TY - THES A1 - Hartmann, Laura T1 - Die funktionelle Rolle der Transkriptionsfaktoren bZIP1 und bZIP53 in der Arabidopsis thaliana- Wurzel nach Salstress T1 - The functional role of bZIP1 and bZIP53 transcription factors in salt treated roots of Arabisopsis thaliana N2 - Die zunehmende Versalzung des Bodens führt weltweit zu starken Ernteeinbußen. Ob- wohl die Wurzeln der Pflanzen als erstes mit dem Salzstress in Berührung kommen, ist noch nicht viel über Signaltransduktionswege in Wurzeln zur Anpassung der Pflanze an Salzstress bekannt. Die bZIP-Transkriptionsfaktoren der Gruppe S1, bZIP1 und bZIP53, werden gewebespezifisch in der Wurzel nach Salzstress aktiviert. In dieser Arbeit werden diese bZIPs in ein Netzwerk eingeordnet, von der Aktivierung der Tran- skriptionsfaktoren bis zur Funktion in der Regulation des Stoffwechsels in der salzgest- ressten Pflanze. Die Aktivierung von bZIP1 kann über verschiedene sowohl ionische als auch osmotische Stimuli erfolgen und ist abhängig von Calcium, der HEXOKINASE 1 und SnRK1- Kinasen (Snf1 RELATED PROTEIN KINASE 1). Die dunkelinduzierte Expression von bZIP1 wird HXK1-abhängig durch Glucose inhibiert, bei Energiemangelbedingungen ist die Aktivierung von bZIP1 SnRK1-abhängig. Beide Enzyme spielen auch in der salzinduzierten Expression von bZIP1 eine Rolle. Über Transkriptom- und Me- tabolomanalysen kann gezeigt werden, dass bZIP1 und bZIP53 an der Umprogram- mierung des Kohlenhydrat- und Aminosäuremetabolismus teilhaben. Besonders Gene der Glukoneogenese (PYRUVAT ORTHOPHOSPHAT DIKINASE und FRUCTOSE- 1,6-BISPHOS- PHATASE) bzw. des Aminosäurekatabolismus (BRANCHED- CHAIN AMINO ACID TRANSAMINASE 2, METHYLCROTONYL- COA-CARBOXYLASE A und HOMOGENTISATE 1,2-DIOXYGENASE ) werden von den Transkriptionsfaktoren reguliert. Das spricht für eine Umprogrammierung des Metabolismus und der Mobilisierung von Energie aus Aminosäuren zur Anpassung an die Stressbedingungen. Die Transkriptionsfaktoren der Gruppe S1 bilden vorzugsweise Heterodimere mit der Gruppe C. Mit Mutantenanalysen, die zum einen die Transkriptionsfaktoren des C/S1-Netzwerks und zum anderen Komponenten der Abscisinsäure (ABA) abhängigen Signaltransduktion beinhalten, konnte ein Signaltransduktionsnetzwerk aufgestellt werden, das die Antwort auf abiotischen Stress mittels des Signalwegs über ABA, SnRK2 und AREB (ABA RESPONSIVE ELEMENTS-BINDING PROTEIN) mit der SnRK1-vermittelten Antwort auf Energiemangelbedingungen in der Pflanze verknüpft. Die gefundenen stress- bzw. energieresponsiven Gene konnten nach den Mutantenana- lysen auf Grund ihrer unterschiedlichen Regulation in vier Klassen eingeteilt werden, wovon nur eine, die Klasse 4, von dem C/S1 Netzwerk reguliert wird. Die Klassen 1- 3 sind unabhängig von den bZIP-Transkriptionsfaktoren der Gruppe C. Die Klasse 1 bilden typische ABA-responsive Gene, die von den Gruppe A-bZIPs reguliert werden. Faktoren der Gruppe A sind auch an der Expression der Gene der Klasse 2 beteiligt, diese werden aber auch durch bZIP1 und bZIP53 induziert. Dieser Klasse konnten Gene zugeordnet werden, die im Abbau verzweigtkettiger Aminosäuren eine Rolle spielen. Am Aminosäureabbau sind außerdem die Gene der Klasse 2 beteiligt. Für diese Gene konnte eine Expressionsregulation durch bZIP1 und bZIP53 gezeigt werden. Für die Bestimmung möglicher Heterodimerisierungspartner bedarf es noch weiterer Analysen. Dieses Model, das den abitoschen Stress abhängigen ABA-Signalweg mit dem ener- gieabhängigen SnRK1-Signaltransduktionsweg verknüpft, zeigt die