TY - JOUR A1 - Adami, Hans-Olov A1 - Dragsted, Lars A1 - Enig, Bent A1 - Hansen, Jens A1 - Haraldsdóttir, Jóhanna A1 - Hill, Michael J. A1 - Holm, Lars Erik A1 - Knudsen, Ib A1 - Larsen, Jens-Jorgen A1 - Lutz, Werner K. A1 - Osler, Merete A1 - Overvad, Kim A1 - Sabroe, Svend A1 - Sanner, Tore A1 - Strube, Michael A1 - Sorensen, Thorkild I. A. A1 - Thorling, Eivind B. T1 - Report from the working group on diet and cancer. N2 - No abstract available. KW - Krebs KW - Ernährung Y1 - 1993 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-71601 ER - TY - JOUR A1 - He, Tao A1 - Stolte, Matthias A1 - Burschka, Christian A1 - Hansen, Nis Hauke A1 - Musiol, Thomas A1 - Kälblein, Daniel A1 - Pflaum, Jens A1 - Tao, Xutang A1 - Brill, Jochen A1 - Würthner, Frank T1 - Single-crystal field-effect transistors of new Cl\(_{2}\)-NDI polymorph processed by sublimation in air JF - Nature Communications N2 - Physical properties of active materials built up from small molecules are dictated by their molecular packing in the solid state. Here we demonstrate for the first time the growth of n-channel single-crystal field-effect transistors and organic thin-film transistors by sublimation of 2,6-dichloro-naphthalene diimide in air. Under these conditions, a new polymorph with two-dimensional brick-wall packing mode (\(\beta\)-phase) is obtained that is distinguished from the previously reported herringbone packing motif obtained from solution (\(\alpha\)-phase). We are able to fabricate single-crystal field-effect transistors with electron mobilities in air of up to 8.6 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\) (\(\alpha\)-phase) and up to 3.5 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\) (\(\beta\)-phase) on n-octadecyltriethoxysilane-modified substrates. On silicon dioxide, thin-film devices based on \(\beta\)-phase can be manufactured in air giving rise to electron mobilities of 0.37 cm\(^{2}\)V\(^{-1}\)s\(^{-1}\). The simple crystal and thin-film growth procedures by sublimation under ambient conditions avoid elaborate substrate modifications and costly vacuum equipment-based fabrication steps. KW - thin-film transistors KW - carrier transport KW - \(\beta\)-phase KW - organic semiconductors KW - induced phase transition KW - charge transport KW - materials design KW - \(\alpha\)-phase KW - mobility KW - pentacene Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-149255 VL - 6 IS - 5954 ER - TY - JOUR A1 - Kaireit, Till F. A1 - Sorrentino, Sajoscha A. A1 - Renne, Julius A1 - Schoenfeld, Christian A1 - Voskrebenzev, Andreas A1 - Gutberlet, Marcel A1 - Schulz, Angela A1 - Jakob, Peter M. A1 - Hansen, Gesine A1 - Wacker, Frank A1 - Welte, Tobias A1 - Tümmler, Burkhard A1 - Vogel-Claussen, Jens T1 - Functional lung MRI for regional monitoring of patients with cystic fibrosis JF - PLoS ONE N2 - Purpose To test quantitative functional lung MRI techniques in young adults with cystic fibrosis (CF) compared to healthy volunteers and to monitor immediate treatment effects of a single inhalation of hypertonic saline in comparison to clinical routine pulmonary function tests. Materials and methods Sixteen clinically stable CF patients and 12 healthy volunteers prospectively underwent two functional lung MRI scans and pulmonary function tests before and 2h after a single treatment of inhaled hypertonic saline or without any treatment. MRI-derived oxygen enhanced T1 relaxation measurements, fractional ventilation, first-pass perfusion parameters and a morpho-functional CF-MRI score were acquired. Results Compared to healthy controls functional lung MRI detected and quantified significantly increased ventilation heterogeneity in CF patients. Regional functional lung MRI measures of ventilation and perfusion as well as the CF-MRI score and pulmonary function tests could not detect a significant treatment effect two hours after a single treatment with hypertonic saline in young adults with CF (p>0.05). Conclusion This study shows the feasibility of functional lung MRI as a non-invasive, radiation-free tool for monitoring patients with CF. KW - Physics KW - Magnetic resonance imaging KW - Functional magnetic resonance imaging KW - Cystic fibrosis KW - Oxygen KW - Pulmonary imaging KW - Hypertonic KW - Pulmonary function KW - Quantum chronodynamics Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-172457 VL - 12 IS - 12 ER -