TY - JOUR A1 - Van den Hove, Daniel A1 - Jakob, Sissi Brigitte A1 - Schraut, Karla-Gerlinde A1 - Kenis, Gunter A1 - Schmitt, Angelika Gertrud A1 - Kneitz, Susanne A1 - Scholz, Claus-Jürgen A1 - Wiescholleck, Valentina A1 - Ortega, Gabriela A1 - Prickaerts, Jos A1 - Steinbusch, Harry A1 - Lesch, Klaus-Peter T1 - Differential Effects of Prenatal Stress in 5-Htt Deficient Mice: Towards Molecular Mechanisms of Gene x Environment Interactions JF - PLoS ONE N2 - Prenatal stress (PS) has been shown to influence the development of the fetal brain and to increase the risk for the development of psychiatric disorders in later life. Furthermore, the variation of human serotonin transporter (5-HTT, SLC6A4) gene was suggested to exert a modulating effect on the association between early life stress and the risk for depression. In the present study, we used a 5-HttxPS paradigm to investigate whether the effects of PS are dependent on the 5-Htt genotype. For this purpose, the effects of PS on cognition, anxiety-and depression-related behavior were examined using a maternal restraint stress paradigm of PS in C57BL6 wild-type (WT) and heterozygous 5-Htt deficient (5-Htt +/-) mice. Additionally, in female offspring, a genome-wide hippocampal gene expression profiling was performed using the Affymetrix GeneChip (R) Mouse Genome 430 2.0 Array. 5-Htt +/- offspring showed enhanced memory performance and signs of reduced anxiety as compared to WT offspring. In contrast, exposure of 5-Htt +/- mice to PS was associated with increased depressive-like behavior, an effect that tended to be more pronounced in female offspring. Further, 5-Htt genotype, PS and their interaction differentially affected the expression of numerous genes and related pathways within the female hippocampus. Specifically, MAPK and neurotrophin signaling were regulated by both the 5-Htt +/- genotype and PS exposure, whereas cytokine and Wnt signaling were affected in a 5-Htt genotypexPS manner, indicating a genexenvironment interaction at the molecular level. In conclusion, our data suggest that although the 5-Htt +/- genotype shows clear adaptive capacity, 5-Htt +/- mice -particularly females-at the same time appear to be more vulnerable to developmental stress exposure when compared to WT offspring. Moreover, hippocampal gene expression profiles suggest that distinct molecular mechanisms mediate the behavioral effects of the 5-Htt genotype, PS exposure, and their interaction. KW - Serotonin transporter polymorphism KW - Acute tryptophan depletion KW - Anxiety-like behavior KW - Long-term depression KW - Knock-out mice KW - Major depression KW - Interferon-alpha KW - Physiological functions KW - Restraint stress KW - Bipolar disorder Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-135111 VL - 6 IS - 8 ER - TY - JOUR A1 - Gutknecht, Lise A1 - Araragi, Naozumi A1 - Merker, Sören A1 - Waider, Jonas A1 - Sommerlandt, Frank M. J. A1 - Mlinar, Boris A1 - Baccini, Gilda A1 - Mayer, Ute A1 - Proft, Florian A1 - Hamon, Michel A1 - Schmitt, Angelika G. A1 - Corradetti, Renato A1 - Lanfumey, Laurence A1 - Lesch, Klaus-Peter T1 - Impacts of Brain Serotonin Deficiency following Tph2 Inactivation on Development and Raphe Neuron Serotonergic Specification JF - PLoS One N2 - Brain serotonin (5-HT) is implicated in a wide range of functions from basic physiological mechanisms to complex behaviors, including neuropsychiatric conditions, as well as in developmental processes. Increasing evidence links 5-HT signaling alterations during development to emotional dysregulation and psychopathology in adult age. To further analyze the importance of brain 5-HT in somatic and brain development and function, and more specifically differentiation and specification of the serotonergic system itself, we generated a mouse model with brain-specific 5-HT deficiency resulting from a genetically driven constitutive inactivation of neuronal tryptophan hydroxylase-2 (Tph2). Tph2 inactivation (Tph2-/-) resulted in brain 5-HT deficiency leading to growth retardation and persistent leanness, whereas a sex- and age-dependent increase in body weight was observed in Tph2+/- mice. The conserved expression pattern of the 5-HT neuron-specific markers (except Tph2 and 5-HT) demonstrates