TY - JOUR A1 - Zhao, De-Wei A1 - Yu, Mang A1 - Hu, Kai A1 - Wang, Wei A1 - Yang, Lei A1 - Wang, Ben-Jie A1 - Gao, Xiao-Hong A1 - Guo, Yong-Ming A1 - Xu, Yong-Qing A1 - Wei, Yu-Shan A1 - Tian, Si-Miao A1 - Yang, Fan A1 - Wang, Nan A1 - Huang, Shi-Bo A1 - Xie, Hui A1 - Wei, Xiao-Wei A1 - Jiang, Hai-Shen A1 - Zang, Yu-Qiang A1 - Ai, Jun A1 - Chen, Yuan-Liang A1 - Lei, Guang-Hua A1 - Li, Yu-Jin A1 - Tian, Geng A1 - Li, Zong-Sheng A1 - Cao, Yong A1 - Ma, Li T1 - Prevalence of Nontraumatic Osteonecrosis of the Femoral Head and its Associated Risk Factors in the Chinese Population: Results from a Nationally Representative Survey JF - Chinese Medical Journal N2 - Background: Nontraumatic osteonecrosis of the femoral head (NONFH) is a debilitating disease that represents a significant financial burden for both individuals and healthcare systems. Despite its significance, however, its prevalence in the Chinese general population remains unknown. This study aimed to investigate the prevalence of NONFH and its associated risk factors in the Chinese population. Methods: A nationally representative survey of 30,030 respondents was undertaken from June 2012 to August 2013. All participants underwent a questionnaire investigation, physical examination of hip, and bilateral hip joint X-ray and/or magnetic resonance imaging examination. Blood samples were taken after overnight fasting to test serum total cholesterol, triglyceride, and high-density lipoprotein (HDL) and low-density lipoprotein (LDL) levels. We then used multivariate logistic regression analysis to investigate the associations between various metabolic, demographic, and lifestyle-related variables and NONFH. Results: NONFH was diagnosed in 218 subjects (0.725%) and the estimated NONFH cases were 8.12 million among Chinese people aged 15 years and over. The prevalence of NONFH was significantly higher in males than in females (1.02% vs. 0.51%, \(\chi^2\) = 24.997, P < 0.001). Among NONFH patients, North residents were subjected to higher prevalence of NONFH than that of South residents (0.85% vs. 0.61%, \(\chi^2\) = 5.847, P = 0.016). Our multivariate regression analysis showed that high blood levels of triglycerides, total cholesterol, LDL-cholesterol, and non-HDL-cholesterol, male, urban residence, family history of osteonecrosis of the femoral head, heavy smoking, alcohol abuse and glucocorticoid intake, overweight, and obesity were all significantly associated with an increased risk of NONFH. Conclusions: Our findings highlight that NONFH is a significant public health challenge in China and underscore the need for policy measures on the national level. Furthermore, NONFH shares a number of risk factors with atherosclerosis. KW - nontraumatic osteonecrosis of the femoral head KW - risk factors KW - idiopathic osteonecrosis KW - early-stage osteonecrosis KW - implantation KW - bone KW - marrow KW - follow-up KW - intake KW - avascular necrosis KW - occupational-status KW - cigarette smoking KW - alcohol KW - prevalence Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-138482 VL - 128 IS - 21 ER - TY - JOUR A1 - Yan, Yan A1 - Hong, Ni A1 - Chen, Tiansheng A1 - Li, Mingyou A1 - Wang, Tiansu A1 - Guan, Guijun A1 - Qiao, Yongkang A1 - Chen, Songlin A1 - Schartl, Manfred A1 - Li, Chang-Ming A1 - Hong, Yunhan T1 - p53 Gene Targeting by Homologous Recombination in Fish ES Cells JF - PLoS One N2 - Background: Gene targeting (GT) provides a powerful tool for the generation of precise genetic alterations in embryonic stem (ES) cells to elucidate gene function and create animal models for human diseases. This technology has, however, been limited to mouse and rat. We have previously established ES cell lines and procedures for gene transfer and selection for homologous recombination (HR) events in the fish medaka (Oryzias latipes). Methodology and Principal Findings: Here we report HR-mediated GT in this organism. We designed a GT vector to disrupt the tumor suppressor gene p53 (also known as tp53). We show that all the three medaka ES cell lines, MES1 similar to MES3, are highly proficient for HR, as they