021 update on diagnostic markers and translocation in salivary gland tumors JF - International Journal of Molecular Sciences N2 - Salivary gland tumors are a rare tumor entity within malignant tumors of all tissues. The most common are malignant mucoepidermoid carcinoma, adenoid cystic carcinoma, and acinic cell carcinoma. Pleomorphic adenoma is the most recurrent form of benign salivary gland tumor. Due to their low incidence rates and complex histological patterns, they are difficult to diagnose accurately. Malignant tumors of the salivary glands are challenging in terms of differentiation because of their variability in histochemistry and translocations. Therefore, the primary goal of the study was to review the current literature to identify the recent developments in histochemical diagnostics and translocations for differentiating salivary gland tumors. KW - salivary gland tumors KW - epithelial salivary gland KW - adenoid cystic carcinoma (ACC) KW - pleomorphic adenoma KW - mucoepidermoid carcinoma KW - diagnostic markers Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261057 SN - 1422-0067 VL - 22 IS - 13 ER - TY - JOUR A1 - Meyer, Malin Tordis A1 - Watermann, Christoph A1 - Dreyer, Thomas A1 - Wagner, Steffen A1 - Wittekindt, Claus A1 - Klussmann, Jens Peter A1 - Ergün, Süleyman A1 - Baumgart-Vogt, Eveline A1 - Karnati, Srikanth T1 - Differential expression of peroxisomal proteins in distinct types of parotid gland tumors JF - International Journal of Molecular Sciences N2 - Salivary gland cancers are rare but aggressive tumors that have poor prognosis and lack effective cure. Of those, parotid tumors constitute the majority. Functioning as metabolic machinery contributing to cellular redox balance, peroxisomes have emerged as crucial players in tumorigenesis. Studies on murine and human cells have examined the role of peroxisomes in carcinogenesis with conflicting results. These studies either examined the consequences of altered peroxisomal proliferators or compared their expression in healthy and neoplastic tissues. None, however, examined such differences exclusively in human parotid tissue or extended comparison to peroxisomal proteins and their associated gene expressions. Therefore, we examined differences in peroxisomal dynamics in parotid tumors of different morphologies. Using immunofluorescence and quantitative PCR, we compared the expression levels of key peroxisomal enzymes and proliferators in healthy and neoplastic parotid tissue samples. Three parotid tumor subtypes were examined: pleomorphic adenoma, mucoepidermoid carcinoma and acinic cell carcinoma. We observed higher expression of peroxisomal matrix proteins in neoplastic samples with exceptional down regulation of certain enzymes; however, the degree of expression varied between tumor subtypes. Our findings confirm previous experimental results on other organ tissues and suggest peroxisomes as possible therapeutic targets or markers in all or certain subtypes of parotid neoplasms. KW - peroxisomes KW - parotid gland KW - salivary KW - tumors KW - pleomorphic adenoma KW - mucoepidermoid carcinoma KW - acinic cell carcinoma KW - differential expression KW - immunohistochemistry KW - mRNA Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261047 SN - 1422-0067 VL - 22 IS - 15 ER - TY - JOUR A1 - Lehmann, Julian A1 - Jørgensen, Morten E. A1 - Fratz, Stefanie A1 - Müller, Heike M. A1 - Kusch, Jana A1 - Scherzer, Sönke A1 - Navarro-Retamal, Carlos A1 - Mayer, Dominik A1 - Böhm, Jennifer A1 - Konrad, Kai R. A1 - Terpitz, Ulrich A1 - Dreyer, Ingo A1 - Mueller, Thomas D. A1 - Sauer, Markus A1 - Hedrich, Rainer A1 - Geiger, Dietmar A1 - Maierhofer, Tobias T1 - Acidosis-induced activation of anion channel SLAH3 in the flooding-related stress response of Arabidopsis JF - Current Biology N2 - Plants, as sessile organisms, gained the ability to sense and respond to biotic and abiotic stressors to survive severe changes in their environments. The change in our climate comes with extreme dry periods but also episodes of flooding. The latter stress condition causes anaerobiosis-triggered cytosolic acidosis and impairs plant function. The molecular mechanism that enables plant cells to sense acidity and convey this signal via membrane depolarization was previously unknown. Here, we show that acidosis-induced anion efflux from Arabidopsis (Arabidopsis thaliana) roots is dependent on the S-type anion channel AtSLAH3. Heterologous expression of SLAH3 in Xenopus oocytes revealed that the anion channel is directly activated by a small, physiological drop in cytosolic pH. Acidosis-triggered activation of SLAH3 is mediated by protonation of histidine 330 and 454. Super-resolution microscopy analysis showed that the increase in cellular proton concentration switches SLAH3 from an electrically silent channel dimer into its active monomeric form. Our results show that, upon acidification, protons directly switch SLAH3 to its open configuration, bypassing kinase-dependent activation. Moreover, under flooding conditions, the stress response of Arabidopsis wild-type (WT) plants was significantly higher compared to SLAH3 loss-of-function mutants. Our genetic evidence of SLAH3 pH sensor function may guide the development of crop varieties with improved stress tolerance. KW - SLAH3 KW - S-type anion channel KW - hypoxia KW - pH KW - cytosolic acidification KW - flooding KW - PALM KW - stoichiometry Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-363320 VL - 31 ER -