TY - THES A1 - da Cruz Güerisoli, Irene Maria T1 - Investigating the murine meiotic telomere complex TERB1-TERB2-MAJIN: spatial organization and evolutionary history T1 - Untersuchung des murinen meiotischen Telomer-Komplex TERB1-TERB2-MAJIN: spatiale Organisation und Evolutionsgeschichte N2 - Einess der faszinierenden Merkmale der meiotischen Prophase I sind die hochkonservierten kräftigen Bewegungen homologer Chromosomen. Diese Bewegungen sind entscheidend für den Erfolg von Schlüsselereignissen wie die Ausrichtung, Paarung und Rekombination der homologen Chromosomen. Mehrere bisher untersuchte Organismen, darunter Säugetiere, Würmer, Hefen und Pflanzen, erreichen diese Bewegungen, indem sie die Chromosomenenden an spezialisierten Stellen in der Kernhülle verankern. Diese Verankerung erfordert Telomer-Adapterproteine, die bisher in der Spalthefe und der Maus identifiziert wurden. Die meiosespezifischen Telomer-Adapterproteine der Maus, TERB1, TERB2 und MAJIN, sind an der Verankerung des ubiquitären Telomer-Shelterin-protein an den LINC-Komplex beteiligt, mit einem analogen Mechanismus, wie er die Spalthefe beschrieben wird. Obgleich die meiose-spezifischen TelomerAdapterproteine eine wesentliche Rolle spielen, ist der genaue Mechanismus der Verankerung der Telomere an die Kernhülle sowie ihre evolutionäre Geschichte bisher noch wenig verstanden. Das Hauptziel dieser Arbeit ist daher die Untersuchung der Organisation des meiosespezifischen TelomerAdapterkomplexes TERB1-TERB2-MAJIN der Maus und dessen Evolutionsgeschichte. Im ersten Teil dieser Arbeit wurde die Organisation des TERB1-TERB2-MAJIN Komplexes mittels hochauflösender Mikroskopie (SIM), an Mausspermatozyten untersucht, sowie die Lokalisation in Bezug auf TRF1 des Telomer-ShelterinKomplexes und die telomerische DNA analysiert. In den Stadien Zygotän und Pachytän zeigten die Fluoreszenzsignale eine starke Überlappung der Verteilung der meiotischen Telomer-Komplex-Proteine, wobei die Organisation von TERB2 an den Chromosomenenden heterogener war als die von TERB1 und MAJIN. Außerdem konnte die TRF1-Lokalisation an den Enden der Lateralelemente (LEs) mit einer griffartigen Anordnung um die TERB1- und MAJIN-Signale im Zygotän- und Pachytän-Stadium gezeigt werden. Interessanterweise erwies sich die telomerische DNA als lateral verteilt und teilweise überlappend mit der zentralen Verteilung der meiotischen Telomer-Komplex-Proteine an den Enden der LEs. Die Kombination dieser Ergebnisse erlaubte die Beschreibung eines alternativen Modells der Verankerung der Telomer an die Kernhülle während der meiotischen Prophase I. Der zweite Teil dieser Arbeit analysiert die Evolutionsgeschichte der Mausproteine von TERB1, TERB2 und MAJIN. Die fehlende Übereinstimmung zwischen den Meiose-spezifische Telomer-Adapteproteinen der Maus und der Spalthefe hat die Frage nach dem evolutionsbedingten Ursprung dieses spezifischen Komplexes aufgeworfen. Um vermeintliche Orthologen der Mausproteinevon TERB1, TERB2 und MAJIN über Metazoen hinweg zu identifizieren, wurden computergestützte Verfahren und phylogenetische Analysen durchgeführt. Darüber hinaus wurden Expressionsstudien implementiert, um ihre potenzielle Funktion während der Meiose zu testen. Die Analysen haben ergeben, dass der Meiose-spezifische Telomer-Komplex der Maus sehr alt ist, da er bereits in den Eumetazoen entstand, was auf einen einzigen Ursprung hindeutet. Das Fehlen jeglicher Homologen des meiosespezifischen Telomerkomplexes in Nematoden und die einigen wenigen in Arthropoden nachgewiesenen Kandidaten, deuten darauf hin, dass die Telomer-Adapterproteine in diesen Abstammungslinien verloren/ersetzt oder stark diversifiziert worden sind. Bemerkenswerterweise zeigten Proteindomänen von TERB1, TERB2 und MAJIN, die an der Bildung des Komplexes sowie an der Interaktion mit dem Telomer-Shelterin-Protein und den LINC-Komplexen beteiligt sind, eine hohe Sequenzähnlichkeit über alle Kladen hinweg. Abschließend lieferte die Genexpression im Nesseltier Hydra vulgaris den Beweis, dass der TERB1-TERB2-MAJIN-Komplex selektiv in der Keimbahn exprimiert wird, was auf die Konservierung meiotischer Funktionen über die gesamte Metazoen-Evolution hinweg hindeutet. Zusammenfassend bietet diese Arbeit bedeutende neue Erkenntnisse hinsichtlich des Meiose-spezifischen Telomer-Adapterkomplex, seines Mechanismus zur Verankerung der Telomer an die Kernhülle und die Entschlüsselung seines Ursprungs in den Metazoen. N2 - One of the fascinating features of meiotic prophase I, is the highly conserved vigorous movements of homologous chromosomes. These movements are critical for the success of essential events as homologs alignment, synapsis and recombination. Several organisms studied so far, including mammals, worms, yeast and plants achieve these movements by anchoring the chromosome ends to specialized sites in the nuclear envelope (NE). This attachment requires telomere adaptor proteins which have to date been identified in fission yeast