TY - THES A1 - Brandt, Gregor A. T1 - Gait Initiation in Parkinson's Disease: The Interplay of Dopamine and Postural Control T1 - Der erste Schritt bei M. Parkinson: Der Zusammenhang zwischen Dopamin und posturaler Kontrolle N2 - Deterioration of gait and alterations of physiological gait initiation contribute significantly to the burden of disease in Parkinson's disease. This paper systematically investigates disease-specific alterations during the postural phases of gait initiation and demonstrates the influence of dopaminergic networks by assessing levodopa mediated improvements in motor performance and correlation of motor behavior with loss of striatal and cortical dopaminergic neurons. Particular attention is given to known confounders such as initial stance and anthropometrics. N2 - Störungen des Gangbildes und Veränderungen der physiologischen Bewegungsabläufe während des ersten Schrittes tragen einen signifikanten Teil zur Krankheitslast der Parkinsonerkrankung bei. Diese Veröffentlichung untersucht systematisch die krankheitsspezifischen Veränderungen der posturalen Phase des ersten Schrittes und demonstriert den Einfluss dopaminerger Netzwerke durch Untersuchungen Levodopa-induzierter Verbesserungen des Bewegungsablaufs und Korrelationen des Bewegungsverhaltens mit dem Verlust striataler und kortikaler dopaminerger Neuronen. Besondere Sorgfalt wurde bekannten modifizierenden Faktoren wie initaler Standbreite und anthropometrischen Größen zu Teil. KW - Parkinson-Krankheit KW - Parkinson's Disease KW - Gait initiation KW - Motor Control KW - Dopamine Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214636 ER - TY - JOUR A1 - Lange, Florian A1 - Steigerwald, Frank A1 - Malzacher, Tobias A1 - Brandt, Gregor Alexander A1 - Odorfer, Thorsten Michael A1 - Roothans, Jonas A1 - Reich, Martin M. A1 - Fricke, Patrick A1 - Volkmann, Jens A1 - Matthies, Cordula A1 - Capetian, Philipp D. T1 - Reduced Programming Time and Strong Symptom Control Even in Chronic Course Through Imaging-Based DBS Programming JF - Frontiers in Neurology N2 - Objectives: Deep brain stimulation (DBS) programming is based on clinical response testing. Our clinical pilot trial assessed the feasibility of image-guided programing using software depicting the lead location in a patient-specific anatomical model. Methods: Parkinson's disease patients with subthalamic nucleus-DBS were randomly assigned to standard clinical-based programming (CBP) or anatomical-based (imaging-guided) programming (ABP) in an 8-week crossover trial. Programming characteristics and clinical outcomes were evaluated. Results: In 10 patients, both programs led to similar motor symptom control (MDS-UPDRS III) after 4 weeks (medicationOFF/stimulationON; CPB: 18.27 ± 9.23; ABP: 18.37 ± 6.66). Stimulation settings were not significantly different, apart from higher frequency in the baseline program than CBP (p = 0.01) or ABP (p = 0.003). Time spent in a program was not significantly different (CBP: 86.1 ± 29.82%, ABP: 88.6 ± 29.0%). Programing time was significantly shorter (p = 0.039) with ABP (19.78 ± 5.86 min) than CBP (45.22 ± 18.32). Conclusion: Image-guided DBS programming in PD patients drastically reduces programming time without compromising symptom control and patient satisfaction in this small feasibility trial. KW - directional deep brain stimulation KW - image-guided programming KW - subthalamic nucleus KW - chronic stimulation KW - randomized controlled double-blind study KW - Parkinson's disease Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-249634 SN - 1664-2295 VL - 12 ER - TY - JOUR A1 - Palmisano, Chiara A1 - Brandt, Gregor A1 - Vissani, Matteo A1 - Pozzi, Nicoló G. A1 - Canessa, Andrea A1 - Brumberg, Joachim A1 - Marotta, Giorgio A1 - Volkmann, Jens A1 - Mazzoni, Alberto A1 - Pezzoli, Gianni A1 - Frigo, Carlo A. A1 - Isaias, Ioannis U. T1 - Gait Initiation in Parkinson’s Disease: Impact of Dopamine Depletion and Initial Stance Condition JF - Frontiers in Bioengineering and Biotechnology N2 - Postural instability, in particular at gait initiation (GI), and resulting falls are a major determinant of poor quality of life in subjects with Parkinson’s disease (PD). Still, the contribution of the basal ganglia and dopamine on the feedforward postural control associated with this motor task is poorly known. In addition, the influence of anthropometric measures (AM) and initial stance condition on GI has never been consistently assessed. The biomechanical resultants of anticipatory postural adjustments contributing to GI [imbalance (IMB), unloading (UNL), and stepping phase) were studied in 26 unmedicated subjects with idiopathic PD and in 27 healthy subjects. A subset of 13 patients was analyzed under standardized medication conditions and the striatal dopaminergic innervation was studied in 22 patients using FP-CIT and SPECT. People with PD showed a significant reduction in center of pressure (CoP) displacement and velocity during the IMB phase, reduced first step length and velocity, and decreased velocity and acceleration of the center of mass (CoM) at toe off of the stance foot. All these measurements correlated with the dopaminergic innervation of the putamen and substantially improved with levodopa. These results were not influenced by anthropometric parameters or by the initial stance condition. In contrast, most of the measurements of the UNL phase were influenced by the foot placement and did not correlate with putaminal dopaminergic innervation. Our results suggest a significant role of dopamine and the putamen particularly in the elaboration of the IMB phase of anticipatory postural adjustments and in the execution of the first step. The basal ganglia circuitry may contribute to defining the optimal referent body configuration for a proper initiation of gait and possibly gait adaptation to the environment. KW - gait initiation KW - Parkinson’s disease KW - basal ganglia KW - dopamine KW - base of support KW - anthropometric measurements Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-200801 SN - 2296-4185 VL - 8 ER -