TY - JOUR A1 - Postema, Merel C. A1 - Hoogman, Martine A1 - Ambrosino, Sara A1 - Asherson, Philip A1 - Banaschewski, Tobias A1 - Bandeira, Cibele E. A1 - Baranov, Alexandr A1 - Bau, Claiton H.D. A1 - Baumeister, Sarah A1 - Baur‐Streubel, Ramona A1 - Bellgrove, Mark A. A1 - Biederman, Joseph A1 - Bralten, Janita A1 - Brandeis, Daniel A1 - Brem, Silvia A1 - Buitelaar, Jan K. A1 - Busatto, Geraldo F. A1 - Castellanos, Francisco X. A1 - Cercignani, Mara A1 - Chaim‐Avancini, Tiffany M. A1 - Chantiluke, Kaylita C. A1 - Christakou, Anastasia A1 - Coghill, David A1 - Conzelmann, Annette A1 - Cubillo, Ana I. A1 - Cupertino, Renata B. A1 - de Zeeuw, Patrick A1 - Doyle, Alysa E. A1 - Durston, Sarah A1 - Earl, Eric A. A1 - Epstein, Jeffery N. A1 - Ethofer, Thomas A1 - Fair, Damien A. A1 - Fallgatter, Andreas J. A1 - Faraone, Stephen V. A1 - Frodl, Thomas A1 - Gabel, Matt C. A1 - Gogberashvili, Tinatin A1 - Grevet, Eugenio H. A1 - Haavik, Jan A1 - Harrison, Neil A. A1 - Hartman, Catharina A. A1 - Heslenfeld, Dirk J. A1 - Hoekstra, Pieter J. A1 - Hohmann, Sarah A1 - Høvik, Marie F. A1 - Jernigan, Terry L. A1 - Kardatzki, Bernd A1 - Karkashadze, Georgii A1 - Kelly, Clare A1 - Kohls, Gregor A1 - Konrad, Kerstin A1 - Kuntsi, Jonna A1 - Lazaro, Luisa A1 - Lera‐Miguel, Sara A1 - Lesch, Klaus‐Peter A1 - Louza, Mario R. A1 - Lundervold, Astri J. A1 - Malpas, Charles B A1 - Mattos, Paulo A1 - McCarthy, Hazel A1 - Namazova‐Baranova, Leyla A1 - Nicolau, Rosa A1 - Nigg, Joel T. A1 - Novotny, Stephanie E. A1 - Oberwelland Weiss, Eileen A1 - O'Gorman Tuura, Ruth L. A1 - Oosterlaan, Jaap A1 - Oranje, Bob A1 - Paloyelis, Yannis A1 - Pauli, Paul A1 - Picon, Felipe A. A1 - Plessen, Kerstin J. A1 - Ramos‐Quiroga, J. Antoni A1 - Reif, Andreas A1 - Reneman, Liesbeth A1 - Rosa, Pedro G.P. A1 - Rubia, Katya A1 - Schrantee, Anouk A1 - Schweren, Lizanne J.S. A1 - Seitz, Jochen A1 - Shaw, Philip A1 - Silk, Tim J. A1 - Skokauskas, Norbert A1 - Soliva Vila, Juan C. A1 - Stevens, Michael C. A1 - Sudre, Gustavo A1 - Tamm, Leanne A1 - Tovar‐Moll, Fernanda A1 - van Erp, Theo G.M. A1 - Vance, Alasdair A1 - Vilarroya, Oscar A1 - Vives‐Gilabert, Yolanda A1 - von Polier, Georg G. A1 - Walitza, Susanne A1 - Yoncheva, Yuliya N. A1 - Zanetti, Marcus V. A1 - Ziegler, Georg C. A1 - Glahn, David C. A1 - Jahanshad, Neda A1 - Medland, Sarah E. A1 - Thompson, Paul M. A1 - Fisher, Simon E. A1 - Franke, Barbara A1 - Francks, Clyde T1 - Analysis of structural brain asymmetries in attention‐deficit/hyperactivity disorder in 39 datasets JF - Journal of Child Psychology and Psychiatry N2 - Objective Some studies have suggested alterations of structural brain asymmetry in attention‐deficit/hyperactivity disorder (ADHD), but findings have been contradictory and based on small samples. Here, we performed the largest ever analysis of brain left‐right asymmetry in ADHD, using 39 datasets of the ENIGMA consortium. Methods We analyzed asymmetry of subcortical and cerebral cortical structures in up to 1,933 people with ADHD and 1,829 unaffected controls. Asymmetry Indexes (AIs) were calculated per participant for each bilaterally paired measure, and linear mixed effects modeling was applied separately in children, adolescents, adults, and the total sample, to test exhaustively for potential associations of ADHD with structural brain asymmetries. Results There was no evidence for altered caudate nucleus asymmetry in ADHD, in contrast to prior literature. In children, there was less rightward asymmetry of the total hemispheric surface area compared to controls (t = 2.1, p = .04). Lower rightward asymmetry of medial orbitofrontal cortex surface area in ADHD (t = 2.7, p = .01) was similar to a recent finding for autism spectrum disorder. There were also some differences