that brain 5-HT synthesis is not a prerequisite for the proliferation, differentiation and survival of raphe neurons subjected to the developmental program of serotonergic specification. Furthermore, although these neurons are unable to synthesize 5-HT from the precursor tryptophan, they still display electrophysiological properties characteristic of 5-HT neurons. Moreover, 5-HT deficiency induces an up-regulation of 5-HT\(_{1A}\) and 5-HT\(_{1B}\) receptors across brain regions as well as a reduction of norepinephrine concentrations accompanied by a reduced number of noradrenergic neurons. Together, our results characterize developmental, neurochemical, neurobiological and electrophysiological consequences of brain-specific 5-HT deficiency, reveal a dual dose-dependent role of 5-HT in body weight regulation and show that differentiation of serotonergic neuron phenotype is independent from endogenous 5-HT synthesis. KW - lacking KW - knock-out mice KW - energy expenditure KW - locomotor activity KW - 5-HT transporter KW - anxiety like KW - receptors KW - behavior KW - tryptophan KW - nucleus Y1 - 2012 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133728 VL - 7 IS - 8 ER - TY - JOUR A1 - Rantamäki, Tomi A1 - Vesa, Liisa A1 - Antila, Hanna A1 - Di Lieto, Antonio A1 - Tammela, Päivi A1 - Schmitt, Angelika A1 - Lesch, Klaus-Peter A1 - Rios, Maribel A1 - Castrén, Eero T1 - Antidepressant Drugs Transactivate TrkB Neurotrophin Receptors in the Adult Rodent Brain Independently of BDNF and Monoamine Transporter Blockade JF - PLoS ONE N2 - Background: Antidepressant drugs (ADs) have been shown to activate BDNF (brain-derived neurotrophic factor) receptor TrkB in the rodent brain but the mechanism underlying this phenomenon remains unclear. ADs act as monoamine reuptake inhibitors and after prolonged treatments regulate brain bdnf mRNA levels indicating that monoamine-BDNF signaling regulate AD-induced TrkB activation in vivo. However, recent findings demonstrate that Trk receptors can be transactivated independently of their neurotrophin ligands. Methodology: In this study we examined the role of BDNF, TrkB kinase activity and monoamine reuptake in the AD-induced TrkB activation in vivo and in vitro by employing several transgenic mouse models, cultured neurons and TrkB-expressing cell lines. Principal Findings: Using a chemical-genetic TrkB(F616A) mutant and TrkB overexpressing mice, we demonstrate that ADs specifically activate both the maturely and immaturely glycosylated forms of TrkB receptors in the brain in a TrkB kinase dependent manner. However, the tricyclic AD imipramine readily induced the phosphorylation of TrkB receptors in conditional bdnf(-/-) knock-out mice (132.4+/-8.5% of control; P = 0.01), indicating that BDNF is not required for the TrkB activation. Moreover, using serotonin transporter (SERT) deficient mice and chemical lesions of monoaminergic neurons we show that neither a functional SERT nor monoamines are required for the TrkB phosphorylation response induced by the serotonin selective reuptake inhibitors fluoxetine or citalopram, or norepinephrine selective reuptake inhibitor reboxetine. However, neither ADs nor monoamine transmitters activated TrkB in cultured neurons or cell lines expressing TrkB receptors, arguing that ADs do not directly bind to TrkB. Conclusions: The present findings suggest that ADs transactivate brain TrkB receptors independently of BDNF and monoamine reuptake blockade and emphasize the need of an intact tissue context for the ability of ADs to induce TrkB activity in brain. KW - Serotonin transporter KW - Neuronal plasticity KW - Mood disorders KW - Messenger-RNA KW - Mouse-brain KW - Rat-brain KW - Activation KW - Depression KW - Mice KW - Insensitivity Y1 - 2011 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133746 VL - 6 IS - 6 ER - TY - JOUR A1 - Hohoff, Christa A1 - Gorji, Ali A1 - Kaiser, Sylvia A1 - Willscher, Edith A1 - Korsching, Eberhard A1 - Ambrée, Oliver A1 - Arolt, Volker A1 - Lesch, Klaus-Peter A1 - Sachser, Norbert A1 - Deckert, Jürgen A1 - Lewejohann, Lars T1 - Effect of Acute Stressor and Serotonin Transporter Genotype on Amygdala First Wave Transcriptome in Mice JF - PLoS ONE N2 - The most prominent brain