TY - JOUR A1 - Fernández-Rodríguez, Juana A1 - Quiles, Francisco A1 - Blanco, Ignacio A1 - Teulé, Alex A1 - Feliubadaló, Lídia A1 - del Valle, Jesús A1 - Salinas, Mónica A1 - Izquierdo, Ángel A1 - Darder, Esther A1 - Schindler, Detlev A1 - Capellá, Gabriel A1 - Brunet, Joan A1 - Lázaro, Conxi A1 - Angel Pujana, Miguel T1 - Analysis of SLX4/FANCP in non-BRCA1/2-mutated breast cancer families JF - BMC Cancer N2 - Background: Genes that, when mutated, cause Fanconi anemia or greatly increase breast cancer risk encode for proteins that converge on a homology-directed DNA damage repair process. Mutations in the SLX4 gene, which encodes for a scaffold protein involved in the repair of interstrand cross-links, have recently been identified in unclassified Fanconi anemia patients. A mutation analysis of SLX4 in German or Byelorussian familial cases of breast cancer without detected mutations in BRCA1 or BRCA2 has been completed, with globally negative results. Methods: The genomic region of SLX4, comprising all exons and exon-intron boundaries, was sequenced in 94 Spanish familial breast cancer cases that match a criterion indicating the potential presence of a highly-penetrant germline mutation, following exclusion of BRCA1 or BRCA2 mutations. Results: This mutational analysis revealed extensive genetic variation of SLX4, with 21 novel single nucleotide variants; however, none could be linked to a clear alteration of the protein function. Nonetheless, genotyping 10 variants (nine novel, all missense amino acid changes) in a set of controls (138 women and 146 men) did not detect seven of them. Conclusions: Overall, while the results of this study do not identify clearly pathogenic mutations of SLX4 contributing to breast cancer risk, further genetic analysis, combined with functional assays of the identified rare variants, may be warranted to conclusively assess the potential link with the disease. KW - SLX4 KW - Holliday junction reolvass KW - Fanconi-anemia subtype KW - susceptibility gene KW - helicase BRIP1 KW - ovarian cancer KW - DNA repair KW - mutations KW - protein KW - RAD51C Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131772 VL - 12 IS - 84 ER - TY - JOUR A1 - Trafimow, David A1 - Amrhein, Valentin A1 - Areshenkoff, Corson N. A1 - Barrera-Causil, Carlos J. A1 - Beh, Eric J. A1 - Bilgiç, Yusuf K. A1 - Bono, Roser A1 - Bradley, Michael T. A1 - Briggs, William M. A1 - Cepeda-Freyre, Héctor A. A1 - Chaigneau, Sergio E. A1 - Ciocca, Daniel R. A1 - Correa, Juan C. A1 - Cousineau, Denis A1 - de Boer, Michiel R. A1 - Dhar, Subhra S. A1 - Dolgov, Igor A1 - Gómez-Benito, Juana A1 - Grendar, Marian A1 - Grice, James W. A1 - Guerrero-Gimenez, Martin E. A1 - Gutiérrez, Andrés A1 - Huedo-Medina, Tania B. A1 - Jaffe, Klaus A1 - Janyan, Armina A1 - Karimnezhad, Ali A1 - Korner-Nievergelt, Fränzi A1 - Kosugi, Koji A1 - Lachmair, Martin A1 - Ledesma, Rubén D. A1 - Limongi, Roberto A1 - Liuzza, Marco T. A1 - Lombardo, Rosaria A1 - Marks, Michael J. A1 - Meinlschmidt, Gunther A1 - Nalborczyk, Ladislas A1 - Nguyen, Hung T. A1 - Ospina, Raydonal A1 - Perezgonzalez, Jose D. A1 - Pfister, Roland A1 - Rahona, Juan J. A1 - Rodríguez-Medina, David A. A1 - Romão, Xavier A1 - Ruiz-Fernández, Susana A1 - Suarez, Isabel A1 - Tegethoff, Marion A1 - Tejo, Mauricio A1 - van de Schoot, Rens A1 - Vankov, Ivan I. A1 - Velasco-Forero, Santiago A1 - Wang, Tonghui A1 - Yamada, Yuki A1 - Zoppino, Felipe C. M. A1 - Marmolejo-Ramos, Fernando T1 - Manipulating the Alpha Level Cannot Cure Significance Testing JF - Frontiers in Psychology N2 - We argue that making accept/reject decisions on scientific hypotheses, including a recent call for changing the canonical alpha level from p = 0.05 to p = 0.005, is deleterious for the finding of new discoveries and the progress of science. Given that blanket and variable alpha levels both are problematic, it is sensible to dispense with significance testing altogether. There are alternatives that address study design and sample size much more directly than significance testing does; but none of the statistical tools should be taken as the new magic method giving clear-cut mechanical answers. Inference should not be based on single studies at all, but on cumulative evidence from multiple independent studies. When evaluating the strength of the evidence, we should consider, for example, auxiliary assumptions, the strength of the experimental design, and implications for applications. To boil all this down to a binary decision based on a p-value threshold of 0.05, 0.01, 0.005, or anything else, is not acceptable. KW - statistical significance KW - null hypothesis testing KW - p-value KW - significance testing KW - decision making Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189973 SN - 1664-1078 VL - 9 IS - 699 ER - TY - JOUR A1 - Hernández, Gonzalo A1 - José Ramírez, María A1 - Minguillón, Jordi A1 - Quiles, Paco A1 - Ruiz de Garibay, Gorka A1 - Aza-Carmona, Miriam A1 - Bogliolo, Massimo A1 - Pujol, Roser A1 - Prados-Carvajal, Rosario A1 - Fernández, Juana A1 - García, Nadia A1 - López, Adrià A1 - Gutiérrez-Enríquez, Sara A1 - Diez, Orland A1 - Benítez, Javier A1 - Salinas, Mónica A1 - Teulé, Alex A1 - Brunet, Joan A1 - Radice, Paolo A1 - Peterlongo, Paolo A1 - Schindler, Detlev A1 - Huertas, Pablo A1 - Puente, Xose S. A1 - Lázaro, Conxi A1 - Àngel Pujana, Miquel A1 - Surrallés, Jordi T1 - Decapping protein EDC4 regulates DNA repair and phenocopies BRCA1 JF - Nature Communications N2 - BRCA1 is a tumor suppressor that regulates DNA repair by homologous recombination. Germline mutations in BRCA1 are associated with increased risk of breast and ovarian cancer and BRCA1 deficient tumors are exquisitely sensitive to poly (ADP-ribose) polymerase (PARP) inhibitors. Therefore, uncovering additional components of this DNA repair pathway is of extreme importance for further understanding cancer development and therapeutic vulnerabilities. Here, we identify EDC4, a known component of processing-bodies and regulator of mRNA decapping, as a member of the BRCA1-BRIP1-TOPBP1 complex. EDC4 plays a key role in homologous recombination by stimulating end resection at double-strand breaks. EDC4 deficiency leads to genome instability and hypersensitivity to DNA interstrand cross-linking drugs and PARP inhibitors. Lack-of-function mutations in EDC4 were detected in BRCA1/2-mutation-negative breast cancer cases, suggesting a role in breast cancer susceptibility. Collectively, this study recognizes EDC4 with a dual role in decapping and DNA repair whose inactivation phenocopies BRCA1 deficiency. KW - cancer KW - double-strand DNA breaks KW - genomic instability KW - RNA metabolism Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-319929 VL - 9 ER -