TY - JOUR A1 - Chen, Jeremy Tsung-Chieh A1 - Schmidt, Lea A1 - Schürger, Christina A1 - Hankir, Mohammed K. A1 - Krug, Susanne M. A1 - Rittner, Heike L. T1 - Netrin-1 as a multitarget barrier stabilizer in the peripheral nerve after injury JF - International Journal of Molecular Sciences N2 - The blood–nerve barrier and myelin barrier normally shield peripheral nerves from potentially harmful insults. They are broken down during nerve injury, which contributes to neuronal damage. Netrin-1 is a neuronal guidance protein with various established functions in the peripheral and central nervous systems; however, its role in regulating barrier integrity and pain processing after nerve injury is poorly understood. Here, we show that chronic constriction injury (CCI) in Wistar rats reduced netrin-1 protein and the netrin-1 receptor neogenin-1 (Neo1) in the sciatic nerve. Replacement of netrin-1 via systemic or local administration of the recombinant protein rescued injury-induced nociceptive hypersensitivity. This was prevented by siRNA-mediated knockdown of Neo1 in the sciatic nerve. Mechanistically, netrin-1 restored endothelial and myelin, but not perineural, barrier function as measured by fluorescent dye or fibrinogen penetration. Netrin-1 also reversed the decline in the tight junction proteins claudin-5 and claudin-19 in the sciatic nerve caused by CCI. Our findings emphasize the role of the endothelial and myelin barriers in pain processing after nerve damage and reveal that exogenous netrin-1 restores their function to mitigate CCI-induced hypersensitivity via Neo1. The netrin-1-neogenin-1 signaling pathway may thus represent a multi-target barrier protector for the treatment of neuropathic pain. KW - neuropathic pain KW - netrin-1 KW - blood-nerve barrier KW - tight junction proteins Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-261695 SN - 1422-0067 VL - 22 IS - 18 ER - TY - JOUR A1 - Griebsch, Nora-Isabell A1 - Kern, Johanna A1 - Hansen, Jonas A1 - Rullmann, Michael A1 - Luthardt, Julia A1 - Helfmeyer, Stephanie A1 - Dekorsy, Franziska J. A1 - Soeder, Marvin A1 - Hankir, Mohammed K. A1 - Zientek, Franziska A1 - Becker, Georg-Alexander A1 - Patt, Marianne A1 - Meyer, Philipp M. A1 - Dietrich, Arne A1 - Blüher, Matthias A1 - Ding, Yu-Shin A1 - Hilbert, Anja A1 - Sabri, Osama A1 - Hesse, Swen T1 - Central serotonin/noradrenaline transporter availability and treatment success in patients with obesity JF - Brain Sciences N2 - Serotonin (5-hydroxytryptamine, 5-HT) as well as noradrenaline (NA) are key modulators of various fundamental brain functions including the control of appetite. While manipulations that alter brain serotoninergic signaling clearly affect body weight, studies implicating 5-HT transporters and NA transporters (5-HTT and NAT, respectively) as a main drug treatment target for human obesity have not been conclusive. The aim of this positron emission tomography (PET) study was to investigate how these central transporters are associated with changes of body weight after 6 months of dietary intervention or Roux-en-Y gastric bypass (RYGB) surgery in order to assess whether 5-HTT as well as NAT availability can predict weight loss and consequently treatment success. The study population consisted of two study cohorts using either the 5-HTT-selective radiotracer [\(^{11}\)C]DASB to measure 5-HTT availability or the NAT-selective radiotracer [\(^{11}\)C]MRB to assess NAT availability. Each group included non-obesity healthy participants, patients with severe obesity (body mass index, BMI, >35 kg/m\(^2\)) following a conservative dietary program (diet) and patients undergoing RYGB surgery within a 6-month follow-up. Overall, changes in BMI were not associated with changes of both 5-HTT and NAT availability, while 5-HTT availability in the dorsal raphe nucleus (DRN) prior to intervention was associated with substantial BMI reduction after RYGB surgery and inversely related with modest BMI reduction after diet. Taken together, the data of our study indicate that 5-HTT and NAT are involved in the pathomechanism of obesity and have the potential to serve as predictors of treatment outcomes. KW - obesity KW - serotonin KW - noradrenaline KW - serotonin transporter KW - noradrenaline transporter KW - Roux-en-Y gastric bypass surgery KW - body mass index (BMI; kg/m\(^2\)) KW - radiotracer KW - PET KW - PET imaging Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-290294 SN - 2076-3425 VL - 12 IS - 11 ER - TY - JOUR A1 - Flemming, S. A1 - Hankir, M. A1 - Ernestus, R.