TY - JOUR A1 - Horn, A. A1 - Krist, L. A1 - Lieb, W. A1 - Montellano, F. A. A1 - Kohls, M. A1 - Haas, K. A1 - Gelbrich, G. A1 - Bolay-Gehrig, S. J. A1 - Morbach, C. A1 - Reese, J. P. A1 - Störk, S. A1 - Fricke, J. A1 - Zoller, T. A1 - Schmidt, S. A1 - Triller, P. A1 - Kretzler, L. A1 - Rönnefarth, M. A1 - Von Kalle, C. A1 - Willich, S. N. A1 - Kurth, F. A1 - Steinbeis, F. A1 - Witzenrath, M. A1 - Bahmer, T. A1 - Hermes, A. A1 - Krawczak, M. A1 - Reinke, L. A1 - Maetzler, C. A1 - Franzenburg, J. A1 - Enderle, J. A1 - Flinspach, A. A1 - Vehreschild, J. A1 - Schons, M. A1 - Illig, T. A1 - Anton, G. A1 - Ungethüm, K. A1 - Finkenberg, B. C. A1 - Gehrig, M. T. A1 - Savaskan, N. A1 - Heuschmann, P. U. A1 - Keil, T. A1 - Schreiber, S. T1 - Long-term health sequelae and quality of life at least 6 months after infection with SARS-CoV-2: design and rationale of the COVIDOM-study as part of the NAPKON population-based cohort platform (POP) JF - Infection N2 - Purpose Over the course of COVID-19 pandemic, evidence has accumulated that SARS-CoV-2 infections may affect multiple organs and have serious clinical sequelae, but on-site clinical examinations with non-hospitalized samples are rare. We, therefore, aimed to systematically assess the long-term health status of samples of hospitalized and non-hospitalized SARS-CoV-2 infected individuals from three regions in Germany. Methods The present paper describes the COVIDOM-study within the population-based cohort platform (POP) which has been established under the auspices of the NAPKON infrastructure (German National Pandemic Cohort Network) of the national Network University Medicine (NUM). Comprehensive health assessments among SARS-CoV-2 infected individuals are conducted at least 6 months after the acute infection at the study sites Kiel, Würzburg and Berlin. Potential participants were identified and contacted via the local public health authorities, irrespective of the severity of the initial infection. A harmonized examination protocol has been implemented, consisting of detailed assessments of medical history, physical examinations, and the collection of multiple biosamples (e.g., serum, plasma, saliva, urine) for future analyses. In addition, patient-reported perception of the impact of local pandemic-related measures and infection on quality-of-life are obtained. Results As of July 2021, in total 6813 individuals infected in 2020 have been invited into the COVIDOM-study. Of these, about 36% wished to participate and 1295 have already been examined at least once. Conclusion NAPKON-POP COVIDOM-study complements other Long COVID studies assessing the long-term consequences of an infection with SARS-CoV-2 by providing detailed health data of population-based samples, including individuals with various degrees of disease severity. Trial registration Registered at the German registry for clinical studies (DRKS00023742). KW - Long COVID KW - Sars-CoV-2 KW - on-site examination KW - internal medicine KW - neurological KW - population-based Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-308960 SN - 0300-8126 SN - 1439-0973 VL - 49 IS - 6 ER - TY - JOUR A1 - Viljur, Mari‐Liis A1 - Abella, Scott R. A1 - Adámek, Martin A1 - Alencar, Janderson Batista Rodrigues A1 - Barber, Nicholas A. A1 - Beudert, Burkhard A1 - Burkle, Laura A. A1 - Cagnolo, Luciano A1 - Campos, Brent R. A1 - Chao, Anne A1 - Chergui, Brahim A1 - Choi, Chang‐Yong A1 - Cleary, Daniel F. R. A1 - Davis, Thomas Seth A1 - Dechnik‐Vázquez, Yanus A. A1 - Downing, William M. A1 - Fuentes‐Ramirez, Andrés A1 - Gandhi, Kamal J. K. A1 - Gehring, Catherine A1 - Georgiev, Kostadin B. A1 - Gimbutas, Mark A1 - Gongalsky, Konstantin B. A1 - Gorbunova, Anastasiya Y. A1 - Greenberg, Cathryn H. A1 - Hylander, Kristoffer A1 - Jules, Erik S. A1 - Korobushkin, Daniil I. A1 - Köster, Kajar A1 - Kurth, Valerie A1 - Lanham, Joseph Drew A1 - Lazarina, Maria A1 - Leverkus, Alexandro B. A1 - Lindenmayer, David A1 - Marra, Daniel Magnabosco A1 - Martín‐Pinto, Pablo A1 - Meave, Jorge A. A1 - Moretti, Marco A1 - Nam, Hyun‐Young A1 - Obrist, Martin K. A1 - Petanidou, Theodora A1 - Pons, Pere A1 - Potts, Simon G. A1 - Rapoport, Irina B. A1 - Rhoades, Paul R. A1 - Richter, Clark A1 - Saifutdinov, Ruslan A. A1 - Sanders, Nathan J. A1 - Santos, Xavier A1 - Steel, Zachary A1 - Tavella, Julia A1 - Wendenburg, Clara A1 - Wermelinger, Beat A1 - Zaitsev, Andrey S. A1 - Thorn, Simon T1 - The effect of natural disturbances on forest biodiversity: an ecological synthesis JF - Biological Reviews N2 - Disturbances alter biodiversity via their specific characteristics, including severity and extent in the landscape, which act at different temporal and spatial scales. Biodiversity response to disturbance also depends on the community characteristics and habitat requirements of species. Untangling the mechanistic interplay of these factors has guided disturbance ecology for decades, generating mixed scientific evidence of biodiversity responses to disturbance. Understanding the impact of natural disturbances on biodiversity is increasingly important due to human‐induced changes in natural disturbance regimes. In many areas, major natural forest disturbances, such as wildfires, windstorms, and insect outbreaks, are becoming more frequent, intense, severe, and widespread due to climate change and land‐use change. Conversely, the suppression of natural disturbances threatens disturbance‐dependent biota. Using a meta‐analytic approach, we analysed a global data set (with most sampling concentrated in temperate and boreal secondary forests) of species assemblages of 26 taxonomic groups, including plants, animals, and fungi collected from forests affected by wildfires, windstorms, and insect outbreaks. The overall effect of natural disturbances on α‐diversity did not differ significantly from zero, but some taxonomic groups responded positively to disturbance, while others tended to respond negatively. Disturbance was beneficial for taxonomic groups preferring conditions associated with open canopies (e.g. hymenopterans and hoverflies), whereas ground‐dwelling groups and/or groups typically associated with shady conditions (e.g. epigeic lichens and mycorrhizal fungi) were more likely to be negatively impacted by disturbance. Across all taxonomic groups, the highest α‐diversity in disturbed forest patches occurred under moderate disturbance severity, i.e. with approximately 55% of trees killed by disturbance. We further extended our meta‐analysis by applying a unified diversity concept based on Hill numbers to estimate α‐diversity changes in different taxonomic groups across a gradient of disturbance severity measured at the stand scale and incorporating other disturbance features. We found that disturbance severity negatively affected diversity for Hill number q = 0 but not for q = 1 and q = 2, indicating that diversity–disturbance relationships are shaped by species relative abundances. Our synthesis of α‐diversity was extended by a synthesis of disturbance‐induced change in species assemblages, and revealed that disturbance changes the β‐diversity of multiple taxonomic groups, including some groups that were not affected at the α‐diversity level (birds and woody plants). Finally, we used mixed rarefaction/extrapolation to estimate biodiversity change as a function of the proportion of forests that were disturbed, i.e. the disturbance extent measured at the landscape scale. The comparison of intact and naturally disturbed forests revealed that both types of forests provide habitat for unique species assemblages, whereas species diversity in the mixture of disturbed and undisturbed forests peaked at intermediate values of disturbance extent in the simulated landscape. Hence, the relationship between α‐diversity and disturbance severity in disturbed forest stands was strikingly similar to the relationship between species richness and disturbance extent in a landscape consisting of both disturbed and undisturbed forest habitats. This result suggests that both moderate disturbance severity and moderate disturbance extent support the highest levels of biodiversity in contemporary forest landscapes. KW - natural disturbance KW - diversity–disturbance relationship KW - disturbance severity KW - disturbance extent KW - intermediate disturbance hypothesis KW - forest communities KW - α‐diversity KW - β‐diversity Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-287168 VL - 97 IS - 5 SP - 1930 EP - 1947 ER -