and mice. The mouse meiosis-specific telomere adaptor proteins TERB1, TERB2, and MAJIN are involved in the attachment of ubiquitous shelterin telomere to the LINC complex, in an analogous mechanism as those described in fission yeast. Despite the essential role of meiosis-specific telomere adaptor proteins, the precise mechanism of anchorage of telomeres to the nuclear envelope, as well as their evolutionary history, are still not well understood. Therefore, the main aim of this thesis is to investigate the organization of the mouse meiosis-specific telomere adaptor complex TERB1-TERB2-MAJIN and its evolutionary history. In the first part of this thesis high-resolution Structured Illumination Microscopy (SIM), indirect immunofluorescence and Telo-FISH on mouse spermatocytes were used to determine precisely how the telomere complex proteins are localized with relation to the shelterin telomeric TRF1 protein and telomeric DNA. During zygotene and pachytene stages staining patterns revealed extensively overlapping of meiotic telomere complex proteins distributions in which TERB2 organization is more heterogeneous than TERB1 and MAJIN at the chromosome ends. Further, TRF1 localization was shown at the side of lateral elements (LEs) ends with grasp-like distribution surrounding the TERB1 and MAJIN signals in zygotene and pachytene stages. Interestingly, telomeric DNA was shown to be laterally distributed and partially overlapping with the more central distribution displayed by meiotic telomere complex proteins of LEs ends. The combination of these results allowed to describe an alternative model of the telomere attachment to the NE during meiotic prophase I. The second part of this thesis, analyses mouse TERB1, TERB2, and MAJIN evolutionary history. The lack of similarity between mouse and fission yeast meiotic-specific telomere adaptor proteins has raised the question about the origin of this specific complex through evolution. To identify mouse TERB1, TERB2, and MAJIN putative orthologues, computational approaches and phylogenetic analyses were performed. Besides, to test their potential function during meiosis, expression studies were conducted. From these analyses, it was revealed that mouse meiosis-specific telomere complex is ancient, as it originated as early as eumetazoans pointing to a single origin. The absence of any homologs in Nematoda and only a few candidates detected in Arthropoda for meiosis-specific telomere complex, seemed, that these proteins have been lost/replaced or highly diversified in these lineages. Remarkably, TERB1, TERB2, and MAJIN protein domains involved in the formation of the complex as well as those required for the interaction with the telomere shelterin protein and the LINC complexes revealed high sequence similarity across all clades. Finally, gene expression in the cnidarian Hydra Vulgaris provided evidence that the TERB1-TERB2-MAJIN complex is selectively expressed in the germline suggesting conservation of meiotic functions across metazoan evolution. In summary, this thesis provides significant insights into the meiosis-specific telomere complex mechanism to engage telomeres to the nuclear envelope and the elucidation of its origin in metazoans. KW - meiosis KW - chromosomes telomere-led movement KW - TERB1-TERB2-MAJIN KW - SIM KW - Evolution Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-210562 ER - TY - JOUR A1 - da Cruz, Irene A1 - Rodríguez-Casuriaga, Rosana A1 - Santiñaque, Frederico F. A1 - Farías, Joaquina A1 - Curti, Gianni A1 - Capoano, Carlos A. A1 - Folle, Gustavo A. A1 - Benavente, Ricardo A1 - Sotelo-Silveira, José Roberto A1 - Geisinger, Adriana T1 - Transcriptome analysis of highly purified mouse spermatogenic cell populations: gene expression signatures switch from meiotic-to postmeiotic-related processes at pachytene stage JF - BMC Genomics N2 - Background Spermatogenesis is a complex differentiation process that involves the successive and simultaneous execution of three different gene expression programs: mitotic proliferation of spermatogonia, meiosis, and spermiogenesis. Testicular cell heterogeneity has hindered its molecular analyses. Moreover, the characterization of short, poorly represented cell stages such as initial meiotic prophase ones (leptotene and zygotene) has remained elusive, despite their crucial importance for understanding the fundamentals of meiosis. Results We have developed a flow cytometry-based approach for obtaining highly pure stage-specific spermatogenic cell populations, including early meiotic prophase. Here we combined this methodology with next generation sequencing, which enabled the analysis of meiotic and postmeiotic gene expression signatures in mouse with unprecedented reliability. Interestingly, we found that a considerable number of genes involved in early as well as late meiotic processes are already on at early meiotic prophase, with a high proportion of them being expressed only for the short time lapse of