TY - JOUR A1 - Zhou, Xiang A1 - Rasche, Leo A1 - Kortüm, K. Martin A1 - Danhof, Sophia A1 - Hudecek, Michael A1 - Einsele, Hermann T1 - Toxicities of Chimeric Antigen Receptor T Cell Therapy in Multiple Myeloma: An Overview of Experience From Clinical Trials, Pathophysiology, and Management Strategies JF - Frontiers in Immunology N2 - In the last few years, monoclonal antibodies (mAbs) such as elotuzumab and daratutumab have brought the treatment of multiple myeloma (MM) into the new era of immunotherapy. More recently, chimeric antigen receptor (CAR) modified T cell, a novel cellular immunotherapy, has been developed for treatment of relapsed/refractory (RR) MM, and early phase clinical trials have shown promising efficacy of CAR T cell therapy. Many patients with end stage RRMM regard CAR T cell therapy as their “last chance” and a “hope of cure”. However, severe adverse events (AEs) and even toxic death related to CAR T cell therapy have been observed. The management of AEs related to CAR T cell therapy represents a new challenge, as the pathophysiology is not fully understood and there is still no well-established standard of management. With regard to CAR T cell associated toxicities in MM, in this review, we will provide an overview of experience from clinical trials, pathophysiology, and management strategies. KW - CAR T cell KW - clinical trial KW - multiple myeloma KW - toxicity KW - pathophysiology KW - management Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-219911 SN - 1664-3224 VL - 11 ER - TY - JOUR A1 - Maucher, Marius A1 - Srour, Micha A1 - Danhof, Sophia A1 - Einsele, Hermann A1 - Hudecek, Michael A1 - Yakoub-Agha, Ibrahim T1 - Current limitations and perspectives of chimeric antigen receptor-T-cells in acute myeloid leukemia JF - Cancers N2 - Adoptive transfer of gene-engineered chimeric antigen receptor (CAR)-T-cells has emerged as a powerful immunotherapy for combating hematologic cancers. Several target antigens that are prevalently expressed on AML cells have undergone evaluation in preclinical CAR-T-cell testing. Attributes of an ‘ideal’ target antigen for CAR-T-cell therapy in AML include high-level expression on leukemic blasts and leukemic stem cells (LSCs), and absence on healthy tissues, normal hematopoietic stem and progenitor cells (HSPCs). In contrast to other blood cancer types, where CAR-T therapies are being similarly studied, only a rather small number of AML patients has received CAR-T-cell treatment in clinical trials, resulting in limited clinical experience for this therapeutic approach in AML. For curative AML treatment, abrogation of bulk blasts and LSCs is mandatory with the need for hematopoietic recovery after CAR-T administration. Herein, we provide a critical review of the current pipeline of candidate target antigens and corresponding CAR-T-cell products in AML, assess challenges for clinical translation and implementation in routine clinical practice, as well as perspectives for overcoming them. KW - AML KW - CAR-T-cell KW - hematology KW - gene therapy KW - adoptive cell therapy Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-252180 SN - 2072-6694 VL - 13 IS - 24 ER - TY - JOUR A1 - Danhof, Sophia A1 - Rasche, Leo A1 - Mottok, Anja A1 - Steinmüller, Tabea A1 - Zhou, Xiang A1 - Schreder, Martin A1 - Kilian, Teresa A1 - Strifler, Susanne A1 - Rosenwald, Andreas A1 - Hudecek, Michael A1 - Einsele, Hermann A1 - Gerhard-Hartmann, Elena T1 - Elotuzumab for the treatment of extramedullary myeloma: a retrospective analysis of clinical efficacy and SLAMF7 expression patterns JF - Annals of Hematology N2 - Extramedullary disease (EMD) represents a high-risk state of multiple myeloma (MM) associated with poor prognosis. While most anti-myeloma therapeutics demonstrate limited efficacy in this setting, some studies exploring the utility of chimeric antigen receptor (CAR)-modified