-I. A1 - Seyfried, F. A1 - Germer, C.-T. A1 - Meybohm, P. A1 - Wurmb, T. A1 - Vogel, U. A1 - Wiegering, A. T1 - Surgery in times of COVID-19 — recommendations for hospital and patient management JF - Langenbeck's Archives of Surgery N2 - Background The novel coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2(SARS-CoV-2), has escalated rapidly to a global pandemic stretching healthcare systems worldwide to their limits. Surgeonshave had to immediately react to this unprecedented clinical challenge by systematically repurposing surgical wards. Purpose To provide a detailed set of guidelines developed in a surgical ward at University Hospital Wuerzburg to safelyaccommodate the exponentially rising cases of SARS-CoV-2 infected patients without compromising the care of emergencysurgery and oncological patients or jeopardizing the well-being of hospital staff. Conclusions The dynamic prioritization of SARS-CoV-2 infected and surgical patient groups is key to preserving life whilemaintaining high surgical standards. Strictly segregating patient groups in emergency rooms, non-intensive care wards andoperating areas prevents viral spread while adequately training and carefully selecting hospital staff allow them to confidentlyand successfully undertake their respective clinical duties. KW - SARS-CoV-2 KW - COVID-19 KW - Surgery Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-231766 SN - 1435-2443 VL - 405 ER - TY - JOUR A1 - Widder, A. A1 - Backhaus, J. A1 - Wierlemann, A. A1 - Hering, I. A1 - Flemming, S. A1 - Hankir, M. A1 - Germer, C.-T. A1 - Wiegering, A. A1 - Lock, J. F. A1 - König, S. A1 - Seyfried, F. T1 - Optimizing laparoscopic training efficacy by ’deconstruction into key steps’: a randomized controlled trial with novice medical students JF - Surgical Endoscopy N2 - Background Simulator training is an effective way of acquiring laparoscopic skills but there remains a need to optimize teaching methods to accelerate learning. We evaluated the effect of the mental exercise ‘deconstruction into key steps’ (DIKS) on the time required to acquire laparoscopic skills. Methods A randomized controlled trial with undergraduate medical students was implemented into a structured curricular laparoscopic training course. The intervention group (IG) was trained using the DIKS approach, while the control group (CG) underwent the standard course. Laparoscopic performance of all participants was video-recorded at baseline (t0), after the first session (t1) and after the second session (t2) nine days later. Two double-blinded raters assessed the videos. The Impact of potential covariates on performance (gender, age, prior laparoscopic experience, self-assessed motivation and self-assessed dexterity) was evaluated with a self-report questionnaire. Results Both the IG (n = 58) and the CG (n = 68) improved their performance after each training session (p < 0.001) but with notable differences between sessions. Whereas the CG significantly improved their performance from t0 –t1 (p < 0.05), DIKS shortened practical exercise time by 58% so that the IG outperformed the CG from t1 -t2, (p < 0.05). High self-assessed motivation and dexterity associated with significantly better performance (p < 0.05). Male participants demonstrated significantly higher overall performance (p < 0.05). Conclusion Mental exercises like DIKS can improve laparoscopic performance and shorten practice times. Given the limited exposure of surgical residents to simulator training, implementation of mental exercises like DIKS is highly recommended. Gender, self-assessed dexterity, and motivation all appreciably influence performance in laparoscopic training. KW - laparoscopic skills KW - teaching methods KW - deconstruction into key steps KW - laparoscopic course Y1 - 2022 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-323969 VL - 36 IS - 12 ER -