lepto-zygotene stages. Besides, we observed a massive change in gene expression patterns during medium meiotic prophase (pachytene) when mostly genes related to spermiogenesis and sperm function are already turned on. This indicates that the transcriptional switch from meiosis to post-meiosis takes place very early, during meiotic prophase, thus disclosing a higher incidence of post-transcriptional regulation in spermatogenesis than previously reported. Moreover, we found that a good proportion of the differential gene expression in spermiogenesis corresponds to up-regulation of genes whose expression starts earlier, at pachytene stage; this includes transition protein-and protamine-coding genes, which have long been claimed to switch on during spermiogenesis. In addition, our results afford new insights concerning X chromosome meiotic inactivation and reactivation. Conclusions This work provides for the first time an overview of the time course for the massive onset and turning off of the meiotic and spermiogenic genetic programs. Importantly, our data represent a highly reliable information set about gene expression in pure testicular cell populations including early meiotic prophase, for further data mining towards the elucidation of the molecular bases of male reproduction in mammals. KW - Spermatogenesis KW - Transcriptome KW - RNAseq KW - Flow cytometry Y1 - 2016 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-164574 VL - 17 ER - TY - JOUR A1 - Dedukh, Dmitrij A1 - Da Cruz, Irene A1 - Kneitz, Susanne A1 - Marta, Anatolie A1 - Ormanns, Jenny A1 - Tichopád, Tomáš A1 - Lu, Yuan A1 - Alsheimer, Manfred A1 - Janko, Karel A1 - Schartl, Manfred T1 - Achiasmatic meiosis in the unisexual Amazon molly, Poecilia formosa JF - Chromosome Research N2 - Unisexual reproduction, which generates clonal offspring, is an alternative strategy to sexual breeding and occurs even in vertebrates. A wide range of non-sexual reproductive modes have been described, and one of the least understood questions is how such pathways emerged and how they mechanistically proceed. The Amazon molly, Poecilia formosa, needs sperm from males of related species to trigger the parthenogenetic development of diploid eggs. However, the mechanism, of how the unreduced female gametes are produced, remains unclear. Cytological analyses revealed that the chromosomes of primary oocytes initiate pachytene but do not proceed to bivalent formation and meiotic crossovers. Comparing ovary transcriptomes of P. formosa and its sexual parental species revealed expression levels of meiosis-specific genes deviating from P. mexicana but not from P. latipinna. Furthermore, several meiosis genes show biased expression towards one of the two alleles from the parental genomes. We infer from our data that in the Amazon molly diploid oocytes are generated by apomixis due to a failure in the synapsis of homologous chromosomes. The fact that this failure is not reflected in the differential expression of known meiosis genes suggests the underlying molecular mechanism may be dysregulation on the protein level or misexpression of a so far unknown meiosis gene, and/or hybrid dysgenesis because of compromised interaction of proteins from diverged genomes. KW - meiosis KW - parthenogenesis KW - synaptonemal complex KW - recombination KW - crossing-over KW - achiasmatic KW - transcriptome KW - oogenesis Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-325128 VL - 30 IS - 4 ER - TY - JOUR A1 - Dunce, James M. A1 - Milburn, Amy E. A1 - Gurusaran, Manickam A1 - da Cruz, Irene A1 - Sen, Lee T. A1 - Benavente, Ricardo A1 - Davies, Owen R. T1 - Structural basis of meiotic telomere attachment to the nuclear envelope by MAJIN-TERB2-TERB1 JF - Nature Communications N2 - Meiotic chromosomes undergo rapid prophase movements, which are thought to facilitate the formation of inter-homologue recombination intermediates that underlie synapsis, crossing over and segregation. The meiotic telomere complex (MAJIN, TERB1, TERB2) tethers telomere ends to the nuclear envelope and transmits cytoskeletal forces via the LINC complex to drive these rapid movements. Here, we report the molecular architecture of the meiotic telomere complex through the crystal structure of MAJIN-TERB2, together with light and X-ray scattering studies of wider complexes. The MAJIN-TERB2 2:2 hetero-tetramer binds strongly to DNA and is tethered through long flexible linkers to the inner nuclear membrane and two TRF1-binding 1:1 TERB2-TERB1 complexes. Our complementary structured illumination microscopy studies and biochemical findings reveal a telomere attachment mechanism in which MAJIN-TERB2-TERB1 recruits telomere-bound TRF1, which is then displaced during pachytene, allowing MAJIN-TERB2-TERB1 to bind telomeric DNA and form a mature attachment plate. KW - DNA KW - meiosis KW - proteins KW - super-resolution microscopy KW - X-ray crystallography Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-226416 VL - 9 ER -