produced detectable HR without drug selection. Furthermore, the positive-negative selection (PNS) procedure enhanced HR by similar to 12 folds. Out of 39 PNS-resistant colonies analyzed, 19 (48.7%) were positive for GT by PCR genotyping. When 11 of the PCR-positive colonies were further analyzed, 6 (54.5%) were found to be bona fide homologous recombinants by Southern blot analysis, sequencing and fluorescent in situ hybridization. This produces a high efficiency of up to 26.6% for p53 GT under PNS conditions. We show that p53 disruption and long-term propagation under drug selection conditions do not compromise the pluripotency, as p53-targeted ES cells retained stable growth, undifferentiated phenotype, pluripotency gene expression profile and differentiation potential in vitro and in vivo. Conclusions: Our results demonstrate that medaka ES cells are proficient for HR-mediated GT, offering a first model organism of lower vertebrates towards the development of full ES cell-based GT technology. KW - mouse KW - in-vitro KW - drug selection KW - chimera formation KW - medakafish oryzias latipes KW - embryonic stem-cells KW - zebrafish KW - differentiation KW - cultures KW - pluripotency Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-133416 VL - 8 IS - 3 ER - TY - JOUR A1 - Kadari, Asifiqbal A1 - Lu, Min A1 - Li, Ming A1 - Sekaran, Thileepan A1 - Thummer, Rajkumar P. A1 - Guyette, Naomi A1 - Chu, Vi A1 - Edenhofer, Frank T1 - Excision of viral reprogramming cassettes by Cre protein transduction enables rapid, robust and efficient derivation of transgene-free human induced pluripotent stem cells JF - Stem Cell Research & Therapy N2 - Integrating viruses represent robust tools for cellular reprogramming; however, the presence of viral transgenes in induced pluripotent stem cells (iPSCs) is deleterious because it holds the risk of insertional mutagenesis leading to malignant transformation. Here, we combine the robustness of lentiviral reprogramming with the efficacy of Cre recombinase protein transduction to derive iPSCs devoid of transgenes. By genome-wide analysis and targeted differentiation towards the cardiomyocyte lineage, we show that transgene-free iPSCs are superior to iPSCs before Cre transduction. Our study provides a simple, rapid and robust protocol for the generation of clinical-grade iPSCs suitable for disease modeling, tissue engineering and cell replacement therapies. Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120578 SN - 1757-6512 VL - 5 IS - 2 ER - TY - JOUR A1 - Ruppert, Manuela A1 - Franz, Mirjam A1 - Saratis, Anastasios A1 - Escarcena, Laura Velo A1 - Hendrich, Oliver A1 - Gooi, Li Ming A1 - Schwenkert, Isabell A1 - Klebes, Ansgar A1 - Scholz, Henrike T1 - Hangover links nuclear RNA signaling to cAMP regulation via the phosphodiesterase 4d ortholog dunce JF - Cell Reports N2 - The hangover gene defines a cellular stress pathway that is required for rapid ethanol tolerance in Drosophila melanogaster. To understand how cellular stress changes neuronal function, we analyzed Hangover function on a cellular and neuronal level. We provide evidence that Hangover acts as a nuclear RNA binding protein and we identified the phosphodiesterase 4d ortholog dunce as a target RNA. We generated a transcript-specific dunce mutant that is impaired not only in ethanol tolerance but also in the cellular stress response. At the neuronal level, Dunce and Hangover are required in the same neuron pair to regulate experience-dependent motor output. Within these neurons, two cyclic AMP (cAMP)-dependent mechanisms balance the degree of tolerance. The balance is achieved by feedback regulation of Hangover and dunce transcript levels. This study provides insight into how nuclear Hangover/RNA signaling is linked to the cytoplasmic regulation of cAMP levels and results in neuronal adaptation and behavioral changes. KW - biology KW - hangover KW - dunce KW - Dunce isoforms KW - PDE4d KW - cellular stress KW - alcohol tolerance KW - Drosophila melanogaster Y1 - 2017 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-171950 VL - 18 IS - 2 ER -