TY - JOUR A1 - Ascheid, David A1 - Baumann, Magdalena A1 - Funke, Caroline A1 - Volz, Julia A1 - Pinnecker, Jürgen A1 - Friedrich, Mike A1 - Höhn, Marie A1 - Nandigama, Rajender A1 - Ergün, Süleyman A1 - Nieswandt, Bernhard A1 - Heinze, Katrin G. A1 - Henke, Erik T1 - Image-based modeling of vascular organization to evaluate anti-angiogenic therapy JF - Biology Direct N2 - In tumor therapy anti-angiogenic approaches have the potential to increase the efficacy of a wide variety of subsequently or co-administered agents, possibly by improving or normalizing the defective tumor vasculature. Successful implementation of the concept of vascular normalization under anti-angiogenic therapy, however, mandates a detailed understanding of key characteristics and a respective scoring metric that defines an improved vasculature and thus a successful attempt. Here, we show that beyond commonly used parameters such as vessel patency and maturation, anti-angiogenic approaches largely benefit if the complex vascular network with its vessel interconnections is both qualitatively and quantitatively assessed. To gain such deeper insight the organization of vascular networks, we introduce a multi-parametric evaluation of high-resolution angiographic images based on light-sheet fluorescence microscopy images of tumors. We first could pinpoint key correlations between vessel length, straightness and diameter to describe the regular, functional and organized structure observed under physiological conditions. We found that vascular networks from experimental tumors diverted from those in healthy organs, demonstrating the dysfunctionality of the tumor vasculature not only on the level of the individual vessel but also in terms of inadequate organization into larger structures. These parameters proofed effective in scoring the degree of disorganization in different tumor entities, and more importantly in grading a potential reversal under treatment with therapeutic agents. The presented vascular network analysis will support vascular normalization assessment and future optimization of anti-angiogenic therapy. KW - vascular structure KW - cancer KW - tumor microenvironment KW - optical clearing KW - light sheet fluorescence microscopy KW - 3D image analysis Y1 - 2023 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-357242 VL - 18 ER - TY - JOUR A1 - Stegner, David A1 - van Eeuwijk, Judith M.M. A1 - Angay, Oğuzhan A1 - Gorelashvili, Maximilian G. A1 - Semeniak, Daniela A1 - Pinnecker, Jürgen A1 - Schmithausen, Patrick A1 - Meyer, Imke A1 - Friedrich, Mike A1 - Dütting, Sebastian A1 - Brede, Christian A1 - Beilhack, Andreas A1 - Schulze, Harald A1 - Nieswandt, Bernhard A1 - Heinze, Katrin G. T1 - Thrombopoiesis is spatially regulated by the bone marrow vasculature JF - Nature Communications N2 - In mammals, megakaryocytes (MKs) in the bone marrow (BM) produce blood platelets, required for hemostasis and thrombosis. MKs originate from hematopoietic stem cells and are thought to migrate from an endosteal niche towards the vascular sinusoids during their maturation. Through imaging of MKs in the intact BM, here we show that MKs can be found within the entire BM, without a bias towards bone-distant regions. By combining in vivo two-photon microscopy and in situ light-sheet fluorescence microscopy with computational simulations, we reveal surprisingly slow MK migration, limited intervascular space, and a vessel-biased MK pool. These data challenge the current thrombopoiesis model of MK migration and support a modified model, where MKs at sinusoids are replenished by sinusoidal precursors rather than cells from a distant periostic niche. As MKs do not need to migrate to reach the vessel, therapies to increase MK numbers might be sufficient to raise platelet counts. KW - bone marrow KW - megakaryocytes KW - thrombopoiesis Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-170591 VL - 8 IS - 127 ER -