TY - JOUR A1 - Niemann, Axel A1 - Huber, Nina A1 - Wagner, Konstanze M. A1 - Somandin, Christian A1 - Horn, Michael A1 - Lebrun-Julien, Frédéric A1 - Angst, Brigitte A1 - Pereira, Jorge A. A1 - Halfter, Hartmut A1 - Welzl, Hans A1 - Feltri, M. Laura A1 - Wrabetz, Lawrence A1 - Young, Peter A1 - Wessig, Carsten A1 - Toyka, Klaus V. A1 - Suter, Ueli T1 - The Gdap1 knockout mouse mechanistically links redox control to Charcot–Marie–Tooth disease JF - Brain N2 - The ganglioside-induced differentiation-associated protein 1 (GDAP1) is a mitochondrial fission factor and mutations in GDAP1 cause Charcot–Marie–Tooth disease. We found that Gdap1 knockout mice (\(Gdap1^{−/−}\)), mimicking genetic alterations of patients suffering from severe forms of Charcot–Marie–Tooth disease, develop an age-related, hypomyelinating peripheral neuropathy. Ablation of Gdap1 expression in Schwann cells recapitulates this phenotype. Additionally, intra-axonal mitochondria of peripheral neurons are larger in \(Gdap1^{−/−}\) mice and mitochondrial transport is impaired in cultured sensory neurons of \(Gdap1^{−/−}\) mice compared with controls. These changes in mitochondrial morphology and dynamics also influence mitochondrial biogenesis. We demonstrate that mitochondrial DNA biogenesis and content is increased in the peripheral nervous system but not in the central nervous system of \(Gdap1^{−/−}\) mice compared with control littermates. In search for a molecular mechanism we turned to the paralogue of GDAP1, GDAP1L1, which is mainly expressed in the unaffected central nervous system. GDAP1L1 responds to elevated levels of oxidized glutathione by translocating from the cytosol to mitochondria, where it inserts into the mitochondrial outer membrane. This translocation is necessary to substitute for loss of GDAP1 expression. Accordingly, more GDAP1L1 was associated with mitochondria in the spinal cord of aged \(Gdap1^{−/−}\) mice compared with controls. Our findings demonstrate that Charcot–Marie–Tooth disease caused by mutations in GDAP1 leads to mild, persistent oxidative stress in the peripheral nervous system, which can be compensated by GDAP1L1 in the unaffected central nervous system. We conclude that members of the GDAP1 family are responsive and protective against stress associated with increased levels of oxidized glutathione. KW - animal models KW - Charcot-Marie-Tooth disease KW - mitochondria KW - axonal transport KW - demyelinating disease Y1 - 2014 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-120731 VL - 137 IS - 3 ER - TY - JOUR A1 - Weidemann, F. A1 - Niemann, M. A1 - Stork, S. A1 - Breunig, F. A1 - Beer, M. A1 - Sommer, C. A1 - Herrmann, S. A1 - Ertl, G. A1 - Wanner, C. T1 - Long-term outcome of enzyme-replacement therapy in advanced Fabry disease: evidence for disease progression towards serious complications JF - Journal of Internal Medicine N2 - The long-term effects of enzyme-replacement therapy (ERT) in Fabry disease are unknown. Thus, the aim of this study was to determine whether ERT in patients with advanced Fabry disease affects progression towards 'hard' clinical end-points in comparison with the natural course of the disease. METHODS: A total of 40 patients with genetically proven Fabry disease (mean age 40 ± 9 years; n = 9 women) were treated prospectively with ERT for 6 years. In addition, 40 subjects from the Fabry Registry, matched for age, sex, chronic kidney disease stage and previous transient ischaemic attack (TIA), served as a comparison group. The main outcome was a composite of stroke, end-stage renal disease (ESRD) and death. Secondary outcomes included changes in myocardial left ventricular (LV) wall thickness and replacement fibrosis, change in glomerular filtration rate (GFR), new TIA and change in neuropathic pain. RESULTS: During a median follow-up of 6.0 years (bottom and top quartiles: 5.1, 7.2), 15 events occurred in 13 patients (n = 7 deaths, n = 4 cases of ESRD and n = 4 strokes). Sudden death occurred (n = 6) only in patients with documented ventricular tachycardia and myocardial replacement fibrosis. The annual progression of myocardial LV fibrosis in the entire cohort was 0.6 ± 0.7%. As a result, posterior end-diastolic wall thinning was observed (baseline, 13.2 ± 2.0 mm; follow-up, 11.4 ± 2.1 mm; P < 0.01). GFR decreased by 2.3 ± 4.6 mL min(-1) per year. Three patients experienced a TIA. The major clinical symptom was neuropathic pain (n = 37), and this symptom improved in 25 patients. The event rate was not different between the ERT group and the untreated (natural history) group of the Fabry Registry. CONCLUSION: Despite ERT, clinically meaningful events including sudden cardiac death continue to develop in patients with advanced Fabry disease. KW - Fabry disease KW - α-galactosidase A KW - dialysis KW - prognosis KW - stroke KW - sudden