TY - JOUR A1 - Edgecock, T. R. A1 - Caretta, O. A1 - Davenne, T. A1 - Densam, C. A1 - Fitton, M. A1 - Kelliher, D. A1 - Loveridge, P. A1 - Machida, S. A1 - Prior, C. A1 - Rogers, C. A1 - Rooney, M. A1 - Thomason, J. A1 - Wilcox, D. A1 - Wildner, E. A1 - Efthymiopoulos, I. A1 - Garoby, R. A1 - Gilardoni, S. A1 - Hansen, C. A1 - Benedetto, E. A1 - Jensen, E. A1 - Kosmicki, A. A1 - Martini, M. A1 - Osborne, J. A1 - Prior, G. A1 - Stora, T. A1 - Melo Mendonca, T. A1 - Vlachoudis, V. A1 - Waaijer, C. A1 - Cupial, P. A1 - Chancé, A. A1 - Longhin, A. A1 - Payet, J. A1 - Zito, M. A1 - Baussan, E. A1 - Bobeth, C. A1 - Bouquerel, E. A1 - Dracos, M. A1 - Gaudiot, G. A1 - Lepers, B. A1 - Osswald, F. A1 - Poussot, P. A1 - Vassilopoulos, N. A1 - Wurtz, J. A1 - Zeter, V. A1 - Bielski, J. A1 - Kozien, M. A1 - Lacny, L. A1 - Skoczen, B. A1 - Szybinski, B. A1 - Ustrycka, A. A1 - Wroblewski, A. A1 - Marie-Jeanne, M. A1 - Balint, P. A1 - Fourel, C. A1 - Giraud, J. A1 - Jacob, J. A1 - Lamy, T. A1 - Latrasse, L. A1 - Sortais, P. A1 - Thuillier, T. A1 - Mitrofanov, S. A1 - Loiselet, M. A1 - Keutgen, Th. A1 - Delbar, Th. A1 - Debray, F. A1 - Trophine, C. A1 - Veys, S. A1 - Daversin, C. A1 - Zorin, V. A1 - Izotov, I. A1 - Skalyga, V. A1 - Burt, G. A1 - Dexter, A. C. A1 - Kravchuk, V. L. A1 - Marchi, T. A1 - Cinausero, M. A1 - Gramegna, F. A1 - De Angelis, G. A1 - Prete, G. A1 - Collazuol, G. A1 - Laveder, M. A1 - Mazzocco, M. A1 - Mezzetto, M. A1 - Signorini, C. A1 - Vardaci, E. A1 - Di Nitto, A. A1 - Brondi, A. A1 - La Rana, G. A1 - Migliozzi, P. A1 - Moro, R. A1 - Palladino, V. A1 - Gelli, N. A1 - Berkovits, D. A1 - Hass, M. A1 - Hirsh, T. Y. A1 - Schuhmann, M. A1 - Stahl, A. A1 - Wehner, J. A1 - Bross, A. A1 - Kopp, J. A1 - Neuffer, D. A1 - Wands, R. A1 - Bayes, R. A1 - Laing, A. A1 - Soler, P. A1 - Agarwalla, S. K. A1 - Cervera Villanueva, A. A1 - Donini, A. A1 - Ghosh, T. A1 - Gómez Cadenas, J. J. A1 - Hernández, P. A1 - Martín-Albo, J. A1 - Mena, O. A1 - Burguet-Castell, J. A1 - Agostino, L. A1 - Buizza-Avanzini, M. A1 - Marafini, M. A1 - Patzak, T. A1 - Tonazzo, A. A1 - Duchesneau, D. A1 - Mosca, L. A1 - Bogomilov, M. A1 - Karadzhov, Y. A1 - Matev, R. A1 - Tsenov, R. A1 - Akhmedov, E. A1 - Blennow, M. A1 - Lindner, M. A1 - Schwetz, T. A1 - Fernández Martinez, E. A1 - Maltoni, M. A1 - Menéndez, J. A1 - Giunti, C. A1 - González García, M. C. A1 - Salvado, J. A1 - Coloma, P. A1 - Huber, P. A1 - Li, T. A1 - López Pavón, J. A1 - Orme, C. A1 - Pascoli, S. A1 - Meloni, D. A1 - Tang, J. A1 - Winter, W. A1 - Ohlsson, T. A1 - Zhang, H. A1 - Scotto-Lavina, L. A1 - Terranova, F. A1 - Bonesini, M. A1 - Tortora, L. A1 - Alekou, A. A1 - Aslaninejad, M. A1 - Bontoiu, C. A1 - Kurup, A. A1 - Jenner, L. J. A1 - Long, K. A1 - Pasternak, J. A1 - Pozimski, J. A1 - Back, J. J. A1 - Harrison, P. A1 - Beard, K. A1 - Bogacz, A. A1 - Berg, J. S. A1 - Stratakis, D. A1 - Witte, H. A1 - Snopok, P. A1 - Bliss, N. A1 - Cordwell, M. A1 - Moss, A. A1 - Pattalwar, S. A1 - Apollonio, M. T1 - High intensity neutrino oscillation facilities in Europe JF - Physical Review Special Topics-Accelerators and Beams N2 - The EUROnu project has studied three possible options for future, high intensity neutrino oscillation facilities in Europe. The first is a Super Beam, in which the neutrinos come from the decay of pions created by bombarding targets with a 4 MW proton beam from the CERN High Power Superconducting Proton Linac. The far detector for this facility is the 500 kt MEMPHYS water Cherenkov, located in the Frejus tunnel. The second facility is the Neutrino Factory, in which the neutrinos come from the decay of mu(+) and mu(-) beams in a storage ring. The far detector in this case is a 100 kt magnetized iron neutrino detector at a baseline of 2000 km. The third option is a Beta Beam, in which the neutrinos come from the decay of beta emitting isotopes, in