TY - THES A1 - Horvat-Csóti [geb. Horvat], Sonja T1 - Development of Nanocarriers for Treatment and Diagnostics of Aspergillosis T1 - Entwicklung von Nanoträgern für die Behandlung und Diagnose von Aspergillosis N2 - This thesis aimed to evaluate the possibility to use nanoparticles as antifungal drug carriers as well as their potential application in screening and diagnostics of invasive aspergillosis. The interaction of nanogels, superparamagnetic iron oxide nanoparticles (SPIOs) and gold nanoparticles (GNP) with fungal-specific polysaccharides, cells and biofilms was investigated. Firstly, it was evaluated how the charge of nanogels influence their interaction with fungal cells. Linear poly(glycidol)s (pG) and poly(2-methyl-2-oxazoline) (pMOx) polymers were synthesized and further functionalized with thiol groups for preparation of redox responsive nanogels. Results showed that negatively charged nanogels were internalized by the fungi to a much greater extent than positively charged ones. Furthermore, it was investigated how amphiphilicity of polymers used for preparation of nanogels influences nanogel-fungi interaction. It was concluded that nanogels prepared from polymers with degree of functionalization of 10% had the strongest interaction, regardless the length of the alkyl chain. Moreover, amphotericin B-loaded nanogels had a higher antifungal effect and lower toxicity towards mammalian cells than the free drug. In addition, inverse nanoprecipitation of thiol functionalized pGs was shown to be successful for preparation of nanogels with narrow size distribution. It was also demonstrated that crosslinking of the polymeric coating in hydrogel-like network with thiol functionalized pGs improved the SPIOs imaging performance. Finally, it was investigated whether GNPs could be used as model particles for the assessment of targeting to fungi. Fc dectin-1 was conjugated covalently to GNPs decorated with pGs, and binding affinity towards β-glucans was tested by surface plasmon resonance. In summary, this thesis demonstrated evidence for the potential of pG nanogels and pG coated nanoparticles for antifungal therapy and diagnostics of fungal infections caused by A. fumigatus. N2 - Die vorliegende Arbeit befasst sich mit der Evaluation der Eignung von Nanopartikeln für das Screening, die Diagnose und als Wirkstofftransportsysteme für die Behandlung von invasiver Aspergillose. Hierzu wurde die Interaktion von Nanogelen, superparamagnetischen Eisenoxid Nanopartikeln (SPIO) und Gold Nanopartikeln (GNP) mit pilz-spezifischen Polysacchariden, dem Pilz Aspergillus fumigatus sowie Pilz-Biofilmen untersucht. ... KW - Therapeutisches System KW - Nanogels KW - Aspergillosis KW - Iron Oxide Nanoparticles KW - Dectin-1 KW - Poly(glycidol)s KW - Aspergillose KW - Nanopartikel KW - Wirkstoff-Träger-System Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238218 ER - TY - JOUR A1 - Horvat, Sonja A1 - Vogel, Patrick A1 - Kampf, Thomas A1 - Brandl, Andreas A1 - Alshamsan, Aws A1 - Alhadlaq, Hisham A. A1 - Ahamed, Maqusood A1 - Albrecht, Krystyna A1 - Behr, Volker C. A1 - Beilhack, Andreas A1 - Groll, Jürgen T1 - Crosslinked Coating Improves the Signal‐to‐Noise Ratio of Iron Oxide Nanoparticles in Magnetic Particle Imaging (MPI) JF - ChemNanoMat N2 - Magnetic particle imaging is an emerging tomographic method used for evaluation of the spatial distribution of iron‐oxide nanoparticles. In this work, the effect of the polymer coating on the response of particles was studied. Particles with covalently crosslinked coating showed improved signal and image resolution. KW - crosslinked coating KW - imaging agents KW - magnetic properties KW - MPI KW - MPS Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-214718 VL - 6 IS - 5 SP - 755 EP - 758 ER -