TY - JOUR A1 - Buchner, Erich A1 - Blanco Redondo, Beatriz A1 - Bunz, Melanie A1 - Halder, Partho A1 - Sadanandappa, Madhumala K. A1 - Mühlbauer, Barbara A1 - Erwin, Felix A1 - Hofbauer, Alois A1 - Rodrigues, Veronica A1 - VijayRaghavan, K. A1 - Ramaswami, Mani A1 - Rieger, Dirk A1 - Wegener, Christian A1 - Förster, Charlotte T1 - Identification and Structural Characterization of Interneurons of the Drosophila Brain by Monoclonal Antibodies of the Würzburg Hybridoma Library JF - PLoS ONE N2 - Several novel synaptic proteins have been identified by monoclonal antibodies (mAbs) of the Würzburg hybridoma library generated against homogenized Drosophila brains, e.g. cysteine string protein, synapse-associated protein of 47 kDa, and Bruchpilot. However, at present no routine technique exists to identify the antigens of mAbs of our library that label only a small number of cells in the brain. Yet these antibodies can be used to reproducibly label and thereby identify these cells by immunohistochemical staining. Here we describe the staining patterns in the Drosophila brain for ten mAbs of the Würzburg hybridoma library. Besides revealing the neuroanatomical structure and distribution of ten different sets of cells we compare the staining patterns with those of antibodies against known antigens and GFP expression patterns driven by selected Gal4 lines employing regulatory sequences of neuronal genes. We present examples where our antibodies apparently stain the same cells in different Gal4 lines suggesting that the corresponding regulatory sequences can be exploited by the split-Gal4 technique for transgene expression exclusively in these cells. The detection of Gal4 expression in cells labeled by mAbs may also help in the identification of the antigens recognized by the antibodies which then in addition to their value for neuroanatomy will represent important tools for the characterization of the antigens. Implications and future strategies for the identification of the antigens are discussed. KW - cell staining KW - drosophila melanogaster KW - gene expression KW - hybridomas KW - immune serum KW - library screening KW - monoclonal antibodies KW - neurons Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-97109 ER - TY - THES A1 - Forster, Melanie T1 - Photochemisch und thermisch induzierter Borylentransfer auf späte Übergangsmetallsysteme T1 - Photochemically and thermally induced borylene transfer to late transition metals N2 - Im Rahmen dieser Arbeit wurden neue Borylenübergangsmetallkomplexe dargestellt und charakterisiert. Neben der Synthese und strukturellen Charakterisierung verschiedener hetero bzw. homodinuklear verbrückter und terminaler Borylenkomplexe konnte erstmalig ein Bisborylenkomplex dargestellt werden. Der Einfluss des Lösungsmittels auf den Ablauf der Borylentransferreaktion wurde ebenso untersucht wie der Einfluss der verwendeten Borylenquelle auf die Reaktionsbedingungen des Intermetallborylentransfers. Außerdem wurde ein Beitrag zur Aufklärung des Mechanismus des Intermetallborylentransfer geleistet und Untersuchungen zur Stabilität und Reaktivität der neuen terminalen Borylenkomplexe durchgeführt. N2 - In this thesis the preparation and characterisation of novel transition metal borylene complexes is presented. In addition to the synthesis and characterisation of different hetero and homodinuclear bridged and terminal borylene complexes respectively, the synthesis of a so far unknown bisborylene complex was realised for the first time. The influence of the solvent and the borylene source on the intermetal borylene transfer reaction were both well studied. Furthermore, an important contribution to the elucidation of the mechanism of the intermetal borylene transfer was made and investigations into the stability and reactivity of the new terminal borylene complexes were carried out. KW - Anorganische Synthese KW - Würzburg / Institut für Anorganische Chemie KW - Borylenübergangsmetallkomplexe KW - Photolyse KW - Bor KW - späte Übergangsmetalle KW - borylene-transition metal complexes KW - photolysis KW - boron KW - late transition metals Y1 - 2008 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-29407 ER - TY - JOUR A1 - Schäbler, Stefan A1 - Amatobi, Kelechi M. A1 - Horn, Melanie A1 - Rieger, Dirk A1 - Helfrich‑Förster, Charlotte A1 - Mueller, Martin