particular He-6 and Ne-18, also stored in a ring. The far detector is also the MEMPHYS detector in the Frejus tunnel. EUROnu has undertaken conceptual designs of these facilities and studied the performance of the detectors. Based on this, it has determined the physics reach of each facility, in particular for the measurement of CP violation in the lepton sector, and estimated the cost of construction. These have demonstrated that the best facility to build is the Neutrino Factory. However, if a powerful proton driver is constructed for another purpose or if the MEMPHYS detector is built for astroparticle physics, the Super Beam also becomes very attractive. KW - EMMA KW - beta-beam Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-126611 VL - 16 IS - 2 ER - TY - JOUR A1 - Serfling, S. A1 - Zhi, Y. A1 - Schirbel, A. A1 - Lindner, T. A1 - Meyer, T. A1 - Gerhard-Hartmann, E. A1 - Lappa, C. A1 - Hagen, R. A1 - Hackenberg, S. A1 - Buck, A. K. A1 - Scherzad, A. T1 - Improved cancer detection in Waldeyer’s tonsillar ring by \(^{68}\)Ga-FAPI PET/CT imaging JF - European Journal of Nuclear Medicine and Molecular Imaging N2 - Purpose In cancer of unknown primary (CUP), positron emission tomography/computed tomography (PET/CT) with the glucose analog [\(^{18}\)F]FDG represents the standard imaging approach for localization of the malignant primary. Frequently, however, [\(^{18}\)F]FDG PET/CT cannot precisely distinguish between small occult tumors and chronic inflammation, especially in Waldeyer’s tonsillar ring. To improve the accuracy for detecting primary tumors in the Waldeyer’s tonsillar ring, the novel PET tracer [\(^{68}\)Ga]Ga-FAPI-4 for specific imaging of fibroblast activation protein (FAP) expression was used as a more specific target for cancer imaging. Methods Eight patients with suspicion of a malignant tumor in Waldeyer’s tonsillar ring or a CUP syndrome were examined. PET/CT scans with [\(^{18}\)F]-FDG and [\(^{68}\)Ga]Ga-FAPI-4 were performed for pre-operative tumor localization. After surgical resection, histopathological and immunohistochemical results were compared to PET/CT findings. Results Histopathology revealed a palatine or lingual tonsil carcinoma in all patients. In case of lymph node metastases smaller than 7 mm in size, the [\(^{18}\)F]FDG PET/CT detection rate of cervical lymph node metastases was higher than that of [\(^{68}\)Ga]FAPI PET/CT, while both tracers identified the primary tumors in all eight cases. The size of the primary and the lymph node metastases was directly correlated to the respective FAP expression, as detected by immunohistochemistry. The mean SUVmax for the primary tumors was 21.29 ± 7.97 for \(^{18}\)F-FDG and 16.06 ± 6.29 for \(^{68}\)Ga-FAPI, respectively (p = 0.2). The mean SUVmax for the healthy contralateral tonsils was 8.38 ± 2.45 for [\(^{18}\)F]FDG and 3.55 ± 0.47 for [\(^{68}\)Ga]FAPI (p < 0.001). The SUVmax ratio of [68Ga]FAPI was significantly different from [\(^{18}\)F] FDG (p = 0.03). Mean TBRmax for the [\(^{68}\)Ga]Ga-FAPI-4 tracer was markedly higher in comparison to [\(^{18}\)F]FDG (10.90 vs. 4.11). Conclusion Non-invasive imaging of FAP expression by [\(^{68}\)Ga]FAPI PET/CT resulted in a better visual detection of the malignant primary in CUP, as compared to [\(^{18}\)F]FDG imaging. However, the detection rate of lymph node metastases was inferior, presumably due to low FAP expression in small metastases. Nevertheless, by offering a detection method for primary tumors with the potential of lower false positive rates and thus avoiding biopsies, patients with CUP syndrome may benefit from [\(^{68}\)Ga]FAPI PET/CT imaging. KW - Waldeyer’s tonsillar ring KW - cancer of unknown primary (CUP) KW - positron emission tomography/computed tomography Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-235271 SN - 1619-7070 VL - 48 ER -