TY - JOUR A1 - Miller, Franziska A1 - Wintzheimer, Susanne A1 - Prieschl, Johannes A1 - Strauss, Volker A1 - Mandel, Karl T1 - A Supraparticle‐Based Five‐Level‐Identification Tag That Switches Information Upon Readout JF - Advanced Optical Materials N2 - Product identification tags are of great importance in a globalized world with increasingly complex trading routes and networks. Beyond currently used coding strategies, such as QR codes, higher data density, flexible application as well as miniaturization and readout indication are longed for in the next generation of security tags. In this work, micron‐sized supraparticles (SPs) with encoded information (ID) are produced that not only exhibit multiple initially covert identification levels but are also irreversibly marked as “read” upon readout. To achieve this, lanthanide doped CaF\(_{2}\) nanoparticles are assembled in various quantity‐weighted ratios via spray‐drying in presence of a broad‐spectrum stealth fluorophore (StFl), yielding covert spectrally encoded ID‐SPs. Using these as pigments, QR codes, initially dominated by the green fluorescence of the StFl, could be generated. Upon thermal energy input, these particle‐based tags irreversibly switch to an activated state revealing not only multiple luminescent colors but also spectral IDs. This strategy provides the next generation of material‐based security tags with a high data density and security level that switch information upon readout and can be, therefore, used as seal of quality. KW - multilevel luminescence identification KW - rare earth doped nanoparticles KW - security tags KW - stealth fluorophores KW - supraparticles Y1 - 2021 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-224469 VL - 9 IS - 4 ER - TY - JOUR A1 - Herster, Franziska A1 - Bittner, Zsofia A1 - Codrea, Marius Cosmin A1 - Archer, Nathan K. A1 - Heister, Martin A1 - Löffler, Markus W. A1 - Heumos, Simon A1 - Wegner, Joanna A1 - Businger, Ramona A1 - Schindler, Michael A1 - Stegner, David A1 - Schäkel, Knut A1 - Grabbe, Stephan A1 - Ghoreschi, Kamran A1 - Miller, Lloyd S. A1 - Weber, Alexander N. R. T1 - Platelets Aggregate With Neutrophils and Promote Skin Pathology in Psoriasis JF - Frontiers in Immunology N2 - Psoriasis is a frequent systemic inflammatory autoimmune disease characterized primarily by skin lesions with massive infiltration of leukocytes, but frequently also presents with cardiovascular comorbidities. Especially polymorphonuclear neutrophils (PMNs) abundantly infiltrate psoriatic skin but the cues that prompt PMNs to home to the skin are not well-defined. To identify PMN surface receptors that may explain PMN skin homing in psoriasis patients, we screened 332 surface antigens on primary human blood PMNs from healthy donors and psoriasis patients. We identified platelet surface antigens as a defining feature of psoriasis PMNs, due to a significantly increased aggregation of neutrophils and platelets in the blood of psoriasis patients. Similarly, in the imiquimod-induced experimental in vivo mouse model of psoriasis, disease induction promoted PMN-platelet aggregate formation. In psoriasis patients, disease incidence directly correlated with blood platelet counts and platelets were detected in direct contact with PMNs in psoriatic but not healthy skin. Importantly, depletion of circulating platelets in mice in vivo ameliorated disease severity significantly, indicating that both PMNs and platelets may be relevant for psoriasis pathology and disease severity. KW - psoriasis KW - neutrophil KW - platelet KW - platelet-neutrophil complexes (PNCs) KW - imiquimod Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-320175 VL - 10 ER -