präzise Regulation von mindestens 4 Gen-Klassen, deren Expression durch die Kombination verschiedener bZIP-Transkriptionsfaktoren aktiviert wird. N2 - Increasing salinization of soil has led to significant crop loss worldwide. Notwith- standing the fact that plant roots are the first to be affected by salt stress, signal transduction pathways in roots for salt stress adaptation are still mostly unknown In this work the group S1 bZIP transcription factors bZIP1 and bZIP53 that are spe- cifically induced by salt stress in roots, were functionally characterized with respect to their role in salt stress response in plants. Transcriptional activation of bZIP1 can be mediated by both ionic and osmotic stimuli and is dependent on Ca2+, HEXO- KINASE 1 (HXK1) and the SnRK1 kinases (Snf1 RELATED PROTEIN KINASE 1). Dark induced expression of bZIP1 is inhibited by glucose depending on HXK1 acti- vity. In starvation conditions the transcription of bZIP1 is mediated by SnRK1. Here both signaling enzymes are shown to be involved in salt induced bZIP1 transcripti- on. Transcriptome and metabolome analyses reveal an important function of bZIP1 and bZIP53 concerning the reprogramming of primary carbohydrate and amino acid metabolism during salt stress in the Arabidopsis root. Particularly genes involved in gluconeogenesis (PYRUVAT ORTHOPHOSPHAT DIKINASE and FRUCTOSE-1,6- BISPHOSPHATASE )or amino acid catabolism (BRANCHED- CHAIN AMINO ACID TRANSAMINASE 2, METHYLCROTONYL- COA-CARBOXYLASE A and HOMO- GENTISATE 1,2-DIOXYGENASE) are regulated by these transcription factors. This points to reprogramming of metabolism and remobilization of energy by amino acid degradation under stress. Group S1 bZIPs preferably form heterodimers with group C bZIP transcription factors. Mutant analyses of C/S1 bZIPs and ABA signaling com- ponents, respectively, revealed a complex network connecting abiotic stress responses via ABA-SnRK2-AREB (ABA RESPONSIVE ELEMENTS-BINDING PROTEIN) to SnRK1 mediated starvation responses. The detected genes were grouped in four classes according to their different regulation, of which only class 4 is regulated by the C/S1 network. Classes 1-3 are controlled independently of group C transcription factors. Class 1 contains typical ABA responsive genes, regulated by group A bZIPs. These are also involved in gene expression of class 2 genes, which are as well induced by bZIP1 and bZIP53. Genes of branched chain amino acid catabolism belong to this class. Al- so involved in amino acid catabolism are genes of class 2, these genes were shown to be transcriptionally regulated by bZIP1 and bZIP53. Further analyses are required to reveal possible heterodimerization partners. This model, that links the abiotic stress responding ABA pathway to the energy dependent SnRK1 signaling pathway, reveals at least four gene classes that are very precisely regulated by combining different bZIP transcription factors. KW - Salzstress KW - salt KW - Transkriptionsfaktor KW - Ackerschmalwand KW - transcription factors KW - root KW - Wurzel Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-99423 ER - TY - JOUR A1 - Cyran, Laura A1 - Serfling, Julia A1 - Kirschner, Luisa A1 - Raifer, Hartmann A1 - Lohoff, Michael A1 - Hermanns, Heike M. A1 - Kerstan, Andreas A1 - Bodem, Jochen A1 - Lutz, Manfred B. T1 - Flt3L, LIF, and IL‐10 combination promotes the selective in vitro development of ESAM\(^{low}\) cDC2B from murine bone marrow JF - European Journal of Immunology N2 - The development of two conventional