in cortical thickness asymmetry across age groups. In adults with ADHD, globus pallidus asymmetry was altered compared to those without ADHD. However, all effects were small (Cohen’s d from −0.18 to 0.18) and would not survive study‐wide correction for multiple testing. Conclusion Prior studies of altered structural brain asymmetry in ADHD were likely underpowered to detect the small effects reported here. Altered structural asymmetry is unlikely to provide a useful biomarker for ADHD, but may provide neurobiological insights into the trait. KW - attention‐deficit KW - hyperactivity disorder KW - brain asymmetry KW - brain laterality KW - structural MRI KW - large‐scale data Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-239968 VL - 62 IS - 10 SP - 1202 EP - 1219 ER - TY - JOUR A1 - Morbach, Caroline A1 - Beyersdorf, Niklas A1 - Kerkau, Thomas A1 - Ramos, Gustavo A1 - Sahiti, Floran A1 - Albert, Judith A1 - Jahns, Roland A1 - Ertl, Georg A1 - Angermann, Christiane E. A1 - Frantz, Stefan A1 - Hofmann, Ulrich A1 - Störk, Stefan T1 - Adaptive anti-myocardial immune response following hospitalization for acute heart failure JF - ESC Heart Failure N2 - Aims It has been hypothesized that cardiac decompensation accompanying acute heart failure (AHF) episodes generates a pro-inflammatory environment boosting an adaptive immune response against myocardial antigens, thus contributing to progression of heart failure (HF) and poor prognosis. We assessed the prevalence of anti-myocardial autoantibodies (AMyA) as biomarkers reflecting adaptive immune responses in patients admitted to the hospital for AHF, followed the change in AMyA titres for 6 months after discharge, and evaluated their prognostic utility. Methods and results AMyA were determined in n = 47 patients, median age 71 (quartiles 60; 80) years, 23 (49%) female, and 24 (51%) with HF with preserved ejection fraction, from blood collected at baseline (time point of hospitalization) and at 6 month follow-up (visit F6). Patients were followed for 18 months (visit F18). The prevalence of AMyA increased from baseline (n = 21, 45%) to F6 (n = 36, 77%; P < 0.001). At F6, the prevalence of AMyA was higher in patients with HF with preserved ejection fraction (n = 21, 88%) compared with patients with reduced ejection fraction (n = 14, 61%; P = 0.036). During the subsequent 12 months after F6, that is up to F18, patients with newly developed AMyA at F6 had a higher risk for the combined endpoint of death or rehospitalization for HF (hazard ratio 4.79, 95% confidence interval 1.13–20.21; P = 0.033) compared with patients with persistent or without AMyA at F6. Conclusions Our results support the hypothesis that AHF may induce patterns of adaptive immune responses. More studies in larger populations and well-defined patient subgroups are needed to further clarify the role of the adaptive immune system in HF progression. KW - adaptive immune response KW - acute heart failure KW - anti-myocardial KW - autoantibody KW - inflammation Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-258907 VL - 8 IS - 4 ER - TY - JOUR A1 - Weiß, Emil A1 - Ramos, Gustavo Campos A1 - Delgobo, Murilo T1 - Myocardial-Treg crosstalk: How to tame a wolf JF - Frontiers in Immunology N2 - The immune system plays a vital role in maintaining tissue integrity and organismal homeostasis. The sudden stress caused by myocardial infarction (MI) poses a significant challenge for the immune system: it must quickly substitute dead myocardial with fibrotic tissue while controlling overt inflammatory responses. In this review, we will discuss the central role of myocardial regulatory T-cells (Tregs) in orchestrating tissue repair processes and controlling local inflammation in the context of