TY - JOUR A1 - Trafimow, David A1 - Amrhein, Valentin A1 - Areshenkoff, Corson N. A1 - Barrera-Causil, Carlos J. A1 - Beh, Eric J. A1 - Bilgiç, Yusuf K. A1 - Bono, Roser A1 - Bradley, Michael T. A1 - Briggs, William M. A1 - Cepeda-Freyre, Héctor A. A1 - Chaigneau, Sergio E. A1 - Ciocca, Daniel R. A1 - Correa, Juan C. A1 - Cousineau, Denis A1 - de Boer, Michiel R. A1 - Dhar, Subhra S. A1 - Dolgov, Igor A1 - Gómez-Benito, Juana A1 - Grendar, Marian A1 - Grice, James W. A1 - Guerrero-Gimenez, Martin E. A1 - Gutiérrez, Andrés A1 - Huedo-Medina, Tania B. A1 - Jaffe, Klaus A1 - Janyan, Armina A1 - Karimnezhad, Ali A1 - Korner-Nievergelt, Fränzi A1 - Kosugi, Koji A1 - Lachmair, Martin A1 - Ledesma, Rubén D. A1 - Limongi, Roberto A1 - Liuzza, Marco T. A1 - Lombardo, Rosaria A1 - Marks, Michael J. A1 - Meinlschmidt, Gunther A1 - Nalborczyk, Ladislas A1 - Nguyen, Hung T. A1 - Ospina, Raydonal A1 - Perezgonzalez, Jose D. A1 - Pfister, Roland A1 - Rahona, Juan J. A1 - Rodríguez-Medina, David A. A1 - Romão, Xavier A1 - Ruiz-Fernández, Susana A1 - Suarez, Isabel A1 - Tegethoff, Marion A1 - Tejo, Mauricio A1 - van de Schoot, Rens A1 - Vankov, Ivan I. A1 - Velasco-Forero, Santiago A1 - Wang, Tonghui A1 - Yamada, Yuki A1 - Zoppino, Felipe C. M. A1 - Marmolejo-Ramos, Fernando T1 - Manipulating the Alpha Level Cannot Cure Significance Testing JF - Frontiers in Psychology N2 - We argue that making accept/reject decisions on scientific hypotheses, including a recent call for changing the canonical alpha level from p = 0.05 to p = 0.005, is deleterious for the finding of new discoveries and the progress of science. Given that blanket and variable alpha levels both are problematic, it is sensible to dispense with significance testing altogether. There are alternatives that address study design and sample size much more directly than significance testing does; but none of the statistical tools should be taken as the new magic method giving clear-cut mechanical answers. Inference should not be based on single studies at all, but on cumulative evidence from multiple independent studies. When evaluating the strength of the evidence, we should consider, for example, auxiliary assumptions, the strength of the experimental design, and implications for applications. To boil all this down to a binary decision based on a p-value threshold of 0.05, 0.01, 0.005, or anything else, is not acceptable. KW - statistical significance KW - null hypothesis testing KW - p-value KW - significance testing KW - decision making Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-189973 SN - 1664-1078 VL - 9 IS - 699 ER - TY - JOUR A1 - Di Sante, Domenico A1 - Erdmenger, Johanna A1 - Greiter, Martin A1 - Matthaiakakis, Ioannis A1 - Meyer, René A1 - Fernandez, David Rodríguez A1 - Thomale, Ronny A1 - van Loon, Erik A1 - Wehling, Tim T1 - Turbulent hydrodynamics in strongly correlated Kagome metals JF - Nature Communications N2 - A current challenge in condensed matter physics is the realization of strongly correlated, viscous electron fluids. These fluids can be described by holography, that is, by mapping them onto a weakly curved gravitational theory via gauge/gravity duality. The canonical system considered for realizations has been graphene. In this work, we show that Kagome systems with electron fillings adjusted to the Dirac nodes provide a much more compelling platform for realizations of viscous electron fluids, including non-linear effects such as turbulence. In particular, we find that in Scandium Herbertsmithite, the fine-structure constant, which measures the effective Coulomb interaction, is enhanced by a factor of about 3.2 as compared to graphene. We employ holography to estimate the ratio of the shear viscosity over the entropy density in Sc-Herbertsmithite, and find it about three times smaller than in graphene. These findings put the turbulent flow regime described by holography within the reach of experiments. Viscous electron fluids are predicted in strongly correlated systems but remain challenging to realize. Here, the authors predict enhanced effective Coulomb interaction and reduced ratio of the shear viscosity over entropy density in a Kagome metal, inferring turbulent flow of viscous electron fluids. KW - coupling-constant dependence KW - shear viscosity KW - electron KW - resistance Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-230380 VL - 11 ER -