TY - JOUR A1 - Winkler, Karol A1 - Fischer, Julian A1 - Schade, Anne A1 - Amthor, Matthias A1 - Dall, Robert A1 - Geßler, Jonas A1 - Emmerling, Monika A1 - Ostrovskaya, Elena A. A1 - Kamp, Martin A1 - Schneider, Christian A1 - Höfling, Sven T1 - A polariton condensate in a photonic crystal potential landscape JF - New Journal of Physics N2 - The possibility of investigating macroscopic coherent quantum states in polariton condensates and of engineering polariton landscapes in semiconductors has triggered interest in using polaritonic systems to simulate complex many-body phenomena. However, advanced experiments require superior trapping techniques that allow for the engineering of periodic and arbitrary potentials with strong on-site localization, clean condensate formation, and nearest-neighbor coupling. Here we establish a technology that meets these demands and enables strong, potentially tunable trapping without affecting the favorable polariton characteristics. The traps are based on a locally elongated microcavity which can be formed by standard lithography. We observe polariton condensation with non-resonant pumping in single traps and photonic crystal square lattice arrays. In the latter structures, we observe pronounced energy bands, complete band gaps, and spontaneous condensation at the M-point of the Brillouin zone. Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-125050 VL - 17 ER - TY - JOUR A1 - Heil, Hannah S. A1 - Schreiber, Benjamin A1 - Götz, Ralph A1 - Emmerling, Monika A1 - Dabauvalle, Marie-Christine A1 - Krohne, Georg A1 - Höfling, Sven A1 - Kamp, Martin A1 - Sauer, Markus A1 - Heinze, Katrin G. T1 - Sharpening emitter localization in front of a tuned mirror JF - Light: Science & Applications N2 - Single-molecule localization microscopy (SMLM) aims for maximized precision and a high signal-to-noise ratio1. Both features can be provided by placing the emitter in front of a metal-dielectric nanocoating that acts as a tuned mirror2,3,4. Here, we demonstrate that a higher photon yield at a lower background on biocompatible metal-dielectric nanocoatings substantially improves SMLM performance and increases the localization precision by up to a factor of two. The resolution improvement relies solely on easy-to-fabricate nanocoatings on standard glass coverslips and is spectrally and spatially tunable by the layer design and wavelength, as experimentally demonstrated for dual-color SMLM in cells. KW - imaging and sensing KW - super-resolution microscopy Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-228080 VL - 7 ER - TY - JOUR A1 - Kreinberg, Sören A1 - Grbešić, Tomislav A1 - Strauß, Max A1 - Carmele, Alexander A1 - Emmerling, Monika A1 - Schneider, Christian A1 - Höfling, Sven A1 - Porte, Xavier A1 - Reitzenstein, Stephan T1 - Quantum-optical spectroscopy of a two-level system using an electrically driven micropillar laser as a resonant excitation source JF - Light: Science & Applications N2 - Two-level emitters are the main building blocks of photonic quantum technologies and are model systems for the exploration of quantum optics in the solid state. Most interesting is the strict resonant excitation of such emitters to control their occupation coherently and to generate close to ideal quantum light, which is of utmost importance for applications in photonic quantum technology. To date, the approaches and experiments in this field have been performed exclusively using bulky lasers, which hinders the application of resonantly driven two-level emitters in compact photonic quantum systems. Here we address this issue and present a concept for a compact resonantly driven single-photon source by performing quantum-optical spectroscopy of a two-level system using a compact high-β microlaser as the excitation source. The two-level system is based on a semiconductor quantum dot (QD), which is excited resonantly by a fiber-coupled electrically driven micropillar laser. We dress the excitonic state of the QD under continuous wave excitation, and trigger the emission of single photons with strong multi-photon suppression (g\(^{(2)}\)(0)=0.02) and high photon indistinguishability (V = 57±9%) via pulsed resonant excitation at 156 MHz. These results clearly demonstrate the high potential of our resonant excitation scheme, which can pave the way for compact electrically driven quantum light sources with excellent quantum properties to enable the implementation of advanced quantum communication protocols. KW - near-infrared spectroscopy KW - photonic devices KW - semiconductor lasers KW - single photons and quantum effects Y1 - 2018 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-229802 VL - 7 ER -