TY - JOUR A1 - Kress, Michaela A1 - Hüttenhofer, Alexander A1 - Landry, Marc A1 - Kuner, Rohini A1 - Favereaux, Alexandre A1 - Greenberg, David A1 - Bednarik, Josef A1 - Heppenstall, Paul A1 - Kronenberg, Florian A1 - Malcangio, Marzia A1 - Rittner, Heike A1 - Üçeyler, Nurcan A1 - Trajanoski, Zlatko A1 - Mouritzen, Peter A1 - Birklein, Frank A1 - Sommer, Claudia A1 - Soreq, Hermona T1 - microRNAs in nociceptive circuits as predictors of future clinical applications JF - Frontiers in Molecular Neuroscience N2 - Neuro-immune alterations in the peripheral and central nervous system play a role in the pathophysiology of chronic pain, and non-coding RNAs – and microRNAs (miRNAs) in particular – regulate both immune and neuronal processes. Specifically, miRNAs control macromolecular complexes in neurons, glia and immune cells and regulate signals used for neuro-immune communication in the pain pathway. Therefore, miRNAs may be hypothesized as critically important master switches modulating chronic pain. In particular, understanding the concerted function of miRNA in the regulation of nociception and endogenous analgesia and defining the importance of miRNAs in the circuitries and cognitive, emotional and behavioral components involved in pain is expected to shed new light on the enigmatic pathophysiology of neuropathic pain, migraine and complex regional pain syndrome. Specific miRNAs may evolve as new druggable molecular targets for pain prevention and relief. Furthermore, predisposing miRNA expression patterns and inter-individual variations and polymorphisms in miRNAs and/or their binding sites may serve as biomarkers for pain and help to predict individual risks for certain types of pain and responsiveness to analgesic drugs. miRNA-based diagnostics are expected to develop into hands-on tools that allow better patient stratification, improved mechanism-based treatment, and targeted prevention strategies for high risk individuals. KW - chronic pain KW - biomarker KW - polymorphism KW - miRNA-based diagnostics KW - miRNA expression patterns KW - miRNA polymorphisms KW - antagomir KW - miRNA-based analgesic Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-154597 VL - 6 IS - 33 ER - TY - JOUR A1 - Breuer, René A1 - Mattheisen, Manuel A1 - Frank, Josef A1 - Krumm, Bertram A1 - Treutlein, Jens A1 - Kassem, Layla A1 - Strohmaier, Jana A1 - Herms, Stefan A1 - Mühleisen, Thomas W. A1 - Degenhardt, Franziska A1 - Cichon, Sven A1 - Nöthen, Markus M. A1 - Karypis, George A1 - Kelsoe, John A1 - Greenwood, Tiffany A1 - Nievergelt, Caroline A1 - Shilling, Paul A1 - Shekhtman, Tatyana A1 - Edenberg, Howard A1 - Craig, David A1 - Szelinger, Szabolcs A1 - Nurnberger, John A1 - Gershon, Elliot A1 - Alliey-Rodriguez, Ney A1 - Zandi, Peter A1 - Goes, Fernando A1 - Schork, Nicholas A1 - Smith, Erin A1 - Koller, Daniel A1 - Zhang, Peng A1 - Badner, Judith A1 - Berrettini, Wade A1 - Bloss, Cinnamon A1 - Byerley, William A1 - Coryell, William A1 - Foroud, Tatiana A1 - Guo, Yirin A1 - Hipolito, Maria A1 - Keating, Brendan A1 - Lawson, William A1 - Liu, Chunyu A1 - Mahon, Pamela A1 - McInnis, Melvin A1 - Murray, Sarah A1 - Nwulia, Evaristus A1 - Potash, James A1 - Rice, John A1 - Scheftner, William A1 - Zöllner, Sebastian A1 - McMahon, Francis J. A1 - Rietschel, Marcella A1 - Schulze, Thomas G. T1 - Detecting significant genotype–phenotype association rules in bipolar disorder: market research meets complex genetics JF - International Journal of Bipolar Disorders N2 - Background Disentangling the etiology of common, complex diseases is a major challenge in genetic research. For bipolar disorder (BD), several genome-wide association studies (GWAS) have been performed. Similar to other complex disorders, major breakthroughs in explaining the high heritability of BD through GWAS have remained elusive. To overcome this dilemma, genetic research into BD, has embraced a variety of strategies such as the formation of large consortia to increase sample size and sequencing approaches. Here we advocate a complementary approach making use of already existing GWAS data: a novel data mining procedure to identify yet undetected genotype–phenotype relationships. We adapted association rule mining, a data mining technique traditionally used in retail market research, to identify frequent and characteristic genotype patterns showing strong associations to phenotype clusters. We applied this strategy to three independent GWAS datasets from 2835 phenotypically characterized patients with BD. In a discovery step, 20,882 candidate association rules were extracted. Results Two of these rules—one associated with eating disorder and the other with anxiety—remained significant in an independent dataset after robust correction for multiple testing. Both showed considerable effect sizes (odds ratio ~ 3.4 and 3.0, respectively) and support previously reported molecular biological findings. Conclusion Our approach detected novel specific genotype–phenotype relationships in BD that were missed by standard analyses like GWAS. While we developed and applied our method within the context of BD gene discovery, it may facilitate identifying highly specific genotype–phenotype relationships in subsets of genome-wide data sets of other complex phenotype with similar epidemiological properties and challenges to gene discovery efforts. KW - bipolar disorder KW - subphenotypes KW - rule discovery KW - data mining KW - genotype-phenotype patterns Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-220509 VL - 6 ER -