region evaluating the significance of external stimuli immediately after their onset is the amygdala. Stimuli evaluated as being stressful actuate a number of physiological processes as an immediate stress response. Variation in the serotonin transporter gene has been associated with increased anxiety- and depression-like behavior, altered stress reactivity and adaptation, and pathophysiology of stress-related disorders. In this study the instant reactions to an acute stressor were measured in a serotonin transporter knockout mouse model. Mice lacking the serotonin transporter were verified to be more anxious than their wild-type conspecifics. Genome-wide gene expression changes in the amygdala were measured after the mice were subjected to control condition or to an acute stressor of one minute exposure to water. The dissection of amygdalae and stabilization of RNA was conducted within nine minutes after the onset of the stressor. This extremely short protocol allowed for analysis of first wave primary response genes, typically induced within five to ten minutes of stimulation, and was performed using Affymetrix GeneChip Mouse Gene 1.0 ST Arrays. RNA profiling revealed a largely new set of differentially expressed primary response genes between the conditions acute stress and control that differed distinctly between wild-type and knockout mice. Consequently, functional categorization and pathway analysis indicated genes related to neuroplasticity and adaptation in wild-types whereas knockouts were characterized by impaired plasticity and genes more related to chronic stress and pathophysiology. Our study therefore disclosed different coping styles dependent on serotonin transporter genotype even directly after the onset of stress and accentuates the role of the serotonergic system in processing stressors and threat in the amygdala. Moreover, several of the first wave primary response genes that we found might provide promising targets for future therapeutic interventions of stress-related disorders also in humans. KW - plasticity KW - corticotropin releasing factor KW - primary response genes KW - spatial memory KW - knockout mice KW - rat brain KW - in vivo KW - expression KW - anxiety KW - emotion Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-131040 VL - 8 IS - 3 ER - TY - JOUR A1 - Karabeg, Margherita M. A1 - Grauthoff, Sandra A1 - Kollert, Sina Y. A1 - Weidner, Magdalena A1 - Heiming, Rebecca S. A1 - Jansen, Friederike A1 - Popp, Sandy A1 - Kaiser, Sylvia A1 - Lesch, Klaus-Peter A1 - Sachser, Norbert A1 - Schmitt, Angelika G. A1 - Lewejohann, Lars T1 - 5-HTT Deficiency Affects Neuroplasticity and Increases Stress Sensitivity Resulting in Altered Spatial Learning Performance in the Morris Water Maze but Not in the Barnes Maze JF - PLoS ONE N2 - The purpose of this study was to evaluate whether spatial hippocampus-dependent learning is affected by the serotonergic system and stress. Therefore, 5-HTT knockout (-/-), heterozygous (+/-) and wildtype (+/+) mice were subjected to the Barnes maze (BM) and the Morris water maze (WM), the latter being discussed as more aversive. Additionally, immediate early gene (IEG) expression, hippocampal adult neurogenesis (aN), and blood plasma corticosterone were analyzed. While the performance of 5-HTT-/- mice in the BM was undistinguishable from both other genotypes, they performed worse in the WM. However, in the course of the repeated WM trials 5-HTT-/- mice advanced to wildtype level. The experience of a single trial of either the WM or the BM resulted in increased plasma corticosterone levels in all genotypes. After several trials 5-HTT-/- mice exhibited higher corticosterone concentrations compared with both other genotypes in both tests. Corticosterone levels were highest in 5-HTT-/- mice tested in the WM indicating greater aversiveness of the WM and a greater stress sensitivity of 5-HTT deficient mice. Quantitative immunohistochemistry in the hippocampus revealed increased cell counts positive for the IEG products cFos and Arc as well as for proliferation marker Ki67 and immature neuron marker NeuroD in 5-HTT-/- mice compared to 5-HTT+/+ mice, irrespective of the test. Most differences were found in the suprapyramidal blade of the