dendritic cells (DC) subsets (cDC1 and cDC2) and the plasmacytoid DC (pDC) in vivo and in cultures of bone marrow (BM) cells is mediated by the growth factor Flt3L. However, little is known about the factors that direct the development of the individual DC subsets. Here, we describe the selective in vitro generation of murine ESAM\(^{low}\) CD103\(^{-}\) XCR1\(^{-}\) CD172a\(^{+}\) CD11b\(^{+}\) cDC2 from BM by treatment with a combination of Flt3L, LIF, and IL‐10 (collectively named as FL10). FL10 promotes common dendritic cell progenitors (CDP) proliferation in the cultures, similar to Flt3L and CDP sorted and cultured in FL10 generate exclusively cDC2. These cDC2 express the transcription factors Irf4, Klf4, and Notch2, and their growth is reduced using BM from Irf4\(^{-/-}\) mice, but the expression of Batf3 and Tcf4 is low. Functionally they respond to TLR3, TLR4, and TLR9 signals by upregulation of the surface maturation markers MHC II, CD80, CD86, and CD40, while they poorly secrete proinflammatory cytokines. Peptide presentation to TCR transgenic OT‐II cells induced proliferation and IFN‐γ production that was similar to GM‐CSF‐generated BM‐DC and higher than Flt3L‐generated DC. Together, our data support that FL10 culture of BM cells selectively promotes CDP‐derived ESAM\(^{low}\) cDC2 (cDC2B) development and survival in vitro. KW - dendritic cells KW - cDC2 subset KW - Flt3L KW - LIF KW - IL‐10 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-312448 VL - 52 IS - 12 SP - 1946 EP - 1960 ER - TY - JOUR A1 - Mainz, Laura A1 - Sarhan, Mohamed A. F. E. A1 - Roth, Sabine A1 - Sauer, Ursula A1 - Maurus, Katja A1 - Hartmann, Elena M. A1 - Seibert, Helen-Desiree A1 - Rosenwald, Andreas A1 - Diefenbacher, Markus E. A1 - Rosenfeldt, Mathias T. T1 - Autophagy blockage reduces the incidence of pancreatic ductal adenocarcinoma in the context of mutant Trp53 JF - Frontiers in Cell and Developmental Biology N2 - Macroautophagy (hereafter referred to as autophagy) is a homeostatic process that preserves cellular integrity. In mice, autophagy regulates pancreatic ductal adenocarcinoma (PDAC) development in a manner dependent on the status of the tumor suppressor gene Trp53. Studies published so far have investigated the impact of autophagy blockage in tumors arising from Trp53-hemizygous or -homozygous tissue. In contrast, in human PDACs the tumor suppressor gene TP53 is mutated rather than allelically lost, and TP53 mutants retain pathobiological functions that differ from complete allelic loss. In order to better represent the patient situation, we have investigated PDAC development in a well-characterized genetically engineered mouse model (GEMM) of PDAC with mutant Trp53 (Trp53\(^{R172H}\)) and deletion of the essential autophagy gene Atg7. Autophagy blockage reduced PDAC incidence but had no impact on survival time in the subset of animals that formed a tumor. In the absence of Atg7, non-tumor-bearing mice reached a similar age as animals with malignant disease. However, the architecture of autophagy-deficient, tumor-free pancreata was effaced, normal acinar tissue was largely replaced with low-grade pancreatic intraepithelial neoplasias (PanINs) and insulin expressing islet β-cells were reduced. Our data add further complexity to the interplay between Atg7 inhibition and Trp53 status in tumorigenesis. KW - pancreatic cancer KW - autophagy KW - p53 KW - metastasis KW - ATG7 Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-266005 SN - 2296-634X VL - 10 ER -