TY - JOUR A1 - Stange, Katja A1 - Désir, Julie A1 - Kakar, Naseebullah A1 - Mueller, Thomas D. A1 - Budde, Birgit S. A1 - Gordon, Christopher T. A1 - Horn, Denise A1 - Seemann, Petra A1 - Borck, Guntram T1 - A hypomorphic BMPR1B mutation causes du Pan acromesomelic dysplasia JF - Orphanet Journal of Rare Diseases N2 - Background: Grebe dysplasia, Hunter-Thompson dysplasia, and du Pan dysplasia constitute a spectrum of skeletal dysplasias inherited as an autosomal recessive trait characterized by short stature, severe acromesomelic shortening of the limbs, and normal axial skeleton. The majority of patients with these disorders have biallelic loss-of-function mutations of GDF5. In single instances, Grebe dysplasia and a Grebe dysplasia-like phenotype with genital anomalies have been shown to be caused by mutations in BMPR1B, encoding a GDF5 receptor. Methods: We clinically and radiologically characterised an acromesomelic chondrodysplasia in an adult woman born to consanguineous parents. We sequenced GDF5 and BMPR1B on DNA of the proposita. We performed 3D structural analysis and luciferase reporter assays to functionally investigate the identified BMPR1B mutation. Results: We extend the genotype-phenotype correlation in the acromesomelic chondrodysplasias by showing that the milder du Pan dysplasia can be caused by a hypomorphic BMPR1B mutation. We show that the homozygous c.91C>T, p.(Arg31Cys) mutation causing du Pan dysplasia leads to a significant loss of BMPR1B function, but to a lesser extent than the previously reported p.Cys53Arg mutation that results in the more severe Grebe dysplasia. Conclusions: The phenotypic severity gradient of the clinically and radiologically related acromesomelic chondrodysplasia spectrum of skeletal disorders may be due to the extent of functional impairment of the ligand-receptor pair GDF5-BMPR1B. KW - linkage analysis KW - chondrodysplasia KW - specificity KW - Grebe dysplasia KW - BMPR1B KW - du Pan dysplasia KW - tool KW - missense KW - grebe KW - protein-1 CDMP1 gene KW - Acromesomelic dysplasias Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-151650 VL - 10 IS - 84 ER - TY - JOUR A1 - Dubail, Johanne A1 - Huber, Céline A1 - Chantepie, Sandrine A1 - Sonntag, Stephan A1 - Tüysüz, Beyhan A1 - Mihci, Ercan A1 - Gordon, Christopher T. A1 - Steichen-Gersdorf, Elisabeth A1 - Amiel, Jeanne A1 - Nur, Banu A1 - Stolte-Dijkstra, Irene A1 - van Eerde, Albertien M. A1 - van Gassen, Koen L. A1 - Breugem, Corstiaan C. A1 - Stegmann, Alexander A1 - Lekszas, Caroline A1 - Maroofian, Reza A1 - Karimiani, Ehsan Ghayoor A1 - Bruneel, Arnaud A1 - Seta, Nathalie A1 - Munnich, Arnold A1 - Papy-Garcia, Dulce A1 - De La Dure-Molla, Muriel A1 - Cormier-Daire, Valérie T1 - SLC10A7 mutations cause a skeletal dysplasia with amelogenesis imperfecta mediated by GAG biosynthesis defects JF - Nature Communications N2 - Skeletal dysplasia with multiple dislocations are severe disorders characterized by dislocations of large joints and short stature. The majority of them have been linked to pathogenic variants in genes encoding glycosyltransferases, sulfotransferases or epimerases required for glycosaminoglycan synthesis. Using exome sequencing, we identify homozygous mutations in SLC10A7 in six individuals with skeletal dysplasia with multiple dislocations and amelogenesis imperfecta. SLC10A7 encodes a 10-transmembrane-domain transporter located at the plasma membrane. Functional studies in vitro demonstrate that SLC10A7 mutations reduce SLC10A7 protein expression. We generate a Slc10a7−/− mouse model, which displays shortened long bones, growth plate disorganization and tooth enamel anomalies, recapitulating the human phenotype. Furthermore, we identify decreased heparan sulfate levels in Slc10a7−/− mouse cartilage and patient fibroblasts. Finally, we find an abnormal N-glycoprotein electrophoretic profile in patient blood samples. Together, our findings support the involvement of SLC10A7 in glycosaminoglycan synthesis and specifically in skeletal development. KW - bone development KW - disease genetics KW - medical genetics Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226377 VL - 9 ER -