dentate gyrus of the septal hippocampus. Ki67-immunohistochemistry revealed a genotype x environment interaction with 5-HTT genotype differences in naïve controls and WM experience exclusively yielding more Ki67-positive cells in 5-HTT+/+ mice. Moreover, in 5-HTT-/- mice we demonstrate that learning performance correlates with the extent of aN. Overall, higher baseline IEG expression and increased an in the hippocampus of 5-HTT-/- mice together with increased stress sensitivity may constitute the neurobiological correlate of raised alertness, possibly impeding optimal learning performance in the more stressful WM. KW - immediate early genes KW - learning curves KW - animal performance KW - animal behavior KW - serotonin KW - learning KW - mice KW - hippocampus Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-129978 VL - 8 IS - 10 ER - TY - JOUR A1 - Kloke, Vanessa A1 - Schreiber, Rebecca S. A1 - Bodden, Carina A1 - Möllers, Julian A1 - Ruhmann, Hanna A1 - Kaiser, Sylvia A1 - Lesch, Klaus-Peter A1 - Sachser, Norbert A1 - Lewejohann, Lars T1 - Hope for the Best or Prepare for the Worst? Towards a Spatial Cognitive Bias Test for Mice JF - PLOS ONE N2 - Cognitive bias, the altered information processing resulting from the background emotional state of an individual, has been suggested as a promising new indicator of animal emotion. Comparable to anxious or depressed humans, animals in a putatively negative emotional state are more likely to judge an ambiguous stimulus as if it predicts a negative event, than those in positive states. The present study aimed to establish a cognitive bias test for mice based on a spatial judgment task and to apply it in a pilot study to serotonin transporter (5-HTT) knockout mice, a well-established mouse model for the study of anxiety- and depression-related behavior. In a first step, we validated that our setup can assess different expectations about the outcome of an ambiguous stimulus: mice having learned to expect something positive within a maze differed significantly in their behavior towards an unfamiliar location than animals having learned to expect something negative. In a second step, the use of spatial location as a discriminatory stimulus was confirmed by showing that mice interpret an ambiguous stimulus depending on its spatial location, with a position exactly midway between a positive and a negative reference point provoking the highest level of ambiguity. Finally, the anxiety- and depression-like phenotype of the 5-HTT knockout mouse model manifested - comparable to human conditions - in a trend for a negatively distorted interpretation of ambiguous information, albeit this effect was not statistically significant. The results suggest that the present cognitive bias test provides a useful basis to study the emotional state in mice, which may not only increase the translational value of animal models in the study of human affective disorders, but which is also a central objective of animal welfare research. KW - emotional information KW - serotonin transporter gene KW - attentional bias KW - laboratory environment KW - animal behavior KW - promoter region KW - deficient mice KW - affective state KW - knockout mice KW - judgement bias Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-115569 VL - 9 IS - 8 ER - TY - JOUR A1 - Araragi, Naozumi A1 - Mlinar, Boris A1 - Baccini, Gilda A1 - Gutknecht, Lise A1 - Lesch, Klaus-Peter A1 - Corradetti, Renato T1 - Conservation of 5-HT1A receptor-mediated autoinhibition of serotonin (5-HT) neurons in mice with altered 5-HT homeostasis JF - Frontiers in Neuropharmacology N2 - Firing activity of serotonin (5-HT) neurons in the dorsal raphe nucleus (DRN) is controlled by inhibitory somatodendritic 5-HT1A autoreceptors. This autoinhibitory mechanism is implicated in the etiology of disorders of emotion regulation, such as anxiety disorders and depression, as well as in the mechanism of antidepressant action. Here, we investigated how persistent alterations in brain 5-HT availability affect autoinhibition in two genetically modified mouse models lacking critical mediators of serotonergic transmission: 5-HT transporter knockout (Sert-/-) and tryptophan hydroxylase-2 knockout (Tph2-/-) mice. The degree of