T cells reported promising results. We have recently designed SLAMF7-directed CAR T cells for the treatment of MM. SLAMF7 is a transmembrane receptor expressed on myeloma cells that plays a role in myeloma cell homing to the bone marrow. Currently, the only approved anti-SLAMF7 therapeutic is the monoclonal antibody elotuzumab, but its efficacy in EMD has not been investigated thoroughly. Thus, we retrospectively analyzed the efficacy of elotuzumab-based combination therapy in a cohort of 15 patients with EMD. Moreover, since the presence of the target antigen is an indispensable prerequisite for effective targeted therapy, we investigated the SLAMF7 expression on extramedullary located tumor cells before and after treatment. We observed limited efficacy of elotuzumab-based combination therapies, with an overall response rate of 40% and a progression-free and overall survival of 3.8 and 12.9 months, respectively. Before treatment initiation, all available EMD tissue specimens (n = 3) demonstrated a strong and consistent SLAMF7 surface expression by immunohistochemistry. Furthermore, to investigate a potential antigen reduction under therapeutic selection pressure, we analyzed samples of de novo EMD (n = 3) outgrown during elotuzumab treatment. Again, immunohistochemistry documented strong and consistent SLAMF7 expression in all samples. In aggregate, our data point towards a retained expression of SLAMF7 in EMD and encourage the development of more potent SLAMF7-directed immunotherapies, such as CAR T cells. KW - plasma cells KW - extramedullary disease KW - monoclonal antibody KW - CD319 KW - CS1 KW - antigen loss Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266468 SN - 1432-0584 VL - 100 IS - 6 ER - TY - JOUR A1 - Garitano-Trojaola, Andoni A1 - Sancho, Ana A1 - Götz, Ralph A1 - Eiring, Patrick A1 - Walz, Susanne A1 - Jetani, Hardikkumar A1 - Gil-Pulido, Jesus A1 - Da Via, Matteo Claudio A1 - Teufel, Eva A1 - Rhodes, Nadine A1 - Haertle, Larissa A1 - Arellano-Viera, Estibaliz A1 - Tibes, Raoul A1 - Rosenwald, Andreas A1 - Rasche, Leo A1 - Hudecek, Michael A1 - Sauer, Markus A1 - Groll, Jürgen A1 - Einsele, Hermann A1 - Kraus, Sabrina A1 - Kortüm, Martin K. T1 - Actin cytoskeleton deregulation confers midostaurin resistance in FLT3-mutant acute myeloid leukemia JF - Communications Biology N2 - The presence of FMS-like tyrosine kinase 3-internal tandem duplication (FLT3-ITD) is one of the most frequent mutations in acute myeloid leukemia (AML) and is associated with an unfavorable prognosis. FLT3 inhibitors, such as midostaurin, are used clinically but fail to entirely eradicate FLT3-ITD+AML. This study introduces a new perspective and highlights the impact of RAC1-dependent actin cytoskeleton remodeling on resistance to midostaurin in AML. RAC1 hyperactivation leads resistance via hyperphosphorylation of the positive regulator of actin polymerization N-WASP and antiapoptotic BCL-2. RAC1/N-WASP, through ARP2/3 complex activation, increases the number of actin filaments, cell stiffness and adhesion forces to mesenchymal stromal cells (MSCs) being identified as a biomarker of resistance. Midostaurin resistance can be overcome by a combination of midostaruin, the BCL-2 inhibitor venetoclax and the RAC1 inhibitor Eht1864 in midostaurin-resistant AML cell lines and primary samples, providing the first evidence of a potential new treatment approach to eradicate FLT3-ITD+AML. Garitano-Trojaola et al. used a combination of human acute myeloid leukemia (AML) cell lines and primary samples to show that RAC1-dependent actin cytoskeleton remodeling through BCL2 family plays a key role in resistance to the FLT3 inhibitor, Midostaurin in AML. They showed that by targeting RAC1 and BCL2, Midostaurin resistance was diminished, which potentially paves the way for an innovate treatment approach for FLT3 mutant AML. KW - actin KW - acute myeloid leukaemia Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-260709 VL - 4 IS - 1 ER - TY - JOUR A1 - Prommersberger, Sabrina A1 - Hudecek, Michael A1 - Nerreter, Thomas T1 - Antibody‐Based CAR T Cells Produced by Lentiviral Transduction JF - Current Protocols in Immunology N2 - One promising approach to treat hematologic malignancies is the usage of patient‐derived CAR T cells. There are continuous efforts to improve the function of these cells, to optimize their receptor, and to use them for the treatment of additional types of cancer and especially solid tumors. In this protocol, an easy and reliable approach for CAR T cell generation is described. T cells are first isolated from peripheral blood (here: leukoreduction system chambers) and afterwards activated for one day with anti‐CD3/CD28 Dynabeads. The gene transfer is performed by lentiviral transduction and gene transfer rate can be verified by flowcytometric analysis. Six days after transduction, the stimulatory Dynabeads are removed. T cells are cultured in interleukin‐2 conditioned medium for several days for expansion. There is an option to expand CAR T cells further by co‐incubation with irradiated, antigen‐expressing feeder cell lines. The CAR T cells are ready to use after 10 (without feeder cell expansion) to 24 days (with feeder cell expansion). KW - CAR T cells KW - chimeric antigen receptor KW - lentiviral transduction Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-215497 VL - 128 IS - 1 ER - TY - JOUR A1 - Rydzek, Julian A1 - Nerreter, Thomas A1 - Peng, Haiyong A1 - Jutz, Sabrina A1 - Leitner, Judith A1 - Steinberger, Peter A1 - Einsele, Hermann A1 - Rader, Christoph A1 - Hudecek, Michael T1 - Chimeric Antigen Receptor Library Screening Using a Novel NF-kappa B/NFAT Reporter Cell Platform JF - Molecular Therapy N2 - Chimeric antigen receptor (CAR)-T cell immunotherapy is under intense preclinical and clinical investigation, and it involves a rapidly increasing portfolio of novel target antigens and CAR designs. We established a platform that enables rapid and high-throughput CAR-screening campaigns with reporter cells derived from the T cell lymphoma line Jurkat. Reporter cells were equipped with nuclear factor kappa B (NF kappa B) and nuclear factor of activated T cells (NFAT) reporter genes that generate a duplex output of enhanced CFP (ECFP) and EGFP, respectively. As a proof of concept, we modified reporter cells with CD19-specific and ROR1-specific CARs, and we detected high-level reporter signals that allowed distinguishing functional from non-functional CAR constructs. The reporter data were highly reproducible, and the time required for completing each testing campaign was substantially shorter with reporter cells (6 days) compared to primary CAR-T cells (21 days). We challenged the reporter platform to a large-scale screening campaign on a ROR1-CAR library, and we showed that reporter cells retrieved a functional CAR variant that was present with a frequency of only 6 in 1.05 x 10(6). The data illustrate the potential to implement this reporter platform into the preclinical development path of novel CAR-T cell products and to inform and accelerate the selection of lead CAR candidates for clinical translation. KW - NF-κB/NFAT reporter cells KW - chimeric antigen receptor KW - library screening KW - cancer immunotherapy KW - ROR1 Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-227193 VL - 27 IS - 2 ER - TY - JOUR A1 - Munawar, Umair A1 - Zhou, Xiang A1 - Prommersberger, Sabrina A1 - Nerreter, Silvia A1 - Vogt, Cornelia A1 - Steinhardt, Maximilian J. A1 - Truger, Marietta A1 - Mersi, Julia A1 - Teufel, Eva A1 - Han, Seungbin A1 - Haertle, Larissa A1 - Banholzer, Nicole A1 - Eiring, Patrick A1 - Danhof, Sophia A1 - Navarro-Aguadero, Miguel Angel A1 - Fernandez-Martin, Adrian A1 - Ortiz-Ruiz, Alejandra A1 - Barrio, Santiago