J. A1 - Wegener, Christian A1 - Fekete, Agnes T1 - Loss of function in the Drosophila clock gene period results in altered intermediary lipid metabolism and increased susceptibility to starvation JF - Cellular and Molecular Life Sciences N2 - The fruit fly Drosophila is a prime model in circadian research, but still little is known about its circadian regulation of metabolism. Daily rhythmicity in levels of several metabolites has been found, but knowledge about hydrophobic metabolites is limited. We here compared metabolite levels including lipids between period\(^{01}\) (per\(^{01}\)) clock mutants and Canton-S wildtype (WT\(_{CS}\)) flies in an isogenic and non-isogenic background using LC–MS. In the non-isogenic background, metabo-lites with differing levels comprised essential amino acids, kynurenines, pterinates, glycero(phospho)lipids, and fatty acid esters. Notably, detectable diacylglycerols (DAG) and acylcarnitines (AC), involved in lipid metabolism, showed lower levels in per\(^{01}\) mutants. Most of these differences disappeared in the isogenic background, yet the level differences for AC as well as DAG were consistent for fly bodies. AC levels were dependent on the time of day in WTCS in phase with food consumption under LD conditions, while DAGs showed weak daily oscillations. Two short-chain ACs continued to cycle even in constant darkness. per\(^{01}\) mutants in LD showed no or very weak diel AC oscillations out of phase with feeding activity. The low levels of DAGs and ACs in per\(^{01}\) did not correlate with lower total food consumption, body mass or weight. Clock mutant flies showed higher sensitivity to starvation independent of their background-dependent activity level. Our results suggest that neither feeding, energy storage nor mobilisation is significantly affected in per\(^{01}\) mutants, but point towards impaired mitochondrial activity, supported by upregulation of the mitochondrial stress marker 4EBP in the clock mutants KW - circadian rhythms KW - metabolomics KW - mitochondrial activity KW - tryptophan KW - acylcarnitine KW - feeding Y1 - 2020 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-232432 SN - 1420-682X VL - 77 ER - TY - JOUR A1 - Horn, Melanie A1 - Mitesser, Oliver A1 - Hovestadt, Thomas A1 - Yoshii, Taishi A1 - Rieger, Dirk A1 - Helfrich-Förster, Charlotte T1 - The circadian clock improves fitness in the fruit fly, Drosophila melanogaster JF - Frontiers in Physiology N2 - It is assumed that a properly timed circadian clock enhances fitness, but only few studies have truly demonstrated this in animals. We raised each of the three classical Drosophila period mutants for >50 generations in the laboratory in competition with wildtype flies. The populations were either kept under a conventional 24-h day or under cycles that matched the mutant’s natural cycle, i.e., a 19-h day in the case of pers mutants and a 29-h day for perl mutants. The arrhythmic per0 mutants were grown together with wildtype flies under constant light that renders wildtype flies similar arrhythmic as the mutants. In addition, the mutants had to compete with wildtype flies for two summers in two consecutive years under outdoor conditions. We found that wildtype flies quickly outcompeted the mutant flies under the 24-h laboratory day and under outdoor conditions, but perl mutants persisted and even outnumbered the wildtype flies under the 29-h day in the laboratory. In contrast, pers and per0 mutants did not win against wildtype flies under the 19-h day and constant light, respectively. Our results demonstrate that wildtype flies have a clear fitness advantage in terms of fertility and offspring survival over the period mutants and – as revealed for perl mutants – this advantage appears maximal when the endogenous period resonates with the period of the environment. However, the experiments indicate that perl and pers persist at low frequencies in the population even under the 24-h day. This may be a consequence of a certain mating preference of wildtype and heterozygous females for mutant males and time differences in activity patterns between wildtype and mutants. KW - competition KW - mutants KW - resonance theory KW - mating preference KW - fertility Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-195738 SN - 1664-042X VL - 10 IS - 1374 ER -