MI. We herein compile recent advances enabled by the use of transgenic mouse models with defined cardiac antigen specificity, explore whole-heart imaging techniques, outline clinical studies and summarize deep-phenotyping conducted by independent labs using single-cell transcriptomics and T-cell repertoire analysis. Furthermore, we point to multiple mechanisms and cell types targeted by Tregs in the infarcted heart, ranging from pro-fibrotic responses in mesenchymal cells to local immune modulation in myeloid and lymphoid lineages. We also discuss how both cardiac-specific and polyclonal Tregs participate in MI repair. In addition, we consider intriguing novel evidence on how the myocardial milieu takes control of potentially auto-aggressive local immune reactions by shaping myosin-specific T-cell development towards a regulatory phenotype. Finally, we examine the potential use of Treg manipulating drugs in the clinic after MI. KW - Tregs (regulatory T cells) KW - Foxp3 KW - myocardial infarction KW - heart KW - fibrosis KW - T-cells Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-275591 SN - 1664-3224 VL - 13 ER - TY - JOUR A1 - Delgobo, Murilo A1 - Heinrichs, Margarete A1 - Hapke, Nils A1 - Ashour, DiyaaElDin A1 - Appel, Marc A1 - Srivastava, Mugdha A1 - Heckel, Tobias A1 - Spyridopoulos, Ioakim A1 - Hofmann, Ulrich A1 - Frantz, Stefan A1 - Ramos, Gustavo Campos T1 - Terminally Differentiated CD4\(^+\) T Cells Promote Myocardial Inflammaging JF - Frontiers in Immunology N2 - The cardiovascular and immune systems undergo profound and intertwined alterations with aging. Recent studies have reported that an accumulation of memory and terminally differentiated T cells in elderly subjects can fuel myocardial aging and boost the progression of heart diseases. Nevertheless, it remains unclear whether the immunological senescence profile is sufficient to cause age-related cardiac deterioration or merely acts as an amplifier of previous tissue-intrinsic damage. Herein, we sought to decompose the causality in this cardio-immune crosstalk by studying young mice harboring a senescent-like expanded CD4\(^+\) T cell compartment. Thus, immunodeficient NSG-DR1 mice expressing HLA-DRB1*01:01 were transplanted with human CD4\(^+\) T cells purified from matching donors that rapidly engrafted and expanded in the recipients without causing xenograft reactions. In the donor subjects, the CD4\(^+\) T cell compartment was primarily composed of naïve cells defined as CCR7\(^+\)CD45RO\(^-\). However, when transplanted into young lymphocyte-deficient mice, CD4\(^+\) T cells underwent homeostatic expansion, upregulated expression of PD-1 receptor and strongly shifted towards effector/memory (CCR7\(^-\) CD45RO\(^+\)) and terminally-differentiated phenotypes (CCR7\(^-\)CD45RO\(^-\)), as typically seen in elderly. Differentiated CD4\(^+\) T cells also infiltrated the myocardium of recipient mice at comparable levels to what is observed during physiological aging. In addition, young mice harboring an expanded CD4\(^+\) T cell compartment showed increased numbers of infiltrating monocytes, macrophages and dendritic cells in the heart. Bulk mRNA sequencing analyses further confirmed that expanding T-cells promote myocardial inflammaging, marked by a distinct age-related transcriptomic signature. Altogether, these data indicate that exaggerated CD4\(^+\) T-cell expansion and differentiation, a hallmark of the aging immune system, is sufficient to promote myocardial alterations compatible with inflammaging in juvenile healthy mice. KW - CD4+ T-cells KW - myocardial aging KW - inflammaging KW - NSG animals KW - immunosenescence KW - lymphocytes Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229612 SN - 1664-3224 VL - 12 ER -