A1 - Gallardo, Miguel A1 - Valeri, Antonio A1 - Castellano, Eva A1 - Raab, Peter A1 - Rudert, Maximilian A1 - Haferlach, Claudia A1 - Sauer, Markus A1 - Hudecek, Michael A1 - Martinez-Lopez, J. A1 - Waldschmidt, Johannes A1 - Einsele, Hermann A1 - Rasche, Leo A1 - Kortüm, K. Martin T1 - Impaired FADD/BID signaling mediates cross-resistance to immunotherapy in Multiple Myeloma JF - Communications Biology N2 - The treatment landscape in multiple myeloma (MM) is shifting from genotoxic drugs to immunotherapies. Monoclonal antibodies, immunoconjugates, T-cell engaging antibodies and CART cells have been incorporated into routine treatment algorithms, resulting in improved response rates. Nevertheless, patients continue to relapse and the underlying mechanisms of resistance remain poorly understood. While Impaired death receptor signaling has been reported to mediate resistance to CART in acute lymphoblastic leukemia, this mechanism yet remains to be elucidated in context of novel immunotherapies for MM. Here, we describe impaired death receptor signaling as a novel mechanism of resistance to T-cell mediated immunotherapies in MM. This resistance seems exclusive to novel immunotherapies while sensitivity to conventional anti-tumor therapies being preserved in vitro. As a proof of concept, we present a confirmatory clinical case indicating that the FADD/BID axis is required for meaningful responses to novel immunotherapies thus we report impaired death receptor signaling as a novel resistance mechanism to T-cell mediated immunotherapy in MM. KW - immunotherapy KW - translational research Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357609 VL - 6 ER - TY - JOUR A1 - Staudt, Sarah A1 - Ziegler-Martin, Kai A1 - Visekruna, Alexander A1 - Slingerland, John A1 - Shouval, Roni A1 - Hudecek, Michael A1 - Van den Brink, Marcel A1 - Luu, Maik T1 - Learning from the microbes: exploiting the microbiome to enforce T cell immunotherapy JF - Frontiers in Immunology N2 - The opportunities genetic engineering has created in the field of adoptive cellular therapy for cancer are accelerating the development of novel treatment strategies using chimeric antigen receptor (CAR) and T cell receptor (TCR) T cells. The great success in the context of hematologic malignancies has made especially CAR T cell therapy a promising approach capable of achieving long-lasting remission. However, the causalities involved in mediating resistance to treatment or relapse are still barely investigated. Research on T cell exhaustion and dysfunction has drawn attention to host-derived factors that define both the immune and tumor microenvironment (TME) crucially influencing efficacy and toxicity of cellular immunotherapy. The microbiome, as one of the most complex host factors, has become a central topic of investigations due to its ability to impact on health and disease. Recent findings support the hypothesis that commensal bacteria and particularly microbiota-derived metabolites educate and modulate host immunity and TME, thereby contributing to the response to cancer immunotherapy. Hence, the composition of microbial strains as well as their soluble messengers are considered to have predictive value regarding CAR T cell efficacy and toxicity. The diversity of mechanisms underlying both beneficial and detrimental effects of microbiota comprise various epigenetic, metabolic and signaling-related pathways that have the potential to be exploited for the improvement of CAR T cell function. In this review, we will discuss the recent findings in the field of microbiome-cancer interaction, especially with respect to new trajectories that commensal factors can offer to advance cellular immunotherapy. KW - microbiome KW - immunotherapy KW - immunology KW - cancer immune cell therapy KW - CAR T cell Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-328019 VL - 14 ER -