cardiac death Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-132075 VL - 247 IS - 4 ER - TY - JOUR A1 - Dietz, Mariana S. A1 - Hasse, Daniel A1 - Ferraris, Davide M. A1 - Göhler, Antonia A1 - Niemann, Hartmut H. A1 - Heilemann, Mike T1 - Single-molecule photobleaching reveals increased MET receptor dimerization upon ligand binding in intact cells JF - BMC Biophysics N2 - Background: The human receptor tyrosine kinase MET and its ligand hepatocyte growth factor/scatter factor are essential during embryonic development and play an important role during cancer metastasis and tissue regeneration. In addition, it was found that MET is also relevant for infectious diseases and is the target of different bacteria, amongst them Listeria monocytogenes that induces bacterial uptake through the surface protein internalin B. Binding of ligand to the MET receptor is proposed to lead to receptor dimerization. However, it is also discussed whether preformed MET dimers exist on the cell membrane. Results: To address these issues we used single-molecule fluorescence microscopy techniques. Our photobleaching experiments show that MET exists in dimers on the membrane of cells in the absence of ligand and that the proportion of MET dimers increases significantly upon ligand binding. Conclusions: Our results indicate that partially preformed MET dimers may play a role in ligand binding or MET signaling. The addition of the bacterial ligand internalin B leads to an increase of MET dimers which is in agreement with the model of ligand-induced dimerization of receptor tyrosine kinases. KW - single-molecule photobleaching KW - fluorescence correlation spectroscopy KW - fluorescence KW - EGF receptor KW - rat hepatocytes KW - structural insights KW - Scatter factor KW - SEMA domain KW - hepatocyte-growth-factor KW - invasion protein-INLB KW - listeria-monocytogenes KW - tyrosine kinase KW - living cells KW - dimerization KW - MET receptor KW - Signal transduction Y1 - 2013 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-121835 SN - 2046-1682 VL - 6 IS - 6 ER - TY - JOUR A1 - Tuchscherr, Lorena A1 - Bischoff, Markus A1 - Lattar, Santiago M. A1 - Noto Llana, Mariangeles A1 - Pförtner, Henrike A1 - Niemann, Silke A1 - Geraci, Jennifer A1 - Van de Vyver, Hélène A1 - Fraunholz, Martin J. A1 - Cheung, Ambrose L. A1 - Herrmann, Mathias A1 - Völker, Uwe A1 - Sordelli, Daniel O. A1 - Peters, Georg A1 - Loeffler, Bettina T1 - Sigma factor SigB is crucial to mediate Staphylococcus aureus adaptation during chronic infections JF - PLoS Pathogens N2 - Staphylococcus aureus is a major human pathogen that causes a range of infections from acute invasive to chronic and difficult-to-treat. Infection strategies associated with persisting S. aureus infections are bacterial host cell invasion and the bacterial ability to dynamically change phenotypes from the aggressive wild-type to small colony variants (SCVs), which are adapted for intracellular long-term persistence. The underlying mechanisms of the bacterial switching and adaptation mechanisms appear to be very dynamic, but are largely unknown. Here, we analyzed the role and the crosstalk of the global S. aureus regulators agr, sarA and SigB by generating single, double and triple mutants, and testing them with proteome analysis and in different in vitro and in vivo infection models. We were able to demonstrate that SigB is the crucial factor for adaptation in chronic infections. During acute infection, the bacteria require the simultaneous action of the agr and sarA loci to defend against invading immune cells by causing inflammation and cytotoxicity and to escape from phagosomes in their host cells that enable them to settle an infection at high bacterial density. To persist intracellularly the bacteria subsequently need to silence agr and sarA. Indeed agr and sarA deletion mutants expressed a much lower number of virulence factors and could persist at high numbers intracellularly. SigB plays a crucial function to promote bacterial intracellular persistence. In fact, \(\Delta\)sigB-mutants did not generate SCVs and were completely cleared by the host cells within a few days. In this study we identified SigB as an essential factor that enables the bacteria to switch from the highly aggressive phenotype that settles an acute infection to a silent SCV-phenotype that allows for long-term intracellular persistence. Consequently, the SigB-operon represents a possible target to develop preventive and therapeutic strategies against chronic and therapy-refractory infections. KW - gene regulator agr KW - endothelial cells KW - modulates virulence KW - death pathway sar locus KW - factor B KW - small-colony variants KW - alpha-toxin KW - epithelial cells KW - in vitro Y1 - 2015 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-143419 VL - 11 IS - 4 ER -