TY - JOUR A1 - Maierhofer, Anna A1 - Flunkert, Julia A1 - Oshima, Junko A1 - Martin, George M. A1 - Poot, Martin A1 - Nanda, Indrajit A1 - Dittrich, Marcus A1 - Müller, Tobias A1 - Haaf, Thomas T1 - Epigenetic signatures of Werner syndrome occur early in life and are distinct from normal epigenetic aging processes JF - Aging Cell N2 - Werner Syndrome (WS) is an adult‐onset segmental progeroid syndrome. Bisulfite pyrosequencing of repetitive DNA families revealed comparable blood DNA methylation levels between classical (18 WRN‐mutant) or atypical WS (3 LMNA‐mutant and 3 POLD1‐mutant) patients and age‐ and sex‐matched controls. WS was not associated with either age‐related accelerated global losses of ALU, LINE1, and α‐satellite DNA methylations or gains of rDNA methylation. Single CpG methylation was analyzed with Infinium MethylationEPIC arrays. In a correspondence analysis, atypical WS samples clustered together with the controls and were clearly separated from classical WS, consistent with distinct epigenetic pathologies. In classical WS, we identified 659 differentially methylated regions (DMRs) comprising 3,656 CpG sites and 613 RefSeq genes. The top DMR was located in the HOXA4 promoter. Additional DMR genes included LMNA, POLD1, and 132 genes which have been reported to be differentially expressed in WRN‐mutant/depleted cells. DMRs were enriched in genes with molecular functions linked to transcription factor activity and sequence‐specific DNA binding to promoters transcribed by RNA polymerase II. We propose that transcriptional misregulation of downstream genes by the absence of WRN protein contributes to the variable premature aging phenotypes of WS. There were no CpG sites showing significant differences in DNA methylation changes with age between WS patients and controls. Genes with both WS‐ and age‐related methylation changes exhibited a constant offset of methylation between WRN‐mutant patients and controls across the entire analyzed age range. WS‐specific epigenetic signatures occur early in life and do not simply reflect an acceleration of normal epigenetic aging processes. KW - (classical and atypical) Werner syndrome KW - bisulfite pyrosequencing KW - methylation array KW - premature aging KW - segmental progeria KW - transcription deficiency Y1 - 2019 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-202733 VL - 18 ER - TY - JOUR A1 - Lehrnbecher, T. A1 - Merz, H. A1 - Sebald, Walter A1 - Poot, M. T1 - Interleukin 4 drives phytohemagglutinin-activated T cells through several cell cycles: no synergism between interleukin 2 and interleukin 4 N2 - Cell kinetic studies of T cells stimulated with the interleukin 2 (11-2), D-4, or both lymphokines were performed with conventional [3H] thymidine incorporation and with the bivariate BrdU/Hoechst technique. 11-2 and 11-4 are able to drive phytohemagglutininactivated T cells through more than one cell cycle. Neither synergistic nor inhibitory efl'ect on T -cell proliferationwas seen for the stimulation with both 11-2 and 11-4 as compared with the effect ofll-2 alone. The quantitative data ofthe cell cycle distribution ofphytohemagglutininactivated T cells suggestthat the population ofll-4-responsive cells is at least an overlapping population, if not a real subset of the ·population of the 11-2-responsive cells. KW - Biochemie KW - BrdU-Hoechst KW - cell cycle KW - flow cytometry KW - interleukin 2 KW - interleukin 4 Y1 - 1991 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62491 ER - TY - JOUR A1 - Lehrnbecher, T. A1 - Poot, M. A1 - Orscheschek, K. A1 - Sebald, Walter A1 - Feller, A. C. A1 - Merz, H. T1 - Interleukin 7 as interleukin 9 drives phytohemagglutinin-activated T cells through several cell cycles; no synergism between interleukin 7, interleukin 9 and interleukin 4 N2 - The effects of the interlenkins IL-7 and IL-9 on cell cycle progression were investigated by conventional [3H]thymidine incorporation and by the bivariate BrdU/Hoechst technique. 8oth IL· 7 and IL-9 drive phytohemagglutinin-activated T cells through more than one cell cycle, but IL-7 wasmorepotent on cell cycle progression than IL-9. Neither synergistic nor inhibitory effects were seen between various combinations of the lymphokines IL-7, IL-9 and IL-4 compared to each lymphokine alone. When T cells are activated with phytohemagglutinin for 3 days, all or most IL-4 responsive cells respond to IL-7 as weil, whereas only a part of IL-7 responders are IL-4 responders. In contrast, when T cells are activated with phytohemagglutinin for 7 days, the quantitative data of the cell cycle distribution soggest that the population of IL-7 responders is at least an overlapping, if not a real subset of the population of the IL-4 responders. KW - Biochemie Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-62438 ER - TY - JOUR A1 - Stopper, Helga A1 - Kirchner, S. A1 - Schiffmann, D. A1 - Poot, M. T1 - Cell cycle disturbance in relation to micronucleus formation induced by the carcinogenic estrogen diethylstilbestrol N2 - In addition to its tumor-promoting activity in honnone-receptive tissue, the carcinogenic estrogen diethylstilbestrol (DES) has been found to induce cell transformation, aneuploidy and micronucleus formation in mammalian cells. The majority of these micronuclei contained whole chromosomes and were fonned during mitosis. Here a possible relationship between a disturbance in cell cycle progression and micronucleus fonnation is investigated by exposing Syrian hamster embryo (SHE) cells to DES. Continuous bromodeoxyuridine labeling followed by bivariate Hoechst 33258/ethidium bromide flow cytometry was employed for analysis of cell cycle transit and related to the time course of micronucleus formation. Treatment of SHE cells with DES resulted in delayed and impaired cell activation (exit from the GO/G 1 phase), impaired S-phase transit and, mainly, G2-phase traverse. Cells forming micronuclei, on the other hand, were predominantly in G2 phase during DES treatment. These results suggest that impairment of Sand G2 transit may involve a process ultimately leading to micronucleus formation. KW - Toxikologie KW - Flow cytometry KW - Micronucleus formation KW - Diethylstilbestrol KW - Hoechst 33258 dye KW - Bromodeoxyuridine labeling KW - continuous Y1 - 1994 U6 - http://nbn-resolving.de/urn/resolver.pl?urn:nbn:de:bvb:20-opus-82250 ER -