autoinhibition was assessed by loose-seal cell-attached recording in DRN slices. First, application of the 5-HT1A-selective agonist R(+)-8-hydroxy-2-(di-n-propylamino)tetralin showed mild sensitization and marked desensitization of 5-HT1A receptors in Tph2-/- mice and Sert-/- mice, respectively. While 5-HT neurons from Tph2-/- mice did not display autoinhibition in response to L-tryptophan, autoinhibition of these neurons was unaltered in Sert-/- mice despite marked desensitization of their 5-HT1A autoreceptors. When the Tph2-dependent 5-HT synthesis step was bypassed by application of 5-hydroxy-L-tryptophan (5-HTP), neurons from both Tph2-/- and Sert-/- mice decreased their firing rates at significantly lower concentrations of 5-HTP compared to wildtype controls. Our findings demonstrate that, as opposed to the prevalent view, sensitivity of somatodendritic 5-HT1A receptors does not predict the magnitude of 5-HT neuron autoinhibition. Changes in 5-HT1A receptor sensitivity may rather be seen as an adaptive mechanism to keep autoinhibition functioning in response to extremely altered levels of extracellular 5-HT resulting from targeted inactivation of mediators of serotonergic signaling. KW - serotonin transporter KW - tryptophan hydroxylase-2 KW - knockout KW - dorsal raphe nucleus KW - autoinhibition KW - 5-HT1A receptor Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97098 ER - TY - JOUR A1 - Opitz, Timm A1 - Schuwerk, Tobias A1 - Paulus, Markus A1 - Kloo, Daniela A1 - Osterhaus, Christopher A1 - Lesch, Klaus‐Peter A1 - Sodian, Beate T1 - No links between genetic variation and developing theory of mind: A preregistered replication attempt of candidate gene studies JF - Developmental Science N2 - Genetic variability is being discussed as a source of inter‐individual differences in Theory of Mind development. Previous studies documented an association between variations in DRD4 VNTR 48 bp, OXTR rs53576, COMT rs4680, and Theory of Mind task performance. As empirical evidence on these associations is sparse, we conducted a preregistered replication attempt of a study reporting a link between DRD4 VNTR 48 bp and false belief understanding in 50‐month‐old children [Lackner, C., Sabbagh, M. A., Hallinan, E., Liu, X., & Holden, J. J. (2012). Developmental Science, 15(2), 272–280.]. Additionally, we attempted a replication of studies on the role of OXTR rs53576 and COMT rs4680 in Theory of Mind. In both replication attempts, we did not find any evidence for associations between the sampled genetic markers and Theory of Mind ability in a series of analyses. Extending the replication attempt of Lackner et al., we employed longitudinal data from several tasks and measurement points, which allowed us to run follow‐up robustness checks with more reliable scores. These extensive analyses corroborated our null finding. This comprehensive non‐replication is important to balance current research on genetic markers of Theory of Mind. In a combined evaluation of our own and previous studies, we point to substantial methodological issues that research on the genetic basis of Theory of Mind development faces. We conclude that these limitations currently prevent firm conclusions on genetic influences on Theory of Mind development. KW - COMT KW - DRD4 KW - false belief KW - OXTR KW - theory of mind Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-238812 VL - 24 IS - 5 ER - TY - JOUR A1 - Strekalova, Tatyana A1 - Veniaminova, Ekaterina A1 - Svirin, Evgeniy A1 - Kopeikina, Ekaterina A1 - Veremeyko, Tatyana A1 - Yung, Amanda W. Y. A1 - Proshin, Andrey A1 - Tan, Shawn Zheng Kai A1 - Khairuddin, Sharafuddin A1 - Lim, Lee Wei A1 - Lesch, Klaus-Peter A1 - Walitza, Susanne A1 - Anthony, Daniel C. A1 - Ponomarev, Eugene D. T1 - Sex-specific ADHD-like behaviour, altered metabolic functions, and altered EEG activity in sialyltransferase ST3GAL5-deficient mice JF - Biomolecules N2 - A deficiency in GM3-derived gangliosides, resulting from a lack of lactosylceramide-alpha-2,3-sialyltransferase (ST3GAL5), leads to severe neuropathology, including epilepsy and metabolic abnormalities. Disruption of ganglioside production by this enzyme may also have a role in the development of neuropsychiatric disorders. ST3Gal5 knock-out (St3gal5\(^{−/−}\)) mice lack a-, b-, and c-series gangliosides, but exhibit no overt neuropathology, possibly owing to the production of compensatory 0-series glycosphingolipids. Here, we sought to investigate the possibility that St3gal5\(^{−/−}\) mice might exhibit attention-deficit/hyperactivity disorder (ADHD)-like behaviours. In addition, we evaluated potential metabolic and electroencephalogram (EEG) abnormalities. St3gal5\(^{−/−}\) mice were subjected to behavioural testing, glucose tolerance tests, and the levels of expression of brain and peripheral A and B isoforms of the insulin receptor (IR) were measured. We found that St3gal5\(^{−/−}\) mice exhibit locomotor hyperactivity, impulsivity, neophobia, and anxiety-like behavior. The genotype also altered blood glucose levels and glucose tolerance. A sex bias was consistently found in relation to body mass and peripheral IR expression. Analysis of the EEG revealed an increase in amplitude in St3gal5\(^{−/−}\) mice. Together, St3gal5\(^{−/−}\) mice exhibit ADHD-like behaviours, altered metabolic and EEG measures providing a useful platform for better understanding of the contribution of brain gangliosides to ADHD and associated comorbidities. KW - lactosylceramide alpha-2,3-sialyltransferase (ST3GAL5) KW - attention-deficit/hyperactivity disorder (ADHD) KW - insulin receptor (IR) KW - sex differences KW - electroencephalogram (EEG) KW - mice Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-250071 SN - 2218-273X VL - 11 IS - 12 ER - TY - JOUR A1 - Svirin, Evgeniy A1 - Veniaminova, Ekaterina A1 - Costa-Nunes, João Pedro A1 - Gorlova, Anna A1 - Umriukhin, Aleksei A1 - Kalueff, Allan V. A1 - Proshin, Andrey A1 - Anthony, Daniel C. A1 - Nedorubov, Andrey A1 - Tse, Anna Chung Kwan A1 - Walitza, Susanne A1 - Lim, Lee Wei A1 - Lesch, Klaus-Peter A1 - Strekalova, Tatyana T1 - Predation stress causes excessive aggression in female mice with partial genetic inactivation of tryptophan hydroxylase-2: evidence for altered myelination-related processes JF - Cells N2 - The interaction between brain serotonin (5-HT) deficiency and environmental adversity may predispose females to excessive aggression. Specifically, complete inactivation of the gene encoding tryptophan hydroxylase-2 (Tph2) results in the absence of neuronal 5-HT synthesis and excessive aggressiveness in both male and female null mutant (Tph2\(^{−/−}\)) mice. In heterozygous male mice (Tph2\(^{+/−}\)), there is a moderate reduction in brain 5-HT levels, and when they are exposed to stress, they exhibit increased aggression. Here, we exposed female Tph2\(^{+/−}\) mice to a five-day rat predation stress paradigm and assessed their emotionality and social interaction/aggression-like behaviors. Tph2\(^{+/−}\) females exhibited excessive aggression and increased dominant behavior. Stressed mutants displayed altered gene expression of the 5-HT receptors Htr1a and Htr2a, glycogen synthase kinase-3 β (GSK-3β), and c-fos as well as myelination-related transcripts in the prefrontal cortex: myelin basic protein (Mbp), proteolipid protein 1 (Plp1), myelin-associated glycoprotein (Mag), and myelin oligodendrocyte glycoprotein (Mog). The expression of the plasticity markers synaptophysin (Syp) and cAMP response element binding protein (Creb), but not AMPA receptor subunit A2 (GluA2), were affected by genotype. Moreover, in a separate experiment, naïve female Tph2\(^{+/−}\) mice showed signs of enhanced stress resilience in the modified swim test with repeated swimming sessions. Taken together, the combination of a moderate reduction in brain 5-HT with environmental challenges results in behavioral changes in female mice that resemble the aggression-related behavior and resilience seen in stressed male mutants; additionally, the combination is comparable to the phenotype of null mutants lacking neuronal 5-HT. Changes in myelination-associated processes are suspected to underpin the molecular mechanisms leading to aggressive behavior. KW - tryptophan hydroxylase-2 (Tph2) KW - female aggression KW - 5-HT receptors KW - glycogen synthase kinase-3 β (GSK-3β) KW - myelination KW - predation stress Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-267250 SN - 2073-4409 VL - 11 IS - 6 ER -