TY - JOUR A1 - Wurmb, T A1 - Schorscher, N A1 - Justice, P A1 - Dietz, S A1 - Schua, R A1 - Jarausch, T A1 - Kinstle, U A1 - Greiner, J A1 - Möldner, G A1 - Müller, J A1 - Kraus, M A1 - Simon, S A1 - Wagenhäuser, U A1 - Hemm, J A1 - Roewer, N A1 - Helm, M T1 - Structured analysis, evaluation and report of the emergency response to a terrorist attack in Wuerzburg, Germany using a new template of standardised quality indicators JF - Scandinavian Journal of Trauma, Resuscitation and Emergency Medicine N2 - Background: Until now there has been a reported lack of systematic reports and scientific evaluations of rescue missions during terror attacks. This however is urgently required in order to improve the performance of emergency medical services and to be able to compare different missions with each other. Aim of the presented work was to report the systematic evaluation and the lessons learned from the response to a terror attack that happened in Wuerzburg, Germany in 2016. Methods: A team of 14 experts developed a template of quality indicators and operational characteristics, which allow for the description, assessment and comparison of civil emergency rescue missions during mass killing incidents. The entire systematic evaluation process consisted of three main steps. The first step was the systematic data collection according to the quality indicators and operational characteristics. Second was the systematic stratification and assessment of the data. The last step was the prioritisation of the identified weaknesses and the definition of the lessons learned. Results: Five important “lessons learned” have been defined. First of all, a comprehensive concept for rescue missions during terror attacks is essential. Furthermore, the establishment of a defined high priority communication infrastructure between the different dispatch centres (“red phone”) is vital. The goal is to secure the continuity of information between a few well-defined individuals. Thirdly, the organization of the incident scene needs to be commonly decided and communicated between police, medical services and fire services during the mission. A successful mission tactic requires continuous flux of reports to the on-site command post. Therefore, a predefined and common communication infrastructure for all operational forces is a crucial point. Finally, all strategies need to be extensively trained before the real life scenario hits. Conclusion: According to a systematic evaluation, we defined the lessons learned from a terror attack in 2016. Further systematic reports and academic work surrounding life threatening rescue missions and mass killing incidents are needed in order to ultimately improve such mission outcomes. In the future, a close international collaboration might help to find the best database to report and evaluate major incidents but also mass killing events. KW - terror attack KW - mass casualties KW - evaluation KW - quality indicators KW - rescue mission Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-177054 VL - 26 IS - 87 ER - TY - JOUR A1 - Vogel, P. A1 - Rückert, M. A. A1 - Greiner, C. A1 - Günther, J. A1 - Reichl, T. A1 - Kampf, T. A1 - Bley, T. A. A1 - Behr, V. C. A1 - Herz, S. T1 - iMPI: portable human-sized magnetic particle imaging scanner for real-time endovascular interventions JF - Scientific Reports N2 - Minimally invasive endovascular interventions have become an important tool for the treatment of cardiovascular diseases such as ischemic heart disease, peripheral artery disease, and stroke. X-ray fluoroscopy and digital subtraction angiography are used to precisely guide these procedures, but they are associated with radiation exposure for patients and clinical staff. Magnetic Particle Imaging (MPI) is an emerging imaging technology using time-varying magnetic fields combined with magnetic nanoparticle tracers for fast and highly sensitive imaging. In recent years, basic experiments have shown that MPI has great potential for cardiovascular applications. However, commercially available MPI scanners were too large and expensive and had a small field of view (FOV) designed for rodents, which limited further translational research. The first human-sized MPI scanner designed specifically for brain imaging showed promising results but had limitations in gradient strength, acquisition time and portability. Here, we present a portable interventional MPI (iMPI) system dedicated for real-time endovascular interventions free of ionizing radiation. It uses a novel field generator approach with a very large FOV and an application-oriented open design enabling hybrid approaches with conventional X-ray-based angiography. The feasibility of a real-time iMPI-guided percutaneous transluminal angioplasty (PTA) is shown in a realistic dynamic human-sized leg model. KW - biomedical engineering KW - electrical and electronic engineering KW - imaging KW - three-dimensional